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Abstract

The production cross-section of J/ψ pairs is measured using a data sample of pp col-
lisions collected by the LHCb experiment at a centre-of-mass energy of

√
s = 13 TeV,

corresponding to an integrated luminosity of 279± 11 pb−1. The measurement is
performed for J/ψ mesons with a transverse momentum of less than 10 GeV/c in
the rapidity range 2.0 < y < 4.5. The production cross-section is measured to be
15.2± 1.0± 0.9 nb. The first uncertainty is statistical, and the second is systematic.
The differential cross-sections as functions of several kinematic variables of the J/ψ
pair are measured and compared to theoretical predictions.
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1 Introduction

The production mechanism of heavy quarkonia is a long-standing and intriguing problem
in quantum chromodynamics (QCD), which is not fully understood even after over forty
years of study. The colour-singlet model (CSM) [1–10] assumes the intermediate QQ state
to be colourless and to have the same JPC quantum numbers as the final quarkonium state.
Leading-order calculations in the CSM underestimate the J/ψ and ψ(2S) production cross-
sections at high transverse momentum, pT, by more than one order of magnitude [11].
The gap between CSM predictions and experimental measurements is reduced when
including next-to-leading-order corrections, but the agreement is still not satisfactory [12–
14]. The non-relativistic QCD (NRQCD) model takes into account both colour-singlet (CS)
and colour-octet (CO) states of the QQ pair [15–17]. It either describes the production
cross-sections and polarisations at large pT or it describes the production cross-section at
all pT values, but then fails to predict the polarisation [18–33]. This puzzle can be probed
via the production of pairs of quarkonia [34–39], where the interpretation of the measured
cross-section could be simpler. In quarkonium-pair production, the selection rules in the
CS process of leading-order (LO) NRQCD forbid the feed-down from cascade decays of
excited C-even states. This feed-down from C-even states, e.g. χc → J/ψγ or χb → Υγ,
plays an important role in single quarkonium production. It significantly complicates
the precise comparison between data and model predictions, and makes the interpretation
of polarisation measurements difficult.

Besides the single parton scattering (SPS) process, the process of double parton
scattering (DPS) can also contribute to quarkonium pair production. The DPS process
is of great importance since it can provide information on the transverse momenta of
the partons and their correlations inside the proton, and can help in understanding
various backgrounds, e.g. Z + bb, W+ +W−, multi-jets etc., in searches for new physics.
The DPS processes have been studied in several final states, e.g. 4-jets by the AFS [40],
UA2 [41], CDF [42], and ATLAS [43] collaborations, γ + 3-jets by the CDF [44] and
D0 [45,46] collaborations, 2γ + 2-jets by the D0 [47] collaboration, W + 2-jets [48] and
Υ + Υ [49] by the CMS collaboration, J/ψ + W [50] and J/ψ + Z [51] by the ATLAS
collaboration, and double charm [52], Z + open charm [53] and Υ + open charm [54]
by the LHCb collaboration. After having been first observed by the NA3 collaboration
in pion-nuclear and proton-nuclear interactions [55, 56], J/ψ pair production has been
measured in pp collisions by the LHCb [57] and CMS [58] experiments at

√
s = 7 TeV and

by the ATLAS experiment [59] at
√
s = 8 TeV. The D0 experiment [60] measured it using

pp collision data at
√
s = 1.96 TeV.

Within the DPS mechanism, two quarkonia are produced independently in different
partonic interactions. Neglecting the parton correlations in the proton, the contribution
of this mechanism is estimated according to the formula [61–63]

σDPS (J/ψJ/ψ ) =
1

2

σ (J/ψ )2

σeff

, (1)

where σ(J/ψ ) is the inclusive prompt J/ψ production cross-section, the factor 1/2 accounts
for two identical particles in the final state, and σeff is an effective cross-section, which
provides a proper normalisation of the DPS cross-section estimate. The effective cross-
section is related to the transverse overlap function between partons in the proton, and is
thought to be universal for all processes and energy scales. Most of the measured values
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of σeff lie in the range 12 − 20 mb [43, 54, 64], which supports the expectation that σeff

is universal for a large range of processes with different kinematics and scales, and for a
wide spectrum of centre-of-mass energies in pp and pp collisions.

The LHCb measurement of σ (J/ψJ/ψ ) = 5.1± 1.0± 1.1 nb at
√
s = 7 TeV is not pre-

cise enough to distinguish between the SPS and DPS contributions [65, 66]. The SPS
contribution is calculated to be 4.0 ± 1.2 nb [67, 68] and 4.6 ± 1.1 nb [39] in the lead-
ing-order NRQCD CS approach, and 5.4+2.7

−1.1 nb [39] using complete next-to-leading order
NRQCD CS approach. The DPS contribution is estimated to be 3.8± 1.3 nb with Eq. (1)
using σ (J/ψ ) from Ref. [69] and σeff = 14.5 ± 1.7+1.7

−2.3 mb from Ref. [44]. The large
number of reconstructed J/ψ pair events in the CMS data [58] allowed for study of
J/ψ correlations [70]. The observation of events with a large separation in rapidity of two
J/ψ mesons indicates a significant DPS contribution, leading to σeff = 8.2± 2.2 mb [70],
somewhat lower than the majority of other σeff measurements. A similarly small value,
σeff = 6.3± 1.9 mb, is obtained by the ATLAS collaboration using a data-driven mod-
el-independent approach [59]. A small value of σeff = 4.8± 2.5 mb is also obtained by
the D0 collaboration [60] using the separation of the two J/ψ mesons in pseudorapid-
ity to distinguish SPS and DPS contributions. Together with an even smaller value of
σeff = 2.2± 1.1 mb, determined by the D0 collaboration from the measurement of the si-
multaneous production of J/ψ and Υ mesons [71], and the estimate of σeff = 2.2− 6.6 mb
by the CMS collaboration from the production of Υ pairs [49], these results question
the universality of σeff .

In this paper, the J/ψ pair production cross-section is measured using pp collision
data collected by the LHCb experiment in 2015 at

√
s = 13 TeV with both J/ψ mesons

in the rapidity range 2.0 < y < 4.5, and with a transverse momentum pT < 10 GeV/c.
The polarisation of the J/ψ mesons is assumed to be zero since there is as yet no knowledge
of the polarisation of J/ψ pairs, and all the LHC analyses indicate a small polarisation for
the quarkonia [29–33]. The J/ψ mesons are reconstructed via the µ+µ− final state. In the
following, the labels J/ψ1 and J/ψ2 are randomly assigned to the two J/ψ candidates.

2 Detector and data set

The LHCb detector [72, 73] is a single-arm forward spectrometer covering the
pseudorapidity range 2 < η < 5, designed for the study of particles containing b or
c quarks. The detector includes a high-precision tracking system consisting of a silicon-
strip vertex detector surrounding the pp interaction region, a large-area silicon-strip
detector (TT) located upstream of a dipole magnet with a bending power of about 4 Tm,
and three stations of silicon-strip detectors and straw drift tubes placed downstream of
the magnet. The tracking system provides a measurement of momentum, p, of charged
particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0%
at 200 GeV/c. The minimum distance of a track to a primary vertex (PV), the impact
parameter, is measured with a resolution of (15 + 29/pT)µm, where pT is in GeV/c. Dif-
ferent types of charged hadrons are distinguished using information from two ring-imaging
Cherenkov detectors. Photons, electrons and hadrons are identified by a calorimeter sys-
tem consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter
and a hadronic calorimeter. Muons are identified by a system composed of alternating
layers of iron and multiwire proportional chambers.
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The online event selection is performed by a trigger [74], which consists of a hardware
stage (L0), based on information from the calorimeter and muon systems, followed by a
software stage, which applies a full event reconstruction. The L0 trigger requires two muons
with pT(µ1)×pT(µ2) > (1.3 GeV/c)2. In the first stage of the software trigger (HLT1), two
muons with pT > 330 MeV/c and p > 6 GeV/c are required to form a J/ψ candidate with
invariant mass M(µ+µ−) > 2.7 GeV/c2; alternatively, the event can also be accepted when
it has a good quality muon with pT > 4.34 GeV/c and p > 6 GeV/c. In the second stage
of the software trigger (HLT2), the two J/ψ mesons are reconstructed from µ+µ− pairs
with good vertex-fit quality and invariant masses within ±120 MeV/c2 of the known J/ψ
mass [75], using algorithms identical to the offline reconstruction. In the offline selection,
all four muons in the final state are required to have pT > 650 MeV/c, 6 < p < 200 GeV/c
and 2 < η < 5. Each track must have a good-quality track fit and be identified as a muon.
The four muon tracks are required to originate from the same PV. This reduces to a
negligible level the number of pile-up candidates, i.e. J/ψ pairs from two independent pp
interactions. The reconstructed J/ψ mesons are required to have a good-quality vertex and
an invariant mass in the range 3000 < M(µ+µ−) < 3200 MeV/c2. Only events explicitly
triggered by one of the J/ψ candidates at the L0 and the HLT1 stages are retained. For
events with multiple candidates, in particular where the four muons can be combined in
two different ways to form a J/ψ pair, which account for 1.4% of the total candidates,
one randomly chosen candidate pair is retained.

Simulated J/ψ samples are generated to study the behaviour of the signal. In the
simulation, pp collisions are generated using Pythia8 [76, 77] with a specific LHCb
configuration [78]. Decays of hadronic particles are described by EvtGen [79], in
which final-state radiation is generated using Photos [80]. The interaction of the
generated particles with the detector, and its response, are implemented using the Geant4
toolkit [81] as described in Ref. [82].

3 Cross-section determination

The inclusive J/ψ pair production cross-section is measured as

σ(J/ψJ/ψ ) =
N cor

L × B(J/ψ → µ+µ−)2
, (2)

where N cor is the number of signal candidates after the efficiency correction,
B(J/ψ → µ+µ−) = (5.961± 0.033)% is the branching fraction of the J/ψ → µ+µ− de-
cay [75], and L = 279± 11 pb−1 is the integrated luminosity, determined using the beam-
gas imaging and van der Meer scan methods [83].

The total detection efficiency of the J/ψ pair is estimated as

εtot = εacc × εrec&sel × εPID × εtrig, (3)

where εacc is the geometrical acceptance, εrec&sel is the reconstruction and selection
efficiency for candidates with all final-state muons inside the geometrical acceptance, εPID

is the muon particle identification (PID) efficiency for selected candidates, and εtrig is the
trigger efficiency for selected candidates satisfying the PID requirement. The first three
efficiencies of the J/ψ pair, εacc, εrec&sel and εPID, are factorized as

ε (J/ψJ/ψ ) = ε (J/ψ1 )× ε (J/ψ2 ) . (4)
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Figure 1: Projections of the fit to the efficiency-corrected distribution of the reconstructed J/ψ
mass for (left) M(µ+

1 µ
−
1 ) and (right) M(µ+

2 µ
−
2 ). The (black) points with error bars represent

the data. The (blue) solid line is the total fit function. The (red) cross-hatched area shows the
signal distribution. The (black and magenta) dashed lines represent the background components
due to the combination of a real J/ψ with a combinatorial candidate. The (green) shaded area
shows the purely combinatorial background.

Since the HLT2 trigger selection is performed using the same reconstruction algorithm as
the offline selection and the selection criteria of the HLT2 trigger are a subset of those
used in the final selection, the corresponding trigger efficiency for the reconstructed and
selected events is 100%. Since at least one of the two J/ψ meson candidates is required to
have passed the L0 and HLT1 trigger, the efficiency εtrig of the J/ψ pair can be expressed
as

εtrig (J/ψJ/ψ ) = 1− (1− εtrig (J/ψ1 ))× (1− εtrig (J/ψ2 )) . (5)

All terms in the single J/ψ efficiency are estimated in bins of pT and y of the J/ψ
mesons using the simulation. The track reconstruction and muon PID efficiency are
corrected using data-driven techniques, as described in Sec. 4, and the trigger efficiency
measurement is validated on data.

The signal yield is determined by performing an extended unbinned maximum likelihood
fit to the efficiency-corrected two-dimensional (M(µ+

1 µ
−
1 ),M(µ+

2 µ
−
2 )) mass distribution.

The total detection efficiency is applied individually on an event-by-event basis. The
signal is modelled by the sum of a double-sided Crystal Ball (DSCB) function [84] and a
Gaussian function, which share the same mean value. The power law tail parameters of
the DSCB, the relative fraction and the difference between the widths of the DSCB and
the Gaussian function are fixed to the values obtained from simulation, leaving the peak
value and the core width of the DSCB as free parameters. The combinatorial background
is described by an exponential function. Since the labels J/ψ1 and J/ψ2 are assigned
randomly, the fit function is symmetric under the exchange of the J/ψ1 and J/ψ2 masses.
The fit projections on M(µ+

1 µ
−
1 ) and M(µ+

2 µ
−
2 ) are shown in Fig. 1. The corrected yield 1

of J/ψ pairs is determined to be N cor = (15.8± 1.1)× 103.
After the fit, the residual contamination, where either one or both J/ψ mesons come

from b-hadron decays, must be corrected for. The fraction of background is evaluated with

1The corresponding fit of the efficiency-uncorrected sample gives (1.05± 0.05)× 103 signal events.
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the help of simulation validated with data and normalized using the measured prompt
J/ψ and inclusive bb → J/ψ production cross-sections within the LHCb acceptance at√
s = 13 TeV [85]. The fraction of candidates with J/ψ mesons from b-hadron decays is

determined to be 4.5%.

4 Systematic uncertainties

Several sources of systematic uncertainties on the J/ψ pair production cross-section are
studied and summarized in Table 1. The uncertainty due to the signal shape description
is estimated by replacing the nominal model with two alternative models, the Hypatia
function [86] and a kernel estimate for the underlying probability distribution function of
the simulated sample convolved with a Gaussian function [87]. The relative difference of
1.6% with respect to the nominal result is taken as a systematic uncertainty.

A difference between simulation and data, in particular in the fit quality of the
candidates when constraining the muons to the PV, can lead to a bias in the efficiency
determination. This is estimated by comparing the vertex-fit quality of the reconstructed
J/ψ candidates between the simulated and the data samples, where the background is
subtracted using the sPlot technique [88]. Data and simulation agree within 1.0%, which
is taken as a systematic uncertainty.

The track reconstruction efficiency is studied in data using a tag-and-probe tech-
nique [89]. In this method, one of the muons from the J/ψ is fully reconstructed as
the tag track, and the other muon track, the probe track, is reconstructed using only
information from the TT detector and the muon stations. The tracking efficiency is taken
as the fraction of J/ψ candidates whose probe tracks match fully reconstructed tracks.
The simulated sample is corrected to match the track multiplicity of events in the data.
The ratio of tracking efficiencies between data and simulation is taken as the correction
factor. A systematic uncertainty of 0.8% per track is assigned for the difference in event
multiplicity between data and simulation.

The muon PID efficiency is also determined using a tag-and-probe method [90], where
only one track of the J/ψ is identified as a muon, i.e. the tag track. The single muon PID
efficiency, defined as the fraction of J/ψ candidates with the other track (probe track)
identified as a muon, is determined in bins of p and η of the probe track. Systematic effects
arising from the choice of the binning scheme and for the difference in event multiplicity
between data and simulation are studied. In total, the muon PID efficiency uncertainty is
determined to be 2.3%.

The trigger efficiency εtrig (J/ψ ) measured with simulation is compared with the result
obtained in data for inclusive J/ψ events using a tag-and-probe method [74]. A difference
of 1.0% between the two results is observed and is taken as the systematic uncertainty.

An uncertainty of 1.0% is assigned to the determination of the fraction of candidates
from b-hadron decays, which accounts for the uncertainty of the prompt J/ψ and bb
production cross-sections. The uncertainty introduced by the limited statistics of the
simulated samples used to determine the efficiencies is estimated to be negligible. The
1.1% uncertainty on B(J/ψ → µ+µ−) is propagated to the cross-section. The systematic
uncertainty due to the luminosity calibration is 3.9%. The total systematic uncertainty
is 6.1%.
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Table 1: Summary of the systematic uncertainties on the measurement of the J/ψ pair production
cross-section.

Source Uncertainty[%]
Signal shape 1.6
Data/simulation difference 1.0
Tracking efficiency 0.8× 4
Muon PID efficiency 2.3
Trigger efficiency 1.0
Fraction of J/ψ from b-hadron candidates 1.0
B(J/ψ → µ+µ−) 1.1
Luminosity 3.9
Total 6.1

5 Results and comparison to theory

The J/ψ pair production cross-section where both J/ψ mesons are in the region
2.0 < y < 4.5 and pT < 10 GeV/c is measured to be

σ(J/ψJ/ψ ) = 15.2± 1.0 (stat)± 0.9 (syst) nb,

assuming negligible polarisation of the J/ψ mesons. The detection efficiency of J/ψ mesons
can be affected by the polarisation, especially by the polarisation parameter λθ in the
helicity frame [32,85]. If a value of λθ = ±20% is assumed for both of the J/ψ mesons,
the J/ψ pair production cross-section changes by ±7%. The ratio of the production
cross-section of the J/ψ pair to that of the inclusive prompt J/ψ is calculated to be

σ(J/ψJ/ψ )

σ(J/ψ )
= (10.2± 0.7 (stat)± 0.9 (syst))× 10−4, (6)

where the production cross-section of prompt J/ψ mesons in the range 2.0 < y < 4.5 and
pT < 10 GeV/c is σ(J/ψ ) = 14.94± 0.02 (stat)± 0.91 (syst)µb [85], and the systematic
uncertainties of σ(J/ψJ/ψ ) and σ(J/ψ ) are treated as uncorrelated. According to Eq. (1),
the ratio

1

2

σ(J/ψ )2

σ(J/ψJ/ψ )
= 7.3± 0.5 (stat)± 1.0 (syst) mb. (7)

can be interpreted as σeff if all J/ψ pairs are produced through the DPS process.
The results on J/ψ pair production are compared with a data-driven prediction for the

DPS mechanism and several calculations performed within the SPS mechanism. The DPS
prediction is calculated via Eq. (1) using the measured J/ψ production cross-section at√
s = 13 TeV [85] and the effective cross-section σeff = 14.5± 1.7+1.7

−2.3 mb from Refs. [44,91].
Theoretical predictions of the production cross-section of J/ψ pairs are summarized in

Table 2. The contribution from the SPS mechanism is calculated using several approaches:
the state-of-art complete NLO colour-singlet (NLO CS) computations [39]; the incom-
plete (no-loops) next-to-leading-order colour-singlet (NLO∗CS) calculations [70,92–96];
leading-order colour-singlet (LO CS) [92] and colour-octet (LO CO) [95,96] calculations
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Table 2: Summary of the theoretical predictions and the measurement of σ(J/ψJ/ψ ) for different
regions of transverse momentum of the J/ψ pair. For SPS predictions, the first uncertainty
accounts for the variation of PDFs and gluon densities, while the second one corresponds to
the variation of the factorisation and renormalisation scales. For the LO CO predictions the third
uncertainty corresponds to the choice of LDMEs from Refs. [25, 113–119]. For NLO CS predic-
tions [39] the uncertainty corresponds to the variation of the factorisation and renormalization
scales. For the DPS prediction the first uncertainty is due to the measured prompt J/ψ production
cross-section [85] and the second is due to the uncertainty in σeff [44, 91].

σ(J/ψJ/ψ ) [nb]

no pT cut pT > 1 GeV/c pT > 3 GeV/c

LO CS [92] 1.3± 0.1+3.2
−0.1 — —

LO CO [95,96] 0.45± 0.09+1.42+0.25
−0.36−0.34 — —

LO kT [102] 6.3+3.8+3.8
−1.6−2.6 5.7+3.4+3.2

−1.5−2.1 2.7+1.6+1.6
−0.7−1.0

NLO∗CS′ [92] — 4.3± 0.1+9.9
−0.9 1.6± 0.1+3.3

−0.3

NLO∗CS′′ [70, 93–96] 15.4± 2.2+51
−12 14.8± 1.7+53

−12 6.8± 0.6+22
−5

NLO CS [39] 11.9+4.6
−3.2 — —

DPS [44,85,91] 8.1± 0.9+1.6
−1.3 7.5± 0.8+1.5

−1.2 4.9± 0.5+1.0
−0.8

Data 15.2± 1.0± 0.9 13.5± 0.9± 0.9 8.3± 0.6± 0.5

and the approach based on the kT-factorisation method [97–101], with the leading-order
colour-singlet matrix element (LO kT) [102, 103]. Even with the leading-order matrix
element, the LO kT approach includes a large fraction of higher-order contributions via
the evolution of parton densities [102]. Since NLO∗CS calculations are divergent at
small transverse momentum of the J/ψ pair, two approaches are used: a simple cut-off
for pT(J/ψJ/ψ ) [92] (denoted as NLO∗CS′), and a cut on the mass of any light parton
pair (NLO∗CS′′) [70, 93–96].

Gluon densities from Refs. [104–108] are used for the LO kT approach, while CT14
parton distribution functions (PDF) [109] are used for LO CS and NLO∗CS′ calcula-
tions, NNPDF3.0 NLO PDFs with αs(MZ) = 0.118 [110] are used for LO CO and
NLO∗CS′′ predictions, and CTEQ6L1 and CTEQ6M PDFs [111, 112] are used for
NLO CS computations. For LO CO predictions the long-distance matrix elements (LDMEs)
are taken from Refs. [25, 113–119] and a smearing of transverse momenta of initial gluons,
similar to that used in NLO∗CS′′, is applied. The production cross-section of J/ψ pairs is
sensitive to the choice of parameters; for example, it varies by a factor between 0.8 and 3
when varying the factorisation and renormalisation scales by a factor of two, or increases
if the CTEQ6L PDF set [120] is used instead of the nominal PDFs. The contribution of
LO CO is very sensitive to the choice of the LDME; the absolute cross-section varies from
the minimum of 0.11 nb, based on LDME set from Ref. [113] to the maximum of 0.70 nb,
calculated using LDME set from Ref. [116], while most of the predictions cluster around
0.5 nb. The feed-down from ψ(2S)→ J/ψX decays is included in the LO kT, LO CO and
NLO∗CS′′ calculations and not in the LO CS and NLO∗CS′ calculations. Likewise, a tiny
contribution from J/ψχc production with subsequent decay χc → J/ψγ [92] is included in
the NLO∗CS′ and LO CO results but neglected in the NLO∗CS′′ calculations.
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While the predictions for the production cross-section of J/ψ pairs are significantly
affected by the theory uncertainties, the shapes of the differential cross-sections are very
stable and practically invariant with respect to the choice of PDFs, scales and LDMEs.
In contrast, the smearing of gluon transverse momenta for NLO∗CS′′ and LO CO models
does not affect the production cross-section, but significantly affects some differential
distributions.

The measured differential production cross-sections of J/ψ pairs as a function of several
kinematic variables are compared to the theoretical predictions. For each variable v, the
differential production cross-section of J/ψ pairs is calculated as

dσ(J/ψJ/ψ )

dv
=

1

L × B(J/ψ → µ+µ−)2
× ∆N cor

i

∆vi
,

where ∆N cor
i is the number of efficiency-corrected signal candidates in bin i, and ∆vi is

the corresponding bin width. The luminosity uncertainty and the uncertainty introduced
by B(J/ψ → µ+µ−) are common to all bins and are fully correlated. The tracking
efficiency and muon PID efficiency uncertainties are strongly correlated. In Figs. 2−8 of
the differential cross-sections, only the statistical uncertainties are shown as the systematic
ones are negligibly small and almost 100% correlated.

The comparison between measurements and theoretical predictions is performed for
the following kinematical variables: transverse momentum and rapidity of the J/ψ pair,
transverse momentum and rapidity of each J/ψ meson, differences in the azimuthal angle
and rapidity between the two J/ψ mesons (|∆φ| and |∆y|), the mass of the J/ψ pair and
the transverse momentum asymmetry, defined as

AT ≡
∣∣∣∣
pT(J/ψ1 )− pT(J/ψ2 )

pT(J/ψ1 ) + pT(J/ψ2 )

∣∣∣∣ .

The distributions for the whole pT(J/ψJ/ψ ) range are presented in Figs. 2, 3 and 4, for
pT(J/ψJ/ψ ) > 1 GeV/c in Figs. 5 and 6, and for pT(J/ψJ/ψ ) > 3 GeV/c in Figs. 7 and 8.

The DPS predictions are obtained using a large number of pseudoexperiments, where
two uncorrelated J/ψ mesons are produced according to the measured differential distribu-
tions d2σ (J/ψ ) /dpTdy [85] for single prompt J/ψ production, uniformly distributed over
the azimuthal angle φ. For LO CO and NLO∗CS′′ models two values of Gaussian smearing
of the initial transverse momentum of gluon kT are used, namely 〈kT〉 = 0.5 and 2 GeV/c.
The pT(J/ψJ/ψ ) distribution, shown in Fig. 2, demonstrates the large dependence of
the shape on the choice of the 〈kT〉 parameter. For the NLO∗CS′′ approach [70,93–96],
relatively large smearing of the initial gluon transverse momenta 〈kT〉 = 2 GeV/c is required
to eliminate peaking structures in the distribution. The distributions of the variables
pT(J/ψJ/ψ ), |∆φ| and AT, predicted by the LO CS model, are trivial, pT(J/ψJ/ψ ) ∼ 0,
|∆φ| ∼ π and AT ∼ 0, and omitted from the plots. A similar trivial pattern is expected
for the LO CO model, but due to the kT-smearing, the actual shape of the distribu-
tions strongly depends on the choice of the 〈kT〉 parameter. The NLO∗CS′′ model also
demonstrates a large dependence on the 〈kT〉 parameter for |∆φ| /π distribution.

Neither the DPS model with the given value of the σeff parameter, nor any of
the SPS models can describe simultaneously the measured cross-section and the dif-
ferential shapes. However, the sum of the DPS and SPS contributions can adequately
describe both the measured production cross-sections and the differential distributions.
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Figure 2: Comparisons between measurements and theoretical predictions for the differential
cross-sections as a function of pT(J/ψJ/ψ ). The (black) points with error bars represent the
measurements.

To discriminate between the SPS and DPS contributions, the differential distribution for
each variable v is fitted with the simple two-component model

dσ

dv
= σDPSFDPS(v) + σSPSFSPS(v), (8)

where FDPS and FSPS are templates for the DPS and SPS models and σDPS and σSPS

are floating fit parameters representing the DPS and SPS contributions. The theory
normalisation is not used in the fits. The DPS fraction fDPS is defined as

fDPS ≡
σDPS

σSPS + σDPS

. (9)

Some distributions give little discrimination between SPS and DPS. The percentages of the
DPS component obtained from the fits for the most discriminating variables are presented
in Table 3. The fit results are presented in the Appendix. All the fits indicate a large
DPS contribution to the J/ψ pair production process. The inclusion of the CO component
in the fit does not have a large effect on the determination of the DPS fraction fDPS,
and the fraction of the CO component determined in such a fit procedure is significantly
smaller than the CS contribution. The value of σSPS, calculated as (1−fDPS)×σ(J/ψJ/ψ ),
is smaller than expectations from the NLO∗CS′′ [70, 93–96] and NLO CS [39] approaches
and roughly agrees with the NLO∗CS′ [92] and LO kT [102] predictions.

The value σDPS determined with Eq. (8) is converted to σeff ,

σeff =
1

2

σ (J/ψ )2

σDPS

, (10)

where σ(J/ψ ) is the production cross-section of prompt J/ψ mesons from Ref. [85]. The
values obtained for σeff are summarized in Table 4. Values between 8.8 and 12.5 mb are
found for the models considered in this analysis. These values are slightly larger than
those measured from central J/ψ pair production at LHC, σeff = 8.2 ± 2.2 mb [70] and
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Figure 3: Comparisons between measurements and theoretical predictions for the differential
cross-sections as functions of (top left) pT(J/ψ ), (top right) y(J/ψJ/ψ ) and (bottom) y(J/ψ ).
The (black) points with error bars represent the measurements.

σeff = 6.3± 1.9 mb [59], and significantly exceed the values obtained by the D0 collabora-
tion from analysis of J/ψ pair production, σeff = 4.8± 2.5 mb [60], and ΥJ/ψ production,
σeff = 2.2± 1.1 mb [71]. On the other hand, they are smaller than the values of σeff

measured by the LHCb collaboration in the processes of multiple associated heavy quark
production [52, 54], in particular σeff ∼ 15 mb measured for various J/ψ + cc produc-
tion processes [52] and σeff = 18.0± 1.8 mb measured for the Υ (1S) + D0,+ production
processes [54].
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Table 3: Percentages of the DPS component, fDPS, determined with the simple two-component
fit to different distributions for different SPS models.

Variable LO CS LO kT NLO∗CS′
NLO∗CS′′

NLO CS〈kT〉 = 2 GeV/c 〈kT〉 = 0.5 GeV/c

no pT(J/ψJ/ψ ) cut

pT(J/ψJ/ψ ) — 78± 2 — 86± 55 81± 7 —
y(J/ψJ/ψ ) 83± 39 — — 75± 37 68± 34 —
m(J/ψJ/ψ ) 76± 7 74± 7 — 78± 7 77± 7
|∆y| 59± 21 61± 18 — 63± 18 61± 18 69± 16

pT(J/ψJ/ψ ) > 1 GeV/c

y(J/ψJ/ψ ) — — 75± 24 71± 38 68± 34 —
m(J/ψJ/ψ ) — 73± 8 76± 7 88± 1 —
|∆y| — 57± 20 59± 19 60± 18 60± 19 —

pT(J/ψJ/ψ ) > 3 GeV/c

y(J/ψJ/ψ ) — — 77± 18 64± 38 64± 35 —
m(J/ψJ/ψ ) — 76± 10 84± 7 87± 2 —
|∆y| — 42± 25 53± 21 53± 21 53± 21 —

Table 4: Summary of the σeff values (in mb) from DPS fits for different SPS models.
The uncertainty is statistical only, originating from the statistical uncertainty in σDPS (and
dσ (J/ψJ/ψ )/dv). The common systematic uncertainty of 12%, accounting for the systematic
uncertainty of σ (J/ψJ/ψ ) and the total uncertainty for σ(J/ψ ), is not shown.

Variable LO kT
NLO∗CS′′

NLO CS〈kT〉 = 2 GeV/c 〈kT〉 = 0.5 GeV/c

pT(J/ψJ/ψ ) 9.7± 0.5 8.8± 5.6 9.3± 1.0 —
y(J/ψJ/ψ ) — 11.9± 7.5 10.0± 5.0 —
m(J/ψJ/ψ ) 10.6± 1.1 10.2± 1.0 10.4± 1.0
|∆y| 12.5± 4.1 12.2± 3.7 12.4± 3.9 11.2± 2.9
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6 Summary

The J/ψ pair production cross-section with both J/ψ mesons in the region 2.0 < y < 4.5
and pT < 10 GeV/c is measured to be 15.2±1.0 (stat)±0.9 (syst) nb, using pp collision data
collected by LHCb at

√
s = 13 TeV, corresponding to an integrated luminosity of 279 pb−1.

The differential production cross-sections as functions of pT(J/ψJ/ψ ), pT(J/ψ ), m(J/ψJ/ψ ),
y(J/ψJ/ψ ), y(J/ψ ), |∆φ|, |∆y| and AT are compared to theoretical predictions. A fit to
the differential cross-sections using simple DPS plus SPS models indicates a significant DPS
contribution. The data can be reasonably well described with a sum of DPS and SPS colour-
singlet contributions, with no evidence for a large SPS colour-octet contribution. The
obtained SPS contribution is overestimated in the NLO∗CS′′ [70, 93–96] and NLO CS [39]
approaches and roughly agrees with the NLO∗CS′ [92] and LO kT [102] predictions.
Good agreement with the data for the differential cross-sections calculated within the
LO kT [102] and NLO∗CS′ [92] approaches indicates that a significant part of high-order
contributions can be properly accounted via the evolution of parton densities [102].
Relatively large smearing of initial gluon transverse momenta 〈kT〉 = 2 GeV/c is preferred
over 〈kT〉 = 0.5 GeV/c for the NLO∗CS′′ approach [70, 93–96]. An improvement in the
precision for SPS predictions is needed for a better discrimination between the different
theory approaches. A large DPS contribution results in values of σeff that are smaller
than the values of σeff measured previously by the LHCb collaboration in the processes
of multiple associated heavy quark production [52, 54], and slightly larger than those
measured from central J/ψ pair production at the CMS [58] and ATLAS [59] experiments.
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Appendix

Fits to the differential cross-sections with SPS and

DPS components

The results of fits used for the determination of σeff are shown in Figs. 9, 10
and 11. The fits used only for determination of fDPS in pT(J/ψJ/ψ ) > 1 GeV/c and
pT(J/ψJ/ψ ) > 3 GeV/c regions are shown in Figs. 12, 13, 14 and 15.
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Figure 9: Result of templated DPS fit for dσ(J/ψJ/ψ )
dpT(J/ψJ/ψ ) and dσ(J/ψJ/ψ )

dy(J/ψJ/ψ ) . The (black) points with

error bars represent the data. The total fit result is shown with the thick (red) solid line and
the DPS component is shown with the thin (orange) solid line.
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represent the data. The total fit result is shown with the thick (red) solid line and the DPS
component is shown with the thin (orange) solid line.
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Figure 12: Result of templated DPS fit for dσ(J/ψJ/ψ )
dy(J/ψJ/ψ ) and dσ(J/ψ )

dm(J/ψJ/ψ ) for the pT(J/ψJ/ψ ) >

1 GeV/c region. The (black) points with error bars represent the data. The total fit result is
shown with the thick (red) solid line and the DPS component is shown with the thin (orange)
solid line.
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Figure 13: Result of templated DPS fit for dσ(J/ψJ/ψ )
d|∆y| for the pT(J/ψJ/ψ ) > 1 GeV/c region. The

(black) points with error bars represent the data. The total fit result is shown with the thick
(red) solid line and the DPS component is shown with the thin (orange) solid line.
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Figure 14: Result of templated DPS fit for dσ(J/ψJ/ψ )
dy(J/ψJ/ψ ) and dσ(J/ψJ/ψ )

dm(J/ψJ/ψ ) for the pT(J/ψJ/ψ ) >

3 GeV/c region. The (black) points with error bars represent the data. The total fit result is
shown with the thick (red) solid line and the DPS component is shown with the thin (orange)
solid line.
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Figure 15: Result of templated DPS fit for dσ(J/ψJ/ψ )
d|∆y| for the pT(J/ψJ/ψ ) > 3 GeV/c region. The

(black) points with error bars represent the data. The total fit result is shown with the thick
(red) solid line and the DPS component is shown with the thin (orange) solid line.
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jUniversità di Roma Tor Vergata, Roma, Italy
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