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Abstract

Accelerating trigger applications on FPGAs (using VHDL/Verilog) at the CMS experiment at CERN’s
Large Hadron Collider at CERN warrants consistency between each trigger firmware and its corre-
sponding C++ model. This tedious and time consuming process of convergence is exacerbated during
each upgrade study. High-level synthesis, with its promise of increased productivity and C++ design
entry bridges this gap exceptionally well. This paper explores the single source code approach using
Vivado-HLS tool for redeveloping the upgraded CMS Endcap Muon Level-1 Track finder (EMTF).
Guidelines for tight latency control, optimal resource usage and compatibility with CMS software
framework are outlined in this paper.
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ABSTRACT: Accelerating trigger applications on FPGAs (using VHDL/Verilog) at the CMS 
experiment at CERN's Large Hadron Collider at CERN warrants consistency between each trigger 
firmware and its corresponding C++ model. This tedious and time consuming process of 
convergence is exacerbated during each upgrade study. High-level synthesis, with its promise of 
increased productivity and C++ design entry bridges this gap exceptionally well. This paper 
explores the “single source code” approach using Vivado-HLS tool for redeveloping the upgraded 
CMS Endcap Muon Level-1 Track finder (EMTF). Guidelines for tight latency control, optimal 
resource usage and compatibility with CMS software framework are outlined in this paper. 
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1. Introduction 

Acceleration of trigger applications for the CMS experiment in the Large Hadron Collider 
at CERN has been traditionally performed on FPGAs using hardware description languages 
(HDLs) such as VHDL and Verilog. Specifics of large-scale high-energy physics experiments 
require that each trigger firmware design must be accompanied by a software model that can be 
used for analyzing its performance, verification of hardware functionality, and other tasks. These 
software models must be designed in C++ and be compatible with the CMS software framework, 
CMSSW.  

Since CMS upgrades firmware algorithms and trigger hardware at regular intervals, the 
software models must be constantly kept synchronized with firmware algorithms. The typical 
approach is to write these models independently. Since the trigger firmware designs are 
substantially complex, creating and maintaining the software models that exactly match firmware 
behavior is a major challenge. The final convergence between the firmware and software models 
is especially tedious; it sometimes takes months to find and fix small mismatches. 
Since 2002, the CSC track finder system of the CMS Endcap Muon Level-1 trigger has 
maintained the C++/RTL (register-transfer level) model consistency by using a homemade VPP 
[1] library which automatically generates C++ and Verilog files from a single source code. This 
approach worked extremely well for the less complex firmware design of the legacy system, 
providing full consistency between firmware and software model automatically. However, the 
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recent hardware upgrade brought much larger FPGAs and much more complex firmware 
algorithms, and VPP has become inadequate for this task. 

Recent advancements in high-level synthesis (HLS) tools hold the promise of high 
productivity through the use of design entry in C++ that reduces the difficulty for developing and 
managing code complexity at the HDL level. However, the major challenge in using HLS is to be 
able to use C++ constructs to perform fine-grained control of the generated firmware in such a 
way that it satisfies the constraints of CMS trigger applications: 

• Stringent latency requirements 
• Limited FPGA resources 
• Compatibility with CMSSW 
In this paper, we present our exploration into using a “single-source code” approach in which 

we perform software and firmware co-development using Vivado HLS, a C++-based high-level 
synthesis tool used for Xilinx FPGAs. Vivado HLS enables us to have a single-source code, which 
can be used as the C++ model for verification by physicists and to generate the RTL model to 
synthesize firmware for the FPGA.  

2. High-level synthesis languages and tools 

High-level synthesis holds considerable promise in mitigating the cost of firmware 
development. It allows the designer to orchestrate the synthesis of hardware from a higher level 
of abstraction. A typical HLS tool consists of a special type of compiler which allows the designer 
to implement their designs using a high-level language and then translates the high-level language 
description into a RTL description such as VHDL/Verilog. Due to the possibility of using 
mainstream software languages such as C/C++ as the design entry, it enables developers to speed 
up design space exploration while increasing flexibility and reducing development time.  

There are many HLS tools available today and the choice of any HLS tool depends on a 
broad set of criteria such as source language, ease of implementation, tool complexity, support 
for data types, verification, latency, and resource usage after synthesis. Some of the HLS tools 
that were evaluated for our research were Altera OpenCL for FPGAs [2], BlueSpec [3], and 
Vivado HLS [4]. The key evaluation criteria for this project are good latency control, resource 
usage after synthesis, compatibility of the source code in CMSSW, and ease of verification. For 
our development, Vivado HLS perfectly aligned with the stated requirements. 

Vivado HLS is an architecture-aware, directives-driven compiler from Xilinx. The design 
flow starts with an algorithmic description in C/C++. The design is then functionally verified 
using a C testbench. The Vivado HLS compiler synthesizes the RTL design by extracting the 
control and datapaths from the HLS code, and maps it to hardware by using scheduling and 
binding processes while considering the directives supplied by the user. Vivado HLS supports 
bit-accurate validation and provides a useful feature called C/RTL co-simulation where the C and 
the RTL design can be co-simulated and validated.  

A key attribute of Vivado HLS critical for this study is that the user can override the defaults 
of the HLS compilation process by adding directives (pragmas) to the developed code to satisfy 
performance and other requirements and thereby has excellent control over the synthesized RTL. 
Just as importantly, the HLS code is compatible with CMSSW [5]. 
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3. CMS Level-1 Endcap Muon Track Finder  

                      
  Fig1: CMS Endcap Muon system   Fig2: CSC track finder logic 

        
 The objective of the CMS [6] Level-1 Muon Trigger is to detect and efficiently retain muons 
with the lowest possible transverse momentum (PT) that meets the rate reduction requirement of 
less than 100 kHz out of a 40MHz input rate. 

The CMS endcap region consists of 4 stations (Fig 1) and each station is comprised of 
cathode strip chambers (CSC). For ease of processing, the endcap region is divided into six 60 
degree azimuthal sectors. The track finder logic [7] in each sector, as shown in Fig 2, has 10 
modules which reconstruct tracks from the track segments a muon registers when it traverses all 
4 muon stations. The track finder logic looks for track segments in predefined patterns across all 
4 stations.   

The CMS Endcap Muon Level-1 track finder (EMTF [8]) module is a part of the Level-1 
trigger architecture with a stringent latency requirement. As the design and algorithmic 
complexity of trigger algorithms have steadily increased with each upgrade study, the prototyping 
and validation processes have also grown increasingly complex. Also, a major challenge for the 
trigger algorithms is the uncompromising latency constraint. The permitted latency of the EMTF 
is 15 clock cycles at 25ns per cycle. To satisfy the stringent latency requirement, it is necessary 
to control the low-level RTL constructs from the higher abstraction layer.  Our study aims to 
develop the EMTF firmware using Vivado HLS such that the firmware complies with the 
uncompromising latency and compatibility requirements while increasing the design productivity 
and flexibility considerably. 

 

4. Increased productivity and flexibility using HLS 

High-level synthesis with its automation and refinement of the algorithmic description to the 
RTL level reduces the burden of code development and verification drastically. The amount of 
code reduces dramatically, saving time and minimizing the probability of mistakes. The higher 
level of abstraction eases the handling of increased design complexity and opens avenues for 
extensive design space exploration with less effort. The following lessons learned from our study 
illustrate the productivity features of HLS. 
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4.1     Increasing throughput using HLS 

Performance throughput of a design can be limited through several reasons such as 
memory bottleneck, limited pipelined design, false dependencies, and so on. Attaining maximum 
throughput for any design requires the developer to systematically analyze the code and optimize 
it to obtain the best possible design throughput. The following example describes how Vivado 
HLS features can be used to achieve a throughput constraint of 1 output per clock cycle in the 
Trigger primitive conversion module (module-1).  

Consider the for-loop in Fig 3 from the Trigger primitive conversion module. The for-
loop contains 9 iterations, with each iteration being independent from each other and each 
iteration accesses a look-up table (LUT) called “params”. The synthesized design, without any 
optimization directives (pragmas), resulted in a design with a throughput of 1 output in 9 clock 
cycles. Also, the default behaviour of the Vivado HLS compiler is to implement the LUT 
(declared as a 1-D array in the HLS code) as a Block-RAM (BRAM), thus resulting in a memory 
bottleneck which schedules each of the 9 iterations sequentially. To improve the design 
throughput, we had to resolve the bottlenecks and coerce the compiler to synthesize a parallelized 
design. This was accomplished using the following approach. 

 

#pragma HLS PIPELINE II=1 

for (i=0;i<9;i++){ 

   #pragma HLS UNROLL 
   switch(clctpat[i]){ 
     case 0 : aclct_pat_corr= 0x0;       

        fph[i] = params[ph_init_ix] + ph_tmp; 
                          Fig 3: Example HLS code illustrating loop unrolling   
 

1. The operation of the for-loop was parallelized using the HLS UNROLL directive, 
which conveys to the compiler that the user wants to have multiple copies of the for-
loop body in the synthesized RTL. 

2. The ARRAY_PARTITION directive (Fig 4) partitions and resolves the N-element 
array (LUT) into N individual registers. The result is a design that contains N 
individual registers, which effectively removes the memory bottleneck. 

3. The HLS PIPELINE directive pipelines the entire design to obtain a throughput of 
1 output per clock cycle. 

 

 

 
#pragma HLS ARRAY_PARTITION variable=params complete dim=1 

Fig 4: Array partitioning   

 

Using a simple set of directives, multiple iterations are unrolled, each having its own loop 
body without the designer needing to worry about synchronization issues as required in an HDL 
design. The throughput of the design has now improved from 1 output in 9 clock cycles to 1 
output per clock cycle.  Furthermore, the corresponding HDL design would require the designer 
to manually pipeline the design and individually create and track register assignments.  
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4.2     Flexibility - Instantiation of multiple identical modules 

  The nature of trigger algorithms is such that they demand massive parallelization. 
Handling of extremely large problem instances and processing immense data sizes while 
guaranteeing throughput establishes the need for parallelization. Such a design in the Phi pattern 
detector module (module-4) of the EMTF algorithm requires 488 separate instances of a function 
with an additional need that all variables inside each function instance be persistent. This 
seemingly onerous task (in HDL) was accomplished effortlessly by adopting an object-oriented 
approach (OOPS) using Vivado HLS. 

 
static test inst[5]; //create array of 5 objects  
// partition the array completely 
#pragma HLS ARRAY_PARTITION variable=inst complete dim=1 

       // unroll loop  
for(int i=0;i<5;i++){ 
#pragma HLS UNROLL 

    inst[i].test_func(a[i],b[i],index[i],&c[i]); 
   } 

            Fig 5: Example HLS code to achieve massive parallelism 
 

With some careful investigation and experimentation, a design technique (Fig 5) based on 
OOPS was developed to successfully satisfy the specified requirements. The technique consists 
of the following 3 steps:  

1. An array of objects is defined with the keyword “static”.  
2. The array of objects is partitioned completely using the ARRAY_PARTITION 

directive. 
3. The for-loop that schedules the multiple instances of the function is completely unrolled 

using the HLS UNROLL directive. 
The static keyword on the object makes all the member variables persistent over different function 
invocations. The ARRAY_PARTITION and the HLS UNROLL directive helps create multiple 
independent instances. Thus, by adopting our developed method, we were able to attain massive 
parallelism in the Phi pattern detectors module without worrying about synchronizations or 
keeping track and updating of innumerable variables to have persistence as required in a 
VHDL/Verilog implementation. 
 

5. Fine-grained control using HLS constructs 

A major challenge in using HLS for firmware development is to be able to use high-level 
HLS programming constructs to perform fine-grained control of the generated firmware to satisfy 
stringent constraints. For example, in the Level-1 trigger, exercising complete control over the 
latency of the design is of paramount importance. While it is indeed challenging to control the 
lower level RTL implementations from the HLS level, the task is not as strenuous as one might 
imagine. To exercise strong control over the latency of the generated design, some novel coding 
guidelines and design techniques were devised in the process of our study. The following 
examples show how we were successful in exacting control from the Vivado HLS compiler and 
emulate HDL-like control employing these schemes. 
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5.1    Latency control - Scheduling of functions and operations  

The Sorter module of the EMTF algorithm outputs the 3 best-quality tracks from each of the 
4 zones in an azimuthal sector. In simpler words, the module operation consists of selecting the 3 
highest numbers from an unsorted array. The baseline Verilog code implements the module by 
constructing a comparison tree, retrieving the highest number in the first clock cycle, the second 
highest in the second clock cycle, and so on. The latency of the baseline Verilog implementation 
is hence 3 clock cycles. This corresponds to 3 separate function calls in HLS. In addition, it is 
desirable to reduce the latency of the new design from 3 to 2 clock cycles. The following two 
approaches were investigated: 

1. A synthesis of the design with the directives (like PIPELINE, UNROLL, etc.) for 
maximum throughput still resulted in a latency of 3 clock cycles, with each invocation 
of the “sort” function needing 1 clock cycle.  

2. Our next approach to optimize the latency was to allow the compiler to optimize the 
design in any way it saw fit (using the INLINE directive) but with a hard-line latency 
upper bound of 2 clock cycles (specified using the LATENCY directive).  It was 
observed that after synthesis, the compiler tries to fit the entire design in 1 clock cycle, 
resulting in the critical path delay exceeding the clock period. Further analysis revealed 
that the undesired behaviour was the result of the INLINE directive, which performed 
optimization at its own discretion.  

It was noted in our investigation that neither having full control nor allowing HLS to take full 
control of the synthesis process was instrumental in improving the latency. Hence, a method was 
devised that partially gave the control to the compiler and partially to the user: 

1. A duplicate version of the sort function was created and renamed “sort_1”. This is 
essentially the same “sort” function albeit with a different name. 

2. The first function call to “sort” was not in-lined, but the next two function calls were in-
lined. 

 
sort  (inp_array, winner0, &winid[0]);   // INLINE OFF 
sort_1(inp_array, winner1, &winid[1]);   // INLINE  
sort_1(inp_array, winner2, &winid[2]);   // INLINE 

Fig 6: Example HLS code illustrating scheduling of functions 
 

By not in-lining the first call, we restrict the HLS compiler from optimizing it in any undesired 
manner and hence forcing the compiler to schedule it in a separate clock cycle; i.e., the 1st clock 
cycle. The next two function calls that are in-lined allow the HLS to optimize it and schedule 
them both in the 2nd clock cycle.  Thus, by striking the right balance between the amount of control 
given to the HLS compiler and the amount of control retained by the user, we were able to control 
the scheduling of the operations. As a result, the latency of the sorter module was improved to 2 
clock cycles, saving a valuable cycle in the EMTF algorithm, as opposed to 3 clock cycles in the 
corresponding Verilog implementation.  
 
5.2 Construction of a delay line  

A shift register is one of the most widely used digital components in a data processing 
system. Designing a shift register involves controlling operations and scheduling on each clock 
edge thus requiring very fine-grained control. The Polar angle coordinate delay module (module-
6) employs a similar design to implement a delay line for the outputs generated from the Trigger 
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primitive conversion module for use in the Patterns to primitive matching module (module-7). 
Realizing a shift register at the HLS level of abstraction is not trivial, as it requires tight latency 
control.  

Our first attempt at synthesizing a shift register yielded a design where all the intermediate 
registers between the input and the outputs were eliminated (i.e., synthesized away). Careful 
investigation revealed that the Vivado HLS compiler thinks that the intermediate registers are just 
redundant assignments and hence removes them.  

 
 
void test (ap_uint <4> in, ap_uint<4> out[3]) {  
volatile ap_uint<4> temp[5];  
temp[4]=in;  
for(i=4;i>0;i--){ 
  #pragma HLS unroll  
    temp[i-1] = temp[i];  
}  
out[2]=temp[0];  
out[1]=temp[1];  
out[0]=temp[2];  
} 

                               Fig 7: Example HLS code illustrating synthesis of a shift register 
 
A simple coding technique was developed to force the HLS compiler to consider/preserve 

every intermediate assignment. This is accomplished by adopting the approach shown in Fig 7. 
1. A shift register is explicitly created as shown in the for-loop by assigning the previous 

element of the array to the next element and so on. 
2. The array which is used to create the shift register is declared as “volatile”. This 

important keyword coerces Vivado HLS into synthesizing a shift register by preserving 
each operation/assignment involving the “volatile” array.  

   
 

6. Resource usage comparison 

The design flow of a high-level synthesis process provides us with an extra level of 
enhancement of our implementation by refining the algorithmic description using the HLS 
compiler. As a result, our design now undergoes two levels of optimization, one during synthesis 
from HLS code to RTL and the other from RTL to bitstream. With a mature HLS compiler like 
Vivado HLS and the efficient coding practices and techniques developed in our study, it was 
observed that our HLS design of the EMTF algorithm occupies less area as compared to the 
baseline RTL implementation in the majority of the cases, as shown in Table 1.  

o The HLS versions of the Phi-pattern detectors, Patterns to primitive matching, and the 
Polar Angle Co-ordinate delay modules were observed to exhibit decrease in the resource 
usage compared to their corresponding Verilog implementations. 
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o The rest of the modules were observed to use the same amount of logic resources as their 
corresponding Verilog implementations, with only the Trigger primitive conversion 
module being an exception. 

Module HLS (% LUTs) Verilog baseline (% 
LUTs) 

Trigger primitive conversion 12 % 6% 
Zone image formation 1% 1% 

Zone hit extender 1% 1% 
Phi-pattern detector 11% 16% 

Sorter 3% 3% 
Polar Co-ordinate delay 0% (uses FFs) 2% 

Patterns to primitive matching 10% 16% 
Delta phi and delta theta calculation 2% 2% 

    Table 1: Resource statistics of EMTF modules 
 

7.  HLS code compatibility and performance comparison on CMSSW 

CMSSW is the collection of all the software developed for CMS built around a framework, 
an event data model (EDM) and other services for data analytics. It has an extensive toolkit, which 
is used to carry out analyzes of data. The primary objective of CMSSW is to facilitate the 
development of software for reconstruction and analyzes. Any software developed for CMS must 
be compatible in the CMSSW environment. In simpler words, the HLS code developed must be 
compatible with a gcc/g++ compiler.  

As stated in Section 2, one main reason that Vivado HLS was chosen for this project is that 
it is a C/C++-based language, which allows for a simpler path to CMSSW compatibility.  The 
main challenge to achieve this compatibility is the presence of special data-types in the HLS code 
called arbitrary precision data-types, which allow the designer to define input and output ports 
with an arbitrary number of bits. A C-based design compiled with a gcc compiler does not 
recognize these data-types and hence fails to reflect bit-accurate behavior. However, after some 
investigation, it was observed that a C++ based design supports the use of arbitrary precision data-
types defined in the SystemC standard. Thus, by using a C++ based design and headers, the HLS 
code can be compiled, without change, using a g++ compiler hence making it compatible with 
the CMSSW environment. 

The performance of the HLS code was also compared to that of the previous manually 
written C++ code (emulator code) on CMSSW. It was observed that the emulator code was faster 
by only a factor of 2, a tolerable factor. The HLS and emulator code for the Trigger primitive 
conversion module (module-1) were compiled in CMSSW and the execution measured times are 
shown in Table 2. 

  HLS execution time (s) Emulator code execution time (s) 
Trigger primitive 

conversion module 
1.197 e-07 

 
5.836 e-08 

 
                            Table 2: Performance comparison of HLS and emulator code 
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8. Summary and Conclusions 

FPGAs remain the indisputable choice today in accelerating trigger applications in CMS and 
it is highly unlikely to change anytime soon. The desire for more processing capabilities for CMS 
trigger applications with each upgrade study results in an increased design complexity, lengthy 
code development time and higher verification effort. High-level synthesis languages and tools 
provide us with an excellent opportunity to lower these barriers considerably. 

This paper presents the EMTF algorithm as a case study in illustrating the convenience and 
advantages of using HLS for firmware development. The paper also outlines several coding 
methods and devises techniques to exercise control over the synthesized RTL. Example 
guidelines for CMSSW compatibility were also established. 

 It was observed that all the modules of the EMTF satisfied the stringent performance 
constraints. The resource usage statistics were better than the Verilog implementation in the 
majority of the cases. At the time of writing this paper, all 10 modules of the EMTF algorithm 
(Fig 2) have been verified via simulation. Four out of the 10 modules have been successfully 
tested in firmware on the Xilinx Virtex-7 XC7VX690T FPGA for 1000 events containing 
complete tracks. The hardware output of the Vivado HLS generated RTL code matches perfectly 
the output of the baseline Verilog implementation.  
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