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Abstract

Measurements of the cross-section for producing b quarks in the reaction pp→ bbX
are reported in 7 and 13 TeV collisions at the LHC as a function of the pseudorapidity
η in the range 2 < η < 5 covered by the acceptance of the LHCb experiment. The
measurements are done using semileptonic decays of b-flavored hadrons decaying
into a ground-state charmed hadron in association with a muon. The cross-sections
in the covered η range are 72.0± 0.3± 6.8 µb and 144± 1± 21 µb for 7 and 13 TeV.
The ratio is 2.00± 0.02± 0.26, where the quoted uncertainties are statistical and
systematic, respectively. The agreement with theoretical expectation is good at
both 7 TeV, and 13 TeV.
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Production of b quarks in high energy pp collisions at the LHC provides a sensitive
test of models based on quantum chromodynamics [1]. Searches for physics beyond the
Standard Model (SM) often rely on the ability to accurately predict the production rates
of b quarks that can form backgrounds in combination with other high energy processes [2].
In addition, knowledge of the b-quark yield is essential for calculating the sensitivity of
experiments testing the SM by measuring CP -violating and rare decay processes [3].

We present here measurements of production cross-sections for the average of b-flavored
and b-flavored hadrons, denoted pp → HbX, where X indicates additional particles, in
pp collisions recorded by LHCb at both 7 and 13 TeV center-of-mass energies, and their
ratio. These measurements are made as a function of the Hb pseudorapidity η in the
interval 2 < η < 5, where η = −ln [tan(θ/2)], and θ is the angle of the weakly decaying b
or b-hadron with respect to the proton direction. We report results over the full range of
b-hadron transverse momentum, pT. The Hb cross-section has been previously measured
at LHCb in 7 TeV collisions using semileptonic decays to D0µ−X [4] and b → J/ψX
decays [5]. Previous determinations were made at the Tevatron collider in pp collisions
near 2 TeV center-of-mass energy [6]. Other LHC experiments have also measured b-quark
production characteristics at 7 TeV [7], and 13 TeV [8]. The method presented in this
Letter is more accurate because the normalization is based on well-measured semileptonic
B0 and B− branching fractions, and the equality of semileptonic widths for all b-hadrons,
in contrast to inclusive J/ψ production which relies on the assumption that the b-hadron
particle species are produced in the same proportions as at LEP [9], or those that just use
one specific b-hadron, which needs the b-hadron fractions to extrapolate to the total.

The production cross-section for a hadron Hb that contains either a b or b quark, but
not both, is given by

σ(pp→ HbX) =
1

2

[
σ(B0) + σ(B0)

]
+

1

2

[
σ(B+) + σ(B−)

]
(1)

+
1

2

[
σ(B0

s ) + σ(B0
s)
]

+
1 + δ

2

[
σ(Λ0

b) + σ(Λ0
b)
]
,

where δ is a correction that accounts for Ξb and Ω−b baryons; we ignore Bc mesons since
their production level is estimated to be only 0.1% of b hadrons [10].

Our estimate of δ is based on a paper by Voloshin [11], in which two useful relations
are given

Γ(Ξ−b → Ξ−Xµ−ν) = Γ(Λ0
b → ΛXµ−ν), (2)

and
σ(Ξ−b )

σ(Λ0
b)

= 0.11± 0.03± 0.03,

where the latter is determined from Tevatron data, and the second uncertainty is assigned
from the allowable SU(3) symmetry breaking. The b-hadron fractions determined there [9]
agree with the ones measured by LHCb for other b-flavored hadrons [12]. Since the
lifetimes of the Λ0

b and Ξ−b are equal within their uncertainties [9], assuming that the two
branching fractions are equal gives us an estimate of 0.11 for the Ξ−b /Λ

0
b semileptonic

decay ratio. However, this must be doubled, using isospin invariance, to account for the
Ξ0
b . To this we must add the Ω−b contribution, taken as 15% of the Ξb, thus arriving at an

estimate of δ of 0.25± 0.10, where the uncertainty is the one in Eq. 2 added in quadrature
to our estimate of the uncertainties from assuming isospin and lifetime equalities.
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To measure these cross-sections we determine the signal yields of b decays into a charm
hadron plus a muon for a given integrated luminosity L and correct for various efficiencies
described below. Explicitly

σ(pp→ HbX) =
1

2L

{[
n(D0µ)

εD0 × BD0

+
n(D+µ)

εD+ × BD+

]
1

B(B → DXµν)
(3)

+

[
n(D+

s µ)

εD+
s
× BD+

s

]
1

B(Bs → DsXµν)
+

[
n(Λ+

c µ)

εΛ+
c
× BΛ+

c

]
1 + δ

B(Λ0
b → Λ+

c Xµν)

}
,

where n(Xcµ) means the number of detected charm hadron plus muon events and their
charge-conjugates, with corresponding efficiencies denoted by εXc . The charm branching
fractions, BXc , used in this analysis, along with their sources, are listed in the supplemental
material. The PDG average is used for the D0 and D+

s modes [9]. For the D+ mode
there is only one measurement by CLEO III, so that is used [13]. For the Λ+

c we average
measurements by BES III [14] and Belle [15]. The expression B(B → DXµν) denotes the
average branching fraction for B0 and B− semileptonic decays.

The B0 and B− semileptonic branching fractions are obtained with a somewhat
different procedure than that adopted by the PDG, whose actual estimate is difficult
to derive from the posted information. We take three measurements that are mostly
model-independent and average them. The first one was made by CLEO using inclusive
leptons at the Υ (4S) resonance without distinguishing whether they are from B0 or B−

meson decays [16]. The Υ (4S), however, does not have an equal branching fraction into
B0B0 and B−B+ mesons. In fact the fraction into neutral B pairs is α = 0.486± 0.006 [9],
with the remainder going into charged B pairs. Therefore to compute the B0 and B−

semileptonic branching fractions we need to use the following coupled equations

αB0
SL + (1− α)B−SL = (10.91± 0.09± 0.24)%, (4)

B0
SL/B−SL = τ 0/τ− = 0.927± 0.004,

where τ i are the lifetimes [9]. The numbers extracted from the solution are listed in
Table 1, along with direct measurements from CLEO [16], BaBar [17], and Belle [18].
These latter two analyses measure the semileptonic decays of B0 and B− mesons separately.
They do not cover the full momentum range so a correction has to be applied; this was
done by the PDG [9]. Since D0 and D+ mesons are produced in both B0 and B− decays,
we sum their yields and use the average semileptonic branching fraction for B0 and B−

decays, 〈B0 +B−〉.
The semileptonic B branching fractions we use are listed in Table 2. Since we are

detecting only b→ cµν modes, we have to correct later for the fact that there is a small
1% b→ uµν component [9].

The semileptonic widths ΓSL are equal for all Hb species used in this analysis except
for a small correction for Λ0

b decays (BSL = ΓSL/Γ = ΓSL × τ). This has proven to be
true in the case of charm hadron decays even though the lifetimes of D0 and D+ differ
by a factor of 2.5. The decays of the Λ0

b are slightly different due to the absence of the
chromomagnetic correction that affects B-meson decays but is absent in b baryons [19–21].
Thus ΓSL, and also BSL, are increased for the Λ0

b by (4±2)% [12].
The input for the B0

s lifetime listed in Table 2 uses only measurements in the flavor-
specific decay B0

s → D+
s π
− from CDF [22] and LHCb [23]. Other measurements can in

principle be used, e.g. in J/ψφ or J/ψf0(980) final states, but they then involve also
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determining ∆Γs. Older measurements involving semileptonic decays are suspected of
having larger uncontrolled systematic uncertainties [24]. Finally, the Λ0

b lifetime is taken
from the HFAG average [25].

Corrections due to cross-feeds among the modes, for example from B0
s → DKµ−X

events or Λ0
b → DNµ−X decays are well below our sensitivity, and thus we do not include

them.
The data used here corresponds to integrated luminosities of 284.10±4.86 pb−1 collected

at 7 TeV and 4.60±0.18 pb−1 at 13 TeV [26] where special triggers were implemented to
minimize uncertainties. The LHCb detector [27,28] is a single-arm forward spectrometer
covering the pseudorapidity range 2 < η < 5. Components include a high-precision
tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction
region, a large-area silicon-strip detector located upstream of a dipole magnet with a
bending power of about 4 Tm, and three stations of silicon-strip detectors and straw
drift tubes placed downstream of the magnet. Different types of charged hadrons are
distinguished using information from two ring-imaging Cherenkov detectors (RICH).
Muons are identified by a system composed of alternating layers of iron and multiwire
proportional chambers.

Events of potential interest are triggered by the identification of a muon in real time
with a minimum pT of 1.48 GeV in the 7 TeV data [29], and 0.9 GeV in the 13 TeV data
(further restricted in the higher level trigger to pT > 1.3 GeV) [30]. In addition, to test
for inconsistency with production at the primary vertex (PV), the χ2

IP for the muon is
computed as the difference between the vertex fit χ2 of the PV reconstructed with and
without the considered track. We require that χ2

IP be larger than 200 at 7 TeV (16 at
13 TeV), and in the 7 TeV data only, the impact parameter of the muon must be greater
than 0.5 mm. There is a prescale by a factor of two for both energies and an additional
prescale of a factor of two for the D0µ− channel in the 7 TeV data.

These events are subjected to further requirements in order to select those with a
charmed hadron decay which forms a vertex with the identified muon that is detached from
the PV. The charmed hadron must not be consistent with originating from the PV. We use
the decays D0 → K−π+, D+ → K−π+π+, D+

s → K+K−π+, and Λ+
c → pK−π+. (The

related branching fractions are given in the supplemental material.) The RICH system
is used to determine a likelihood for each particle hypothesis. We use selections on the
differences of log-likelihoods (L)to separate protons from kaons and pions, L(p)−L(K) > 0
and L(p) − L(π) > 10, kaons from pions L(K) − L(π) > 4, and pions from kaons

Table 1: Measured semileptonic decay branching fractions for B0 and B− mesons. Yhe correlation
of the errors in the underlying measurements in the average is taken into account. The CLEO
numbers result from solving Eq. 4.

B0
SL (%) B−SL (%) Source

10.49± 0.27 11.31± 0.27 CLEO [16]

9.64± 0.43 10.28± 0.47 BaBar [17]

10.46± 0.38 11.17± 0.38 Belle [18]

10.31± 0.19 11.09± 0.20 Average
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Table 2: Measured semileptonic decay branching fractions for B mesons and derived branching
fractions for B0

s and Λ0
b based on the equality of semileptonic widths and the lifetime ratios.

Particle τ (ps) BSL (%) ΓSL (ps−1) BSL (%)

measured measured measured to be used

B0 1.519± 0.005 10.31± 0.19 0.0678± 0.0013 10.31± 0.19

B− 1.638± 0.004 11.09± 0.20 0.0680± 0.0013 11.09± 0.20

〈B0 +B−〉 10.70± 0.19 10.70± 0.19

B0
s 1.533± 0.018 10.40± 0.30

Λ0
b 1.467± 0.010 10.35± 0.28

L(K) − L(π) < 4 for 7 TeV and < 10 for 13 TeV. In addition, in order to suppress
background the average pT of the charm hadron daughters must be larger than 700 MeV
for three-body and 600 MeV for two-body decays, and the invariant mass of the charm
hadron plus muon must range from approximately 3 GeV to 5 GeV. Furthermore, the
charm plus µ vertex must be within a radius less than 4.8 mm from the beam-line to
remove contributions of secondary interactions in the detector material due to long-lived
particles, and the charm hadron must decay downstream of this vertex.

Since detection efficiencies vary over the available phase space, we divide the data into
two-dimensional intervals in pT of the charm plus µ system, and η, where the latter is
determined from the relative positions of the charm plus µ vertex and the PV. We fit
the data for each charm plus µ combination in each interval simultaneously in invariant
mass of the charm hadron and ln(IP/mm) variables, where IP is the measured impact
parameter of the charmed hadron with respect to the PV in units of mm.

As an example of the fitting technique consider D+
s µ
− candidates integrated over pT

and η for the 7 TeV data. Figure 1(a) shows the K+K−π+ invariant mass spectrum, while
(b) shows the ln(IP/mm) distribution. The invariant mass signal is fit for the D+

s yield with
a double-Gaussian function where the means of the two Gaussians are constrained to be
the same. The common mean and the widths are determined in the fit. (A second double-
Gaussian shape is used to fit the higher mass decay of D∗+ → π+D0, D0 → K+K−,
an additional consideration only in this mode.) The ln(IP/mm) shape of the signal
component, determined by simulation, is a bifurcated Gaussian where the peak position
and width parameters are determined by the fit. The combinatorial background is modeled
with a linear shape. (The other modes at both energies are shown in the supplemental
material.) The signal yields for charm hadron plus muon candidates integrated over η are
also given in the supplemental material.

The major components of the total efficiency are the offline and trigger efficiencies.
The latter is measured with respect to the offline, which has several components from
tracking, particle identification, event selection and overall event size cuts. These have been
evaluated in a data-driven manner whenever possible. Only the event selection efficiencies
have been simulated. Samples of simulated events, produced with the software described
in Refs. [31–33], are used to characterize signal and background contributions. The
particle identification efficiencies are determined from calibration samples of D∗+ → π+D0,
D0 → K−π+ decays for kaons and pions, and Λ→ pπ− for protons. The trigger efficiencies
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Figure 1: Fits to the K+K−π+ invariant mass (a) and ln(IP/mm) (b) distributions for data
taken at 7 TeV data integrated over 2 < η < 5. The data are shown as solid circles (black), and
the overall fits as solid lines (blue). The dot-dashed (green) curve shows the D+

s signal from b
decay, while the dashed (purple) curve D+

s from prompt production. The dotted curve (orange)
shows the D∗+ component. The dashed line (red) shows the combinatorial background. The
same fits using a logarithmic scale are shown in (c) and (d).

including the muon identification efficiency are determined using samples of b→ J/ψX,
J/ψ → µ+µ− decays, where one muon is identified and the other used to measure the
efficiencies. For the overall sample they are typically 20% for the 7 TeV data and 70%
for the 13 TeV data, only weakly dependent on η. The difference is caused primarily by
the impact parameter cut on the muon of 0.5 mm in the 7 TeV data. The efficiency for
the overall event size requirement is determined using B− → J/ψK− decays where much
looser criteria were applied. These efficiencies are all above 95% and are determined with
negligible uncertainties. The total efficiencies given as a function of η and pT for both
energies are shown in the supplemental material.

There is dwindling efficiency toward small pT values of the charmed hadron plus muon.
Data in the regions with negligible efficiency are excluded, and a correction is made using
simulation to calculate the fraction of events that fall within inefficient regions. These
numbers are calculated for each bin of η for 7 TeV and 13 TeV data separately, and the
averages are 38% at 7 TeV and 46% at 13 TeV. The pT distributions from simulation in
each η bin have been checked and found to agree within error with those observed in the
data in bins with sufficient statistics.

The signal yields are obtained from fits that subtract the uncorrelated backgrounds.
There are, however, two background sources that must be dealt with separately. One
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results from real charm hadron decays that form a vertex with a charged track that is
misidentified as a muon and the other is from b decays into two charmed hadrons where one
decays either leptonically or semileptonically into a muon. In most cases the requirement
that the muon forms a vertex with the charmed hadron eliminates this background, but
some remains. The background from fake muons combined with a real charmed hadron,
and a real muon combined with a charm hadron from another b decay as estimated from
wrong-sign muon and hadron combinations is 0.7% at 7 TeV and 2.0% at 13 TeV. The
fake rates caused by b decays to two charmed hadrons where one decays semileptonically
have been evaluated from simulation and are about 2%, when averaged over all charmed
species.

The inclusive b-hadron cross-sections as functions of η are given in Fig. 2, along
with a theoretical prediction called FONLL [34]. These results are consistent with and
supersede our previous results at 7 TeV [4]. The ratio of cross-sections is predicted with
less uncertainty, and indeed most of the experimental uncertainties (discussed below) also
cancel, with the largest exception being the luminosity error. In Fig. 2 (c), we compare the
η-dependent cross-section ratio for 13 TeV divided by 7 TeV with the FONLL prediction.

The results as a function of η are listed in Table 3. The total cross-sections at 7 and
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Figure 2: The cross-section as a function of η for σ(pp → HbX), where Hb is a hadron that
contains either a b or a b quark, but not both, at center-of-mass energies of 7 TeV (a) and 13 TeV
(b). The ratio is shown in (c). The smaller error bars (black) show the statistical uncertainties
only, and the larger ones (blue) have the systematic uncertainties added in quadrature. The
solid line (red) gives the theoretical prediction, while the solid shaded band gives the estimated
uncertainty on the predictions at ±1 σ, the cross-hatched at ±2 σ, and the dashes at ±3 σ.
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Table 3: pp→ HbX cross-sections as a function of η for 7 TeV and 13 TeV collisions and their
ratio. The first uncertainty is statistical and the second systematic.

η 7 TeV (µb) 13 TeV (µb) Ratio 13/7
2.0–2.5 13.6±0.2±1.5 22.6±0.8±2.4 1.67±0.07±0.16
2.5–3.0 15.0±0.1±1.4 28.7±0.4±3.0 1.92±0.03±0.16
3.0–3.5 14.9±0.1±1.4 29.2±0.6±2.9 1.96±0.04±0.16
3.5–4.0 12.9±0.1±1.1 27.3±0.4±2.7 2.12±0.04±0.17
4.0–4.5 9.5±0.1±0.8 21.6±0.5±2.2 2.29±0.06±0.19
4.5–5.0 6.3±0.1±0.6 14.6±0.5±1.5 2.34±0.08±0.22

13 TeV integrated over 2 < η < 5 are 72.0± 0.3± 6.8 µb and 144± 1± 21 µb for 7 and
13 TeV. The ratio is 2.00 ± 0.02 ± 0.26. This agrees with the theoretical prediction at
7 TeV of 62+28

−22 µb, and is a bit larger than the 13 TeV prediction of 111+51
−44 µb. The

measured ratio is consistent with the prediction of 1.79+0.21
−0.15.

Systematic uncertainties are considerably larger than the statistical errors. The ones
that are independent of η are listed in Table 4. The luminosity and muon trigger efficiency
uncertainties in the ratio are each obtained by assuming a −50% correlated error [35].
The uncertainty in the tracking efficiency is given by taking 0.5% per muon track and
1.5% per hadron track [36]. The various final states used to simulate the efficiencies can
contribute to an overall efficiency change. This is estimated by taking the difference
between the efficiencies of the higher multiplicity D∗µ−ν states and D∗∗µ−ν states, where
D∗∗ refers to excited states that decay into a charmed particle and pions, and taking into
account the uncertainties on the measured branching fractions. These are then added in
quadrature and referred to as the b decay cocktail in Table 4.

The fraction of higher mass b-baryon states with respect to the Λ0
b is given by δ =

0.25 ± 0.10, which represents a 40% relative uncertainty that affects only the baryon
contribution to Eq. 3.

Table 4: Systematic uncertainties independent of η on the pp→ HbX cross-sections at 7 and
13 TeV and their ratio.

Source 7 TeV 13 TeV Ratio 13/7
Luminosity 1.7% 3.9% 3.8%
Tracking efficiency 3.8% 6.3% 6.3%
b semileptonic B 2.1% 2.1% 0
Charm hadron B 2.6% 2.6% 0
b decay cocktail 1.0% 1.0% 0
Ignoring b cross-feeds 1.0% 1.0% 0
Background 0.2% 0.3% 0
b→ u decays 0.3% 0.3% 0
δ 2.0% 2.0% 0.2%
Total 5.9% 8.9% 7.4%
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There are also η-dependent systematic uncertainties in the cross-section that arise from
the trigger efficiency, the event selection, the hadron identification and the corrections for
the low pT region with low efficiencies. When added in quadrature with the η-independent
uncertainties, the total errors range from (8.5–11.0)% at 7 TeV to (8.7–9.7)% at 13 TeV.
There is some cancellation in the ratio giving a range of (5.6–7.3)%.

In conclusion, new results for the bb production cross-section at 7 TeV are in good
agreement with the original η-dependent cross-section measurement previously reported [4],
and are in agreement with the theoretical prediction (FONLL) [34]. The 13 TeV results
are slightly higher in magnitude than the theory, and generally agree with the shape and
magnitude measured using inclusive b→ J/ψX decays [35]. The cross-section ratio of 13
TeV to 7 TeV is 2.00± 0.02± 0.26 and agrees with the theoretical prediction of 111+0.21

−0.15µb.
Using multiplicative factors derived from PYTHIA 8 simulations of 4.1 at 7 TeV and 3.9
at 13 TeV [32,33] we extrapolate to bb cross-sections over the full η range of ≈295 µb at
7 TeV and ≈560 µb at 13 TeV.
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Supplemental material

The charm hadron branching fractions are given in Table 5. For the values taken from
the PDG we use the “Our Average” values in the listings rather than the values from

Table 5: Charm hadron branching fractions for the decay modes used in this analysis.

Decay B (%) Source
D0 → K−π+ 3.91± 0.05 PDG [9]
D+ → K−π+π+ 9.22± 0.17 CLEO III [13]
D+
s → K−K+π+ 5.44± 0.18 PDG [9]

Λ+
c → pK−π+ 5.84± 0.27± 0.23 BES III [14]

6.84± 0.24+0.21
−0.27 Belle [15]

6.36± 0.35 Average†

†Uncertainty increased due to discrepant central values from ±0.25.

The signal yields for charm hadron plus muon candidates integrated over η are listed
in Table 6.

Table 6: Signal yields of charm hadron plus µ events. Note that the 7 TeV D0 result is prescaled
in the trigger by a factor of two with respect to the others.

D0 D+ D+
s Λ+

c

7 TeV 205 677±486 161 264±516 42 661±381 57 714±319
13 TeV 56 560±277 22 196±200 5 013±91 6 442±94

We show here fits to the data for signal plus background integrated over η for the
various charm hadron plus muon combinations at 7 TeV in Fig. 3 and 13 TeV in Fig. 4.
We also show the overall detection efficiencies at 7 TeV in Fig. 5.
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Figure 3: Fits to the invariant masses and ln(IP/mm) distributions integrated over 2 < η < 5
for 7 TeV running. The data are shown as solid circles (black), and the overall fits as solid
lines (blue). The dot-dashed (green) curves show the charm signals from b decay, while the
dashed (purple) curves charm background from prompt production. The dashed line (red)
shows the combinatorial background. The dotted curve (orange) shows the D∗+ component
only for the K+K−π+ mass distribution. (a) and (b) show K−π+ combinations, (c) and (d)
show K−π+π+ combinations, (e) and (f) show K−K+π+ combinations, and (g) and (h) show
pK−π+ combinations. The fitting procedure is described in the text.
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Figure 4: Fits to the invariant masses and ln(IP/mm) distributions integrated over 2 < η < 5
for 13 TeV running. The data are shown as solid circles (black), and the overall fits as solid
lines (blue). The dot-dashed (green) curves show the charm signals from b decay, while the
dashed (purple) curves charm background from prompt production. The dashed lines (red)
show the combinatorial background. The dotted curve (orange) shows the D∗+ component only
for the K+K−π+ mass distribution. (a) and (b) show K−π+ combinations, (c) and (d) show
K−π+π+ combinations, (e) and (f) show K−K+π+ combinations, and (g) and (h) show pK−π+

combinations. The fitting procedure is described in the text.
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Figure 5: Overall detection efficiencies as a function of pT (charm+µ) for the different η intervals
at 7 TeV. The uncertainties reflect both the statistical and systematic uncertainties added in
quadrature.
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C. Göbel62, T. Hadavizadeh57, C. Hadjivasiliou5, G. Haefeli41, C. Haen40, S.C. Haines49,
S. Hall55, B. Hamilton60, X. Han12, S. Hansmann-Menzemer12, N. Harnew57, S.T. Harnew48,
J. Harrison56, M. Hatch40, J. He63, T. Head41, A. Heister9, K. Hennessy54, P. Henrard5,
L. Henry8, J.A. Hernando Morata39, E. van Herwijnen40, M. Heß66, A. Hicheur2, D. Hill57,
C. Hombach56, H. Hopchev41, W. Hulsbergen43, T. Humair55, M. Hushchyn35, N. Hussain57,
D. Hutchcroft54, M. Idzik28, P. Ilten58, R. Jacobsson40, A. Jaeger12, J. Jalocha57, E. Jans43,
A. Jawahery60, F. Jiang3, M. John57, D. Johnson40, C.R. Jones49, C. Joram40, B. Jost40,
N. Jurik61, S. Kandybei45, W. Kanso6, M. Karacson40, J.M. Kariuki48, S. Karodia53,
M. Kecke12, M. Kelsey61, I.R. Kenyon47, M. Kenzie49, T. Ketel44, E. Khairullin35,
B. Khanji21,40,i, C. Khurewathanakul41, T. Kirn9, S. Klaver56, K. Klimaszewski29, S. Koliiev46,
M. Kolpin12, I. Komarov41, R.F. Koopman44, P. Koppenburg43, A. Kosmyntseva32,
A. Kozachuk33, M. Kozeiha5, L. Kravchuk34, K. Kreplin12, M. Kreps50, P. Krokovny36,w,
F. Kruse10, W. Krzemien29, W. Kucewicz27,l, M. Kucharczyk27, V. Kudryavtsev36,w,
A.K. Kuonen41, K. Kurek29, T. Kvaratskheliya32,40, D. Lacarrere40, G. Lafferty56, A. Lai16,
D. Lambert52, G. Lanfranchi19, C. Langenbruch9, T. Latham50, C. Lazzeroni47, R. Le Gac6,
J. van Leerdam43, J.-P. Lees4, A. Leflat33,40, J. Lefrançois7, R. Lefèvre5, F. Lemaitre40,
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aUniversidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
bLaboratoire Leprince-Ringuet, Palaiseau, France
cP.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
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rUniversità di Urbino, Urbino, Italy
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