The VeloPix ASIC for the LHCb VELO Upgrade

X. Llopart

CERN

On behalf of the LHCb and Medipix3 Collaboration with the support of CLIC DP group

Outline

- Introduction to the VELO upgrade
- The VeloPix chip
- Measurements
- Conclusion

The LHCb VELO upgrade

N07-17: P. Collins: "The LHCb VELO Upgrade" N12-3: P. Collins: "The Timepix3 Telescope and Sensor Development for the LHCb VELO Upgrade"

VeloPix ASIC module

From Timepix3 \rightarrow Velopix

	Timepix3 (2013)	VeloPix (2016)
Pixel arrangement	256 x 256	
Pixel size	55 x 55 μm²	
Peak hit rate	80 Mhits/s/ASIC	800 Mhits/s/ASIC 50 khits/s/pixel
Readout type	Continuous, trigger-less, TOT	Continuous, trigger-less, binary
Timing resolution/range	1.5625 ns, 18 bits	25 ns, 9 bits
Total Power consumption	<1.5 W	< 3 W
Radiation hardness		400 Mrad, SEU tolerant
Sensor type	Various, e- and h+ collection	Planar silicon, e- collection
Max. data rate	5.12 Gbps	20.48 Gbps
Technology	IBM 130 nm CMOS	TSMC 130 nm CMOS

VeloPix Project Overview

- Design started in June 2013 (after Timepix3 submission)
- Change of technology (IBM 130nm \rightarrow TSMC 130nm)
- The chip was submitted as an engineering run on May 2016
- First wafers received on 31st August
- Fabricated (and diced) chips back at CERN on 7th September
- Production testing later this year (624 chips)
- Irradiation campaign in the future with sensors bonded

VeloPix wafers

CÉRN

VeloPix pixel schematic

CERN

Velopix Chip Architecture

128 double columns SP63 SP63 SP63 SP63 SP63 Pixel matrix: 256 x 256 pixels SP62 SP62 SP62 SP62 SP62 128 x 64 super pixels (2x4 pixels each) @40MHz **PixelHit** Process. 10-bit ToA @40 MHz Packet-based architecture: 56 rows 8 pixels/packet + 9 bit time stamp \rightarrow 30% Xe reduction in data rate ō SP2 SP2 SP2 SP2 be Data-driven readout: SP1 SP1 SP1 SP1 20 Mpackets/s/double column SP0 SP0 SP0 SPO SP0 40, 80, 160 and 320 MHz TMR clock domains in the periphery EoC EoC EoC EoC EoC Left Fabric **Right Fabric** Center Node 1 to 4 configurable serializers (GWT) DACs router PLL Efuses 4x GWT TIMING, FAST CTRL SLOW CONTROL **GBT** frame compatible Frame[127:0] 0xA. 4b parity Packet 0 Packet 1 Packet 2 Packet 3 Packet [29:0] Address 13b Time stamp 9b Hitmap 8b

IEEE/NSS 2016 - X.Llopart

Velopix: TMR/RadHard design

- Pixel Matrix (<400Mrad):
 - Only NMOS ELT transistors used in analog front-end
 - Full TMR in FSM & configuration FFs:
 - Pixel configuration \rightarrow Asynchronous self correcting TMR latch
 - Pixel data flip-flops (FF) unprotected
 - Custom made HD Standard cell library (74 cells) with HVT NMOS HVT and regular PMOS:
 - Standard cell library characterized at 400 Mrad, High-Vt NMOS + Std PMOS
- Periphery (<50Mrad):
 - Full TMR in FSM & configuration FFs
 - Data path unprotected

16.6 mm

VeloPix debug readout

- SPIDR-readout system developed at NIKHEF (NL) ٠
 - Based on a Virtex VC707
- Chipboard developed at USC (SP) ٠
 - 1 DCDC for VDDA and VDDD •

VeloPix: General Measurements

- Measured power consumption (@nominal settings):
 - Analog < 480 mW</p>
 - Digital:
 - Periphery < 380mW</p>
 - Pixel Matrix <350mW (idle)
 - ✓ @High rate ~+300mW (simulated)
 - ✓ Total= ~1.5W @High rate
- Slow and Fast control fully functional
- Pixel Configuration and readout
- On-chip biasing DACs (next slide)
- Internally measured packet latency (@low rate)
- eCDRPLL (CERN) total jitter @320MHz <6ps_{rms}

VeloPix on-chip biasing DACs

IEEE/NSS 2016 - X.Llopart

VeloPix Serializers (GWT)

- A low power (~20mW) 5.12 Gbps byte-interleaved serializer and wireline transmitter (NIKHEF)
- Full readout data chain not ready yet but check internally generated PRBS15 signal with scope → Measured BER<10⁻¹²

FE Measurements

• Front end characterization measurements done through the slow control readout

CERN

*Assuming Ctest=5fF

Test Pulses in 32 pixels

Pixel ENC

[Threshold scan over noise floor in PC mode]

Electronic Noise

Threshold Equalization

Summary of pixel measurements

Pixel gain	~24.6 mV/Ke⁻
Pixel to pixel gain variation	~3.3%
Pixel ENC	62.9 e⁻
Pixel to pixel threshold mismatch	410 e⁻rms
Pixel to pixel threshold mismatch calibrated (Threq)	40.3 e⁻rms
Expected minimum threshold	> 450 e-

Threshold equalization only calculated not measured on chip All measurements assuming Ctest=5fF

First source measurements

 First single chip assemblies available since last week at CERN

IEEE/NSS 2016 - X.Llopart

Conclusions

- VeloPix ASIC designed in 130nm CMOS
- First results show the chip is alive and eyes open:
 - Power < 2 W/ASIC, DACs working, pixels functional
 - Pixel: Gain ~25 mV/Ke- and ENC 63 e- (no sensor)
 - GWT serializer working
- All measurements, so far, indicate that the Velopix chip is fully functional as designed:
 - First source images taken in photon counting mode : Slow Control
 - Still to test the full binary readout chain
 - Scheduled TID and SEU campaigns to validate design robustness
- Production testing later this year at CERN