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1 Introduction

The discovery of a 125 GeV resonance [1, 2] that is compatible with the Standard-Model

(SM) Higgs boson [3] dominated the recent years’ activities in particle physics. The ex-

istence of a Higgs boson is a basic prediction of spontaneous symmetry breaking via a

scalar sector [4–9]. The Higgs mechanism preserves the full gauge symmetry and renor-

malizability of the SM [10, 11]. The most important Higgs-production channel at the LHC

is gluon fusion, which, despite being a loop-induced process, is highly enhanced by the

dominance of the gluon densities [12]. The QCD corrections are known up to N3LO in

the limit of heavy top quarks [13–28], while the full quark-mass dependence is only known

up to NLO [29–32]. At NNLO subleading terms in the heavy top expansion [33–36] are

known. The limit of heavy-top quarks has also been adopted for threshold-resummed cal-

culations [37–48]. The inclusion of finite quark-mass effects in the resummation has been

considered recently [49–51].

Kinematical distributions provide an important handle on the determination of Higgs

properties. Among the most relevant observables in this respect is the Higgs transverse-

momentum (pT ) distribution. First results from the LHC Run I were presented by the

ATLAS collaboration in the 2γ and four-lepton final states [52, 53] and by the CMS col-

laboration in the 2γ final state [54]. In Run 2 these measurements can be extended to a

larger range in the transverse momentum with significantly higher statistics and accuracy

after accumulating up to O(100 fb−1) of luminosity. The transverse-momentum spectrum

provides more information than the total cross section and allows us to disentangle effects

that remain hidden in the total rates. For example, it is the simplest measurement to shed

light on the nature of the Higgs coupling to gluons. The fact that the Higgs is a scalar,

gives an additional simplification in the modeling of the Higgs pT -spectrum, due to the

factorization of production and decay in the narrow-width approximation.

In the past years a significant amount of work has been done to improve the theoretical

predictions for the Higgs pT spectrum. The first results at the lowest order (O(α3
S)) were
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known since long time [55, 56] including the full quark-mass dependence. It took nearly

ten years until the O(α4
S) corrections were computed [57–60]. These were carried out in

the heavy-top limit (HTL, i.e. m2
t � M2

H , p
2
TH). Finite top-mass effects on the Higgs

pT distribution at O(α4
S) were estimated in refs. [61–63]. Recently, results on Higgs+jet

production at O(α5
S) were also obtained in the HTL [64–66].

In the low-pT region (pT � mH), the convergence of the perturbative expansion is

spoiled by the presence of large logarithmic terms of the form αnS lnm(m2
H/p

2
T ). In order to

obtain reliable predictions also in this region, the large logarithmic terms must be resummed

to all orders [67–71]. It is then essential to consistently match the resummed and fixed-order

calculations in the intermediate pT region, so as to obtain accurate predictions in the entire

region of transverse momenta. In the case of the Higgs pT spectrum the resummation has

been performed up to next-to-next-to-leading logarithmic accuracy (NNLL) and matched

to the fixed-order NNLO result up to O(α4
S) in the HTL [70]. Finite quark-mass effects

have been included in the resummed spectrum up to NLL+NLO [72, 73]. The recent

computation of the O(α5
S) corrections at high-pT , together with new available information

on the logarithmic structure at the same order [74] would in principle allow to extend the

accuracy of this calculation.1

To consistently introduce deviations from the SM Higgs sector explicit models beyond

the SM (BSM) can be directly studied. A complementary bottom-up framework is offered

by the Standard Model Effective Field Theory (SMEFT). In such approach the Standard

Model Lagrangian is extended by the inclusion of operators of higher dimension (in first ap-

proximation: dimension six), built from Standard Model fields and suppressed by powers of

the New Physics scale (Λ) [76–79]. This enables a theoretically consistent parametrisation

of model-independent effects of high-scale New Physics, which manifest themselves through

small deviations from the SM predictions. Many groups translated the data already col-

lected by the LHC as well as earlier experiments into bounds on the Wilson coefficients of

dimension-six SMEFT operators (see e.g., refs. [80–85]).

On the other side, a significant effort has been devoted to supplement the tools used in

the modelling of LHC data with the effects of appropriate dimension-six SMEFT operators

(see e.g. [86–91]). This is highly relevant since in this way indirect BSM effects can be

directly tested in the experimental analyses. The precision reached by the current exper-

iments will call for theoretical improvements and effects from SMEFT operators beyond

leading order [92]. Despite conflicting approaches followed in the literature, SMEFT effects

should be evaluated by including all possible operators contributing to the observable (at

a given order). Results for the total Higgs production cross section including modified top

and bottom Yukawa couplings and an additional direct Hgg interaction have been obtained

at NNLO in ref. [93] and at N3LO in refs. [94, 95]. Studies of the prospects of future LHC

runs for the determination of Wilson coefficients were performed with the use of such tools

in refs. [96, 97].

The inclusion of dimension-six and dimension-eight operators in the pT -spectrum has

been considered in refs. [97–100] and [101, 102], respectively. Strategies for extracting

information on the Higgs-gluon couplings from the measurements were studied in ref. [97].

1Work in this direction has been recently presented in ref. [75].
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Most of the above studies, however, are limited to the high-pT region of the spectrum,

and do not include small-pT resummation. In this paper we present a computation of the

resummed pT -spectrum at NLL+NLO accuracy, with the inclusion of a set of dimension-six

operators relevant for Higgs boson production.

The paper is organised as follows. In section 2 we discuss the effects on the Higgs

production cross section from the inclusion of the dimension-six operators and we explicitly

evaluate the modifications of the inclusive LO cross section. In section 3 we outline the

computation of the pT spectrum of the Higgs boson, review the formalism of transverse-

momentum resummation required at small pT and describe our NLL+NLO calculation.

In section 4 we present our results for the pT spectrum and study its sensitivity to BSM

effects of the dimension-six operators. In section 5 we summarize our results and provide

some concluding remarks.

2 Effective operators and their impact on the Higgs production cross

section

We consider the effective Lagrangian

L = LSM +
∑
i

ci
Λ2
Oi (2.1)

where the SM is supplemented by the inclusion of a set of dimension-six operators describing

new physics effects at a scale Λ well above the electroweak scale. In our study we consider

the following four operators

O1 = |H|2GaµνGa,µν , O2 = |H|2Q̄LHcuR + h.c. , (2.2)

O3 = |H|2Q̄LHdR + h.c. , O4 = Q̄LHσ
µνT auRG

a
µν + h.c. (2.3)

These operators, in the case of single Higgs production, may be expanded as:

c1
Λ2
O1 →

αS

πv
cghG

a
µνG

a,µν , (2.4)

c2
Λ2
O2 →

mt

v
ctht̄t , (2.5)

c3
Λ2
O3 →

mb

v
cbhb̄b , (2.6)

c4
Λ2
O4 → ctg

gSmt

2v3
(v + h)Gaµν(t̄Lσ

µνT atR + h.c) . (2.7)

The operator O1 corresponds to a contact interaction between the Higgs boson and

gluons with the same structure as in the heavy-top limit of the SM. The operators O2

and O3 describe modifications of the top and bottom Yukawa couplings. The operator O4

is the chromomagnetic dipole-moment operator, which modifies the interactions between

the gluons and the top quark2 (here σµν = i
2 [γµ, γν ]). In our convention, based on the

SILH basis [103, 104], we express the Wilson coefficients as factors in the canonically

normalized Lagrangian.

2In this analysis we do not consider the contribution of the chromomagnetic dipole operator of the

bottom quark.
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Figure 1. Feynman diagrams contributing to gg → H production at LO. The possible insertions

of dimension-six operators are marked by a cross in a circle.

The coefficients ct, cb and cg can be probed in Higgs boson processes. In particular, ct
(and cb) may be measured in the tt̄H (and bb̄H) production modes.3 The coefficient cb can

also be accessed through the decay H → bb̄. The coefficient ctg, instead, is constrained by

top pair production [115].

We now consider the contribution of the effective operators in eqs. (2.4), (2.5) and (2.7)

on the production cross section, while omitting, for simplicity, the bottom contribution in

eq. (2.6). The relevant Feynman diagrams are displayed in figure 1. The corresponding

amplitude can be cast into the form

M (g(p1) + g(p2)→ H) = i
αS

3πv
ε1µε2ν [pν1p

µ
2 − (p1p2)g

µν ]F (τ) , (2.8)

where τ = 4m2
t /m

2
H and ε1 and ε2 are the polarization vectors of the incoming gluons. The

contribution of the chromomagnetic operator to the function F (τ) has been addressed in

the literature with contradicting results [116, 117] (see also ref. [118]). In ref. [116] it is

found that the UV divergences in the bubble and triangle contributions cancel out. In the

revised version of ref. [117] it is instead stated that the UV divergence is present, and it

has to be reabsorbed into the coefficient cg.

Our results are consistent with the latter statement. We find

F (τ) = Γ(1 + ε)

(
4πµ2

m2
t

)ε(
ctF1(τ) + cg0F2(τ) +Re(ctg)

m2
t

v2
F30(τ)

)
, (2.9)

where

F1(τ) =
3

2
τ [1 + (1− τ)f(τ)] , (2.10)

F2(τ) = 12 , (2.11)

F30(τ) =
6

ε
+ 3 [1− τf(τ)− 2g(τ)] , (2.12)

with the functions

f(τ) =


arcsin2 1√

τ
τ ≥ 1

−1

4

[
ln

1 +
√

1− τ
1−
√

1− τ
− iπ

]2
τ < 1

. (2.13)

g(τ) =


√
τ − 1 arcsin

1√
τ

τ ≥ 1

√
1− τ

[
ln

1 +
√

1− τ
1−
√

1− τ
− iπ

]
τ < 1

. (2.14)

3See refs. [105–108] and refs. [109–114], respectively, and references therein.
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The 1/ε divergence can be reabsorbed in the MS renormalization of the coefficient cg:

cg0 = cg(µR) + δcg (2.15)

with

δcg =
m2
t

2v2
Re(ctg)Γ(1 + ε)(4π)ε

(
−1

ε
− ln

µ2

µ2R

)
, (2.16)

where µR denotes the renormalization scale of cg. The final result reads

F (τ) = ctF1(τ) + cg(µR)F2(τ) +Re(ctg)
m2
t

v2
F3(τ) , (2.17)

where

F3(τ) = 3

(
1− τf(τ)− 2g(τ) + 2 ln

µ2R
m2
t

)
. (2.18)

In the HTL m2
t � m2

H we have

F1(τ)→ 1 , F2(τ)→ 12 , F3(τ)→ 6

(
ln
µ2R
m2
t

− 1

)
.

In the SM we have ct = 1 and cg = ctg = 0, so that F (τ)→ F1(τ). In ref. [115] data on top

production are used to extract constraints on ctg. The resulting region of allowed values of

ctg has been found to be

− 0.04 . ctg . 0.04 . (2.19)

The impact on the total cross section is less than 20%. We conclude that, although smaller

than the impact of cg, the effect of ctg can still be important. We note, however, that the

chromomagnetic operator provides a contribution which is formally O(λ2t ) with respect to

the others. In a strict expansion in αS it can be neglected. This is what we will do in

the next section. Focusing on the impact of ct and cg, we note that the total cross section

alone does not allow us to disentangle the coefficients cg and ct:

σ ≈ |12cg + ct|2σSM (HTL) . (2.20)

As already noted in the literature [99], the transverse momentum spectrum allows us to

break this degeneracy.

3 Transverse-momentum spectrum

We consider the inclusive hard-scattering process

h1(p1) + h2(p2)→ H(pT ) +X (3.1)

where the colliding hadrons h1 and h2 with momenta p1 and p2 produce the Higgs boson

H with transverse momentum pT accompanied by an arbitrary and undetected final state
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X. According to the QCD factorization theorem the transverse-momentum cross section

is evaluated as

dσ

dp2T
(pT , s) =

∑
a1a2

∫ 1

0
dx1dx2fa1/h1(x1, µ

2
F )fa2/h2(x2, µ

2
F )
dσ̂H,a1a2
dp2T

(pT , ŝ, αS(µ2R), µ2R, µ
2
F ) ,

(3.2)

where fa/h(x, µ2F ) are the parton densities of the colliding hadrons at the factorization

scale µ2F , dσ̂H,a1a2/dp
2
T is the partonic cross section, ŝ = x1x2s is the partonic centre-of-

mass energy, and µR is the renormalization scale.4 In the low-pT region (pT � mH), the

perturbative expansion is affected by large logarithmic terms of the form αnS lnm(m2
H/p

2
T ),

with 1 ≤ m ≤ 2n. This results in a singular behaviour of the cross section as pT → 0. To

cure this problem we need to resum these terms to all orders in αS. To properly account for

transverse-momentum conservation, the resummation is carried out in impact parameter

(b) space [68, 69, 119]. In this paper we use the formalism of ref. [70]. The partonic

transverse-momentum cross section is decomposed as

dσ̂H,ab
dp2T

=
dσ̂

(res.)
H,ab

dp2T
+

dσ̂H,ab
dp2T

−
dσ̂

(res.)
H,ab

dp2T


f.o.

. (3.3)

The first term, dσ
(res.)
H,ab , on the right-hand side of eq. (3.3) contains all the logarithmically

enhanced terms, and is evaluated by resumming them to all orders. The second term

is finite, and can be computed by fixed-order truncation of the perturbative series: it is

obtained by computing the standard fixed-order result valid at large pT and subtracting

the expansion of the resummed term at the same fixed order. This matching procedure

ensures that the resummed and fixed-order components are combined to achieve uniform

formal accuracy from the small- to the large-pT region.

The explicit expression of the resummed component is

dσ̂
(res.)
H,a1a2

dp2T
=
m2
H

ŝ

∫ ∞
0

db
b

2
J0(bpT )Wa1a2(b,mH , ŝ;αS) , (3.4)

where J0(x) is the 0th-order Bessel function and the factor W embodies the all-order

resummation of the large logarithmic terms. The all-order structure of Wa1a2 is better

expressed by considering the N -moments with respect to z = m2
H/ŝ at fixed mH and is

given by

WN (b,mH , αS) = HN (mH , αS,m
2
H/Q

2) exp{GN (αS, L̃,m
2
H/Q

2)} (3.5)

where

L̃ = ln
(
Q2b2/b20 + 1

)
(3.6)

and b0 = 2e−γE (γE = 0.5772 . . . is the Euler number). The function HN in eq. (3.5) does

not depend on the impact parameter b and can thus be expanded in powers of αS as

HN
(
mH , αS,m

2
H/Q

2
)

= σ0 (αS,mH)
[
1 +

(αS

π

)
H(1)
N +

(αS

π

)
H(2)
N + . . .

]
(3.7)

4Throughout the paper we use parton densities as defined in the MS factorization scheme and αS(q2) is

the QCD running coupling in the MS renormalization scheme.
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where σ0(αS,mH) is the lowest order partonic cross section. The dependence on b is fully

contained in the exponent GN (αS, L̃,m
2
H/Q

2) whose expansion reads

GN
(
αS, L̃,m

2
H/Q

2
)

= L̃g(1)
(
αS, L̃

)
+ g

(2)
N

(
αS, L̃

)
+
αS

π
g
(3)
N

(
αS, L̃

)
+ . . . (3.8)

where g(1) controls the leading logarithmic (LL) terms, g
(2)
N the NLL terms, and so forth.

The formalism we have briefly recalled defines a systematic expansion of eq. (3.3), whose

terms are denoted by NLL+NLO, NNLL+NNLO and so forth. The first label in this no-

tation denotes the logarithmic accuracy, while the second one is referred to the accuracy

of the fixed-order calculation. In particular, the NLL+NLO accuracy is obtained by com-

puting the resummed component including the coefficient H(1) together with the functions

g(1) and g(2), and by matching it to the O(α3
S) fixed-order result valid at high pT . The

NNLL+NNLO accuracy is obtained by including also the coefficient H(2) and the function

g
(3)
N , and the finite component to O(α4

S).

The scale Q appearing in eq. (3.5), called resummation scale, parametrizes the arbi-

trariness in the resummation procedure. Its role is analogous to the role played by the

renormalization (factorization) scale in the renormalization (factorization) procedure. Al-

though WN does not depend on Q when evaluated at all perturbative orders, an explicit

dependence on Q appears when the logarithmic expansion is truncated at a given order.

In particular, since the scale Q appears in the definition of the large logarithmic term L̃,

the resummation scale sets the scale up to which the resummation is effective.

As is well known (see section 3 in ref. [70]), the extrapolation of the resummed result

at large transverse momenta, where the resummation cannot improve the accuracy of

the fixed-order expansion, may lead to unjustified large uncertainties and ensuing lack of

predictivity. In the numerical implementation of eq. (3.3) we thus apply a smooth switching

procedure as described in ref. [120](see in particular eqs. (13)-(15)).5 We also point out

that, due to the definition of the logarithmic parameter in eq. (3.6), the formalism of ref. [70]

fulfils a unitarity constraint such that, upon integration over pT , the customary fixed-order

prediction for the inclusive cross section is recovered. More precisely, by performing the

resummation at NLL accuracy and including the fixed-order result up to O(α3
S) we obtain

NLL+NLO accuracy, and the integral of the spectrum is fixed to the NLO total cross

section. Despite the switching procedure discussed above the pT spectra we are going to

present fulfil such unitary constraint to better than 1%.

Top- and bottom-mass effects can be included in the resummed spectrum along the

lines of refs. [72, 73].6 The inclusion of the top mass does not lead to complications: since

mt ∼ mH the computation of the pT spectrum is still a two scale problem. The inclusion

of the bottom-mass instead is more difficult. Since mb � mH , the computation of the

pT spectrum becomes a three scale problem, whose all-order solution is far from being

trivial.7 In ref. [73] a simple solution to this problem was proposed, which implies a choice

of different resummation scales for the top and bottom contributions. In particular, since,

5In the present paper the switching parameters are chosen as pswT = 125 GeV and ∆pT = 75 GeV.
6For studies of the resummed pT spectrum in explicit BSM models see for example refs. [121–124].
7For a recent contribution on this subject see ref. [125].
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as discussed above, the resummation scale is the scale up to which the resummation is

effective, it was suggested to choose for the bottom contribution a lower scale as compared

to the top contribution. In ref. [122] this approach has been extended to consider three

different resummation scales for the top contribution, the bottom contribution, and the

top-bottom interference. We will follow such approach in the next section.

We now discuss the inclusion of BSM effects in the computation. The operators in

eqs. (2.4)–(2.6) modify the computation of both the resummed and the fixed-order com-

ponent in eq. (3.3). However, by limiting ourselves to NLL+NLO, the computation can

be greatly simplified. Indeed, the fixed-order result valid at high pT can be obtained by

introducing the ct and cb coefficients in the SM amplitude, and supplementing it with

an additional contribution, proportional to cg, which corresponds to the QCD amplitude

computed in the HTL. As for the resummed component, due to the universality of our

formalism [126], its only process dependent contribution is encoded in the coefficients σ0
and H(1), which are determined by the Born-level and one-loop amplitudes, respectively.

These amplitudes can also be easily obtained from the SM result by introducing the factors

ct and cb where appropriate, and adding the point-like HTL amplitude in the SM with a

coefficient cg. We emphasize that the first EFT correction to the SM is obtained by inter-

fering the EFT amplitudes with the corresponding SM contributions. With this strategy,

we can obtain NLL+NLO predictions for the pT spectrum consistently including the effects

of the dimension-six operators. Thanks to the unitarity constraint, the integral of the pT
spectrum exactly reproduces the fixed-order NLO result obtained with the inclusion of the

same operators.

4 Results

In this section we present our numerical results for the transverse-momentum spectrum

including the effect of dimension-six operators. Our implementation is based on the

program HqT [127, 128]: a public tool for the computation of the analytic transverse-

momentum spectrum of the Higgs boson. The contributions from finite top and bottom

masses as well as the dimension-six operators are consistently included up to NLL+NLO

accuracy. The fixed-order cross section is then cross checked with HIGLU [129] and

HNNLO [73, 130, 131].

We consider pp collisions at
√
s = 13 TeV. Our computation is performed in the five-

flavor scheme with the corresponding NLO set of the PDF4LHC2015 [132–137] parton

distribution functions (PDFs) and the respective value of the strong coupling constant.

For the top and bottom quarks running in the loop and for their Yukawa couplings on-shell

masses mb = 4.92 GeV and mt = 172.5 GeV are used. As discussed in the previous section,

our computation of the NLL+NLO pT spectrum fulfils a unitarity constraint, such that by

integrating over pT we recover the fixed-order NLO cross section. The appropriate scale

choice for such a resummed computation is of the order of the Higgs boson mass mH . In

our study, however, we are also interested in the high-pT region, where a dynamical scale

choice has to be preferred. We thus proceed as follows: in the fixed-order computation,

which is valid at high pT , our central renormalization and factorization scales are set to

– 8 –
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µR = µF = µ0 =
√
p2T +m2

H/2. In the resummed computation (and its fixed-order

expansion) we fix the central scales to µR = µF = mH/2. To ensure a proper assignment

of the resummation scales for the individual contributions to the cross section we follow

the splitting of the SM cross section into a top, a bottom and an interference contribution

as suggested in ref. [122] and assign different scales to each of these contributions. In

particular we choose:

Qt=mH/2=62.5 GeV , Qb=4mb=19.68 GeV , Qint=
√
QtQb=35.07 GeV . (4.1)

These values are justified by the findings of refs. [73, 122, 138, 139]. As the top

contribution is essentially insensitive to the top-quark mass in the small-pT region, where

resummation is relevant, we assign Qt also to the contribution with the point-like ggH

coupling, when choosing cg 6= 0. In fact, regarding the splitting of the cross section

into the three contributions outlined above we consider the cg amplitude as part of the

top amplitude.

In summary, our results for the pT spectrum depend on five scales: the renormalization

and factorization scales, and the three resummation scales discussed above. In order to

estimate the perturbative uncertainty, we study the corresponding scale variations. As far

as renormalization and factorization scales are concerned, the uncertainties are estimated

by performing the customary seven-point µR, µF variation, i. e. we consider independent

variations within the range µ0/2 ≤ µF , µR ≤ 2µ0 with 1/2 < µR/µF < 2. We then vary

each of the three resummation scales (Qt, Qb, Qint) by a factor of two around their central

values (by keeping all the other scales to their central value). We finally combine the

ensuing four uncertainty bands by taking the envelope. Figure 2 shows the reference SM

prediction together with its perturbative uncertainty. We see that the uncertainty ranges

from about ±20% at the peak, to about +50% −30% at pT = 400 GeV.

We start our analysis by considering the individual contribution of exactly one op-

erator. The values of the coefficients ct, cg and cb are varied as much as possible, while

requiring the total cross section (integrating over pT ) to not deviate by more than 20% from

the SM prediction, which is roughly the current experimental uncertainty on the measured

Higgs cross section.8 Figure 3 shows various predictions of the Higgs transverse-momentum

spectrum: SM (black, solid), ct = 1.1 (red, dotted), ct = 0.9 (blue, dashed), cb = 4 (green,

dash-dotted), cb = −2 (yellow, short-dashed), cg = 0.008 (magenta, long-dashed) and

cg = −0.008 (light-blue, short-dotted). The lower frame illustrates the deviation from the

SM prediction by taking the ratio of the curves in the main frame to the black, solid one.

The grey-shaded band indicates the uncertainty of the SM result due to scale variations as

defined above.

Looking at the low-pT interval (0 GeV≤ pT ≤ 400 GeV) in figure 3 (a) we can directly

deduce from the green, dash-dotted and yellow, short-dashed curves that modifications of

the bottom Yukawa coupling through cb dominantly affect the low-pT shape of the distribu-

tion. In fact, at very low pT we find effects that can even exceed the uncertainty of the SM

8Note that variations of the pT distributions can be much larger due to the large experimental uncer-

tainties.
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(b)

Figure 2. SM prediction of the Higgs transverse momentum distribution at NLL+NLO for (a)

0 GeV≤ pT ≤ 400 GeV and (b) 400 GeV≤ pT ≤ 800 GeV, with uncertainty bands due to scale

variations as outlined in the text.

prediction. As expected, cb < 1 (cb > 1) softens (hardens) the spectrum in that region.9

The point-like Higgs-gluon coupling cg, on the other hand, modifies the pT -shape most

notably at large transverse momenta (400 GeV≤ pT ≤ 800 GeV), see figure 3 (b), where a

positive (negative) cg value hardens (softens) the spectrum. As expected, modifications of

solely the top Yukawa through ct have almost exclusively the effect of a rescaling of the

total cross section.

By and large all the deviations from the SM prediction through the dimension-six

operators are within the scale uncertainty, although the differences in shape give some

additional sensitivity to distinguish such effects. It is clear that in order to disentangle

effects of this order it is necessary to start from a more accurate SM prediction.

By contrast, the simultaneous variation of more than a single coefficient, as considered

in figures 4–6, gives rise to more significant effects. The cg, ct and cb parameters are chosen

in the ballpark suggested by the studies of refs. [83–85], while still keeping the inclusive

cross section within about 20% of its SM value, Indeed, many combinations of cg, ct and

cb can be found which mildly affect the total cross section, while significantly changing the

shape of the spectrum.

In figure 4 we present the simultaneous variation of ct and cg. The general pattern of

these figures follows the pattern of figure 3, but for the variations: ct = 0.1, cg = 0.075 (red,

dotted); ct = 0.5, cg = 0.042 (blue, dashed); ct = 1.5, cg = −0.042 (green, dash-dotted)

and ct = 2 cg = −0.083 (yellow, short-dashed). In this case, both the small and high-pT

9We point out, however, that this is true only when small deviations of cb from its SM value cb = 1 are

considered. In this case the dominant effect of cb is on the top-bottom interference. When cb is significantly

different from unity the squared bottom-loop contribution can change the picture.
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(b)

Figure 3. Higgs transverse-momentum spectrum in the SM (black, solid) compared to separate

variations of the dimension-six operators for (a) 0 GeV≤ pT ≤ 400 GeV and (b) 400 GeV≤ pT ≤
800 GeV. The lower frame shows the ratio with respect to the SM prediction. The shaded band in

the ratio indicates the uncertainty due to scale variations. See text for more details.
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(b)

Figure 4. Higgs transverse-momentum spectrum in the SM (black, solid) compared to simulta-

neous variations of ct and cg for (a) 0 GeV≤ pT ≤ 400 GeV and (b) 400 GeV≤ pT ≤ 800 GeV.

The lower frame shows the ratio with respect to the SM prediction. The shaded band in the ratio

indicates the uncertainty due to scale variations. See text for more details.
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(b)

Figure 5. Higgs transverse-momentum spectrum in the SM (black, solid) compared to simulta-

neous variations of ct and cb for (a) 0 GeV≤ pT ≤ 400 GeV and (b) 400 GeV≤ pT ≤ 800 GeV.

The lower frame shows the ratio with respect to the SM prediction. The shaded band in the ratio

indicates the uncertainty due to scale variations. See text for more details.
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(b)

Figure 6. Higgs transverse-momentum spectrum in the SM (black, solid) compared to simulta-

neous variations of ct, cg and cb for (a) 0 GeV≤ pT ≤ 400 GeV and (b) 400 GeV≤ pT ≤ 800 GeV.

The lower frame shows the ratio with respect to the SM prediction. The shaded band in the ratio

indicates the uncertainty due to scale variations. See text for more details.
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behaviour of the spectrum is altered by the different combinations of ct and cg coefficients.

It is clear that in particular the large-pT region offers a good discrimination between the

different structures of ct and cg in terms of shape. Again, negative (positive) cg values will

soften (harden) the spectrum. The effects are well beyond the theoretical uncertainties

already at NLL+NLO. We note that the yellow, short-dashed curve corresponding to

ct = 2, cg = −0.083 develops a minimum in the ratio to the SM around ∼ 650 GeV. This is

due to a compensation between the negative interference between the O1 and O2 operators,

which is proportional to cgct and the contribution of O1 itself, which is proportional to c2g
and tends to produce a harder spectrum with respect to the SM prediction.

Figure 5 shows spectra with modified top and bottom Yukawa couplings: ct = 0.5,

cb = −7.46 (red, dotted); ct = 0.8, cb = −3.67 (blue, dashed); ct = 0.9, cb = −1.79

(green, dash-dotted); ct = 1.1 cb = 3.79 (yellow, short-dashed) and ct = 1.2, cb = 4.67

(magenta, long-dashed). In this case, the compensation of the BSM contributions is less

straightforward, and it is difficult to compensate ct > 1 without significantly affecting the

inclusive cross section. For the magenta, long-dashed curve (ct = 1.2, cb = 4.67) we, thus,

allow for a bigger change of the total cross section up to 30%. As pointed out before, the

bottom-loop softens the spectrum and, since the variation of the bottom Yukawa coupling

is rather large, the squared bottom-term is larger than the top-bottom interference term

and the spectrum is softened also when negative cb values are considered. The shape

difference to the SM is very significant, but only in the small-pT region, where the soft-

gluon resummation is crucial to obtain a reliable prediction. Indeed, the contribution of

the bottom loop decreases with growing pT [140] and above 150 GeV the spectra have all

very similar shapes, ct driving their normalization.

Finally, we discuss spectra obtained by switching on all three SMEFT operators, as

shown in figure 6: ct = 1.2, cb = −2.98, cg = −0.03 (red, dotted), ct = 1.2, cb = −4.89,

cg = −0.04 (blue, dashed), ct = 1.3, cb = −0.385, cg = −0.03 (green, dash-dotted),

ct = 1.3, cb = −3.34, cg = −0.04 (yellow, short-dashed), ct = 1.4, cb = 3.31, cg = −0.03

(magenta, long-dashed); ct = 1.4, cb = −3.67, cg = −0.05 (light-blue, short-dotted);

ct = 1.5, cb = 1.88, cg = −0.04 (light-green, short-dash-dotted) and ct = 1.5, cb = −1.79,

cg = −0.05 (violet, very-short-dashed). Our focus here is on scenarios with increased top-

quark Yukawa coupling (up to ct = 1.5). These scenarios would be of particular interest

in the case in which the excess on the tt̄H rate over the SM prediction [141, 142] should

be confirmed. In order to compensate the increase in the cross section driven by ct > 1

a negative cg has been chosen. We observe a general tendency of the BSM spectra to fall

below the SM prediction in the intermediate and high transverse-momentum regions, which

is due to the negative cg contribution. The total rate is compensated by the enhancement in

the low pT region, due to a combination of the negative cg coefficient with both negative and

positive cb modifications. Overall, we find sizable distortions of the pT shapes due to the

dimension-six operators far beyond the scale uncertainties of the NLL+NLO SM prediction,

that exceed the previously considered scenarios with two simultaneous varied coefficients

in both size and significance. Despite the similar overall behavior, the predictions for the

various scenarios may differ significantly, which enables their discrimination when compared

to data.
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We conclude this section with a comment on the validity of the EFT approach. The

computation we have performed is carried out under the assumption that we can consider

the effects of higher-dimensional operators as a “small” perturbation with respect to the

SM result. This implies in particular that the effect of dimension-eight operators can

be neglected. This is not obvious, given that we are studying also the large transverse-

momentum region. To check the above assumption we have repeated our calculations

by dropping the O(1/Λ4) suppressed terms originating from the square of the dimension-

six contributions. We find that in most of the cases the differences with respect to the

results shown in figures 3–6 are very small, even at high transverse momenta. Only in

the scenarios considered in figure 4 (ct = 0.1, cg = 0.075 and ct = 2, cg = −0.083) the

O(1/Λ4) effects are important, and thus, the corresponding quantitative results should be

interpreted with care.

5 Summary

New Physics might be not accessible at the LHC through direct searches, e.g., with the

discovery of new resonances. In that case, it is crucial to fully exploit the data to study

possible (small) deviations from the SM predictions. SMEFT offers a formalism for the

parametrization of high-scale BSM effects, which can be used for this purpose. In the

SMEFT framework BSM effects are parametrized through appropriate higher-dimensional

operators, and bounds on the corresponding Wilson coefficients can be set by comparing

to the experimental data.

In this paper, we have presented a computation of the transverse-momentum spectrum

of the Higgs boson in which the SM prediction is supplemented by possible BSM effects.

Such effects are modeled by augmenting the SM Lagrangian with appropriate dimension-

six operators. Our calculation consistently includes all the terms up to O(α3
S) accuracy and

is supplemented by soft-gluon resummation at NLL accuracy, which is required to obtain

reliable predictions at small transverse momenta. At the same level of accuracy we imple-

ment three dimension-six operators, related to the modifications of top and bottom Yukawa

couplings and to the inclusion of a point-like ggH coupling. Additionally, we studied the

impact of the chromomagnetic operator on the Higgs cross section at LO, which had been

previously addressed in the literature by different groups with contradicting results.

We have constructed a tool for reliable predictions of the Higgs pT distribution includ-

ing dimension-six operators and performed a comprehensive study of the possible effects

due to the different dimension-six operators, by studying the impact of variations of ct, cb
and cg on the transverse-momentum spectrum of the Higgs boson. We varied the above

coefficients in the range suggested by recent global analyses and required the total cross

section to meet the SM prediction at NLO within the current O(20%) experimental uncer-

tainty. Our results can be summarized as follows:

• Variations of different SMEFT operators manifest themselves in different regions of

the Higgs pT spectrum. A modification of the Higgs-bottom Yukawa coupling (O3)

induces sizable effects almost exclusively at small transverse momenta. A direct
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coupling of the Higgs boson to gluons (O1), on the other hand, changes the shape of

the distribution most notably in the high-pT tail. As expected, changes in the top-

quark Yukawa coupling (O2) primarily affect the normalization and approximately

correspond to a simple rescaling of the spectrum.

• The shape of the transverse momentum distribution depends on the mass of the par-

ticle that mediates the Higgs-gluon coupling. The lower the mass of that particle,

the softer is the resulting spectrum. Therefore, the pT shape associated with the

bottom loop is softer, in particular at small transverse momenta, than the SM one

and, when increasing the absolute value of the bottom-quark Yukawa coupling, pos-

itive (negative) values soften (harden) the spectrum, if the top-bottom interference

is dominant (small variations of cb). In contrast the spectrum becomes always softer

for |cb| � 1, if the squared bottom-loop is dominant (large variations of cb). Further-

more, a point-like coupling between gluons and the Higgs boson leads to the hardest

spectrum and a positive (negative) cg value hardens (softens) the shape as compared

to a Higgs boson mediated by a top-quark loop.

• While individual variations of the various Wilson coefficients produce effects that

hardly exceed the NLL+NLO perturbative uncertainties, the simultaneous varia-

tion of two or more operators can significantly distort the spectrum, still keeping

the total rate consistent with the NLO prediction within the current experimen-

tal uncertainties.

• Choosing combinations of ct, cb and cg that compensate each other at the level of

the total cross section allows us to deform the shape of the Higgs pT spectrum far

beyond the uncertainties of our NLL+NLO prediction in the SM and thus allow for

a disentanglement of the different Wilson coefficients in future analyses at the LHC.

We conclude our discussion by adding a few comments on the limitations of the cal-

culation presented here. When only small deviations from the SM are considered the

theoretical uncertainty affecting the SM prediction becomes relevant. We have seen that

at NLL+NLO the uncertainties from missing higher-order contributions, estimated through

scale variations, are about ±20% at the peak and increase by roughly a factor of two at

high transverse momenta. These uncertainties imply an unavoidable limitation for the

extraction of constraints on the Wilson coefficients and it is only through their reduction

that the sensitivity to BSM effects can be increased. The natural question is whether the

calculation we have carried out can be extended to the next order, i.e., to NNLL+NNLO.

To consistently carry out such extension we would need the heavy-quark mass effects at

NNLO, which are currently unavailable. A possible way out is to include the effects beyond

NLL+NLO in the HTL, as is currently done in state of the art SM calculations [73]. This

approach implies that the relevant Higgs production amplitudes would contain a cg term

already in the SM. Nonetheless, it is reasonable to assume that the QCD effects beyond

our NLL+NLO accuracy factorise with respect to the BSM corrections. In this approxima-

tion, the relative BSM/SM effects we have obtained in this paper (i.e., the ratios plotted
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in the lower panels of figures 3–6) can be directly used to include BSM effects on top of

NNLL+NNLO accurate SM predictions.

Another aspect which deserves some comments is the set of dimension-six operators

we have considered. In the present calculation we have limited ourselves to consider the

contributions of the operators related to modified top and bottom Yukawa couplings and

of the additional direct Hgg interaction. As discussed in section 2, although formally

suppressed by two powers of the top Yukawa coupling, the chromomagnetic operator could

still significantly contribute, within the current bounds, to the gluon fusion cross section.

The extension of our calculation to include these effects is left for future work.
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