# EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)





# Measurement of the tt production cross section using events in the e $\mu$ final state in pp collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration\*

# Abstract

The cross section of top quark-antiquark pair production in proton-proton collisions at  $\sqrt{s} = 13$  TeV is measured by the CMS experiment at the LHC, using data corresponding to an integrated luminosity of  $2.2 \text{ fb}^{-1}$ . The measurement is performed by analyzing events in which the final state includes one electron, one muon, and two or more jets, at least one of which is identified as originating from hadronization of a b quark. The measured cross section is  $792 \pm 8 \text{ (stat)} \pm 37 \text{ (syst)} \pm 21 \text{ (lumi)}$  pb, in agreement with the expectation from the standard model.

Submitted to the European Physical Journal C

arXiv:1611.04040v1 [hep-ex] 12 Nov 2016

<sup>© 2016</sup> CERN for the benefit of the CMS Collaboration. CC-BY-3.0 license

<sup>\*</sup>See Appendix A for the list of collaboration members

# 1 Introduction

The measurement of the top quark-antiquark pair ( $t\bar{t}$ ) cross section provides a test of the hadroproduction of top quark pairs as predicted by quantum chromodynamics (QCD). At the CERN LHC, measurements have been performed in many different decay channels and at three different proton-proton collision energies [1-24]. Precision measurements of these cross sections allow for a test of their energy dependence as predicted by QCD; they can also place constrains on the parton distribution functions (PDFs) [25]. In combination with some theory, they also provide unambiguous measurements of interesting quantities, such as the top quark pole mass [13, 21], which is difficult to determine by other means. A detailed understanding of the production cross section is also required in searches for evidence of new physics beyond the standard model, as tt production is often the dominant background process. This is especially important if the signature for the new physics is similar to that of tr production [13, 26]. This paper presents a measurement of the tr production cross section ( $\sigma_{tr}$ ) in the  $e^{\pm}\mu^{\mp}$  decay channel using an event-counting method, based on observed yields. The analysis follows closely [12], and uses the full data set recorded by CMS at 13 TeV during 2015. This represents a factor of 50 increase in the amount of data over the original analysis and allows for more detailed studies of the experimental and theory uncertainties.

# 2 The CMS detector and Monte Carlo simulation

The CMS detector [27] has a superconducting solenoid in its central region that provides an axial magnetic field of 3.8 T. The silicon pixel and strip trackers cover  $0 < \phi < 2\pi$  in azimuth and  $|\eta| < 2.5$  in pseudorapidity. The lead tungstate crystal electromagnetic calorimeter, and the brass and scintillator hadron calorimeter are located inside the solenoid. These are used to identify electrons, photons and jets. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. The detector is nearly hermetic, providing reliable measurement of the momentum imbalance in the plane transverse to the beams. A two-level trigger system selects the most interesting pp collisions for offline analysis. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [27].

Different Monte Carlo (MC) event generators are used to simulate signal and background events. The next-to-leading-order (NLO) POWHEG (v2) [28, 29] generator is used for tt events, with the top quark mass ( $m_t$ ) set to 172.5 GeV. The NNPDF3.0 NLO [30] PDFs are used. For the reference tt sample, the events are interfaced with PYTHIA (v8.205) [31, 32] with the CUETP8M1 tune [33, 34] to simulate parton showering, hadronization, and the underlying event. Additional samples are produced by showering the events in the reference sample with HER-WIG++ (v2.7.1) [35] or by generating events using MG5\_aMC@NLO (v5\_2.2.2) [36] interfaced with MADSPIN [37] to account for spin correlations in the decays of the top quarks, and using PYTHIA for parton showering and hadronization.

The MG5\_AMC@NLO generator is also used to simulate W+jets events and Drell–Yan (DY) quark-antiquark annihilation into lepton-antilepton pairs through a virtual photon or a Z boson exchange; for these backgrounds the event yields are estimated from data. Single top quark events are simulated using POWHEG (v1) [38, 39] and PYTHIA, and the event yields are normalized to the approximate next-to-next-to-leading order (NNLO) cross sections from Ref. [40]. The contributions from WW, WZ, and ZZ (referred to as "VV") processes are simulated with PYTHIA, and the event rates are normalized to the NLO cross sections from Ref. [41]. Other contributions from W and Z boson production in association with tt events (referred to as "ttV")

are simulated using MG5\_AMC@NLO and PYTHIA. The simulated samples include additional interactions per bunch crossing (pileup), with the distribution matching that observed in data, with an average of about 11 collisions per bunch crossing.

The SM prediction for  $\sigma_{t\bar{t}}$  at 13 TeV is  $832^{+20}_{-29}$  (scales)  $\pm 35$  (PDF+ $\alpha_s$ ) pb for  $m_t = 172.5$  GeV, as calculated with the TOP++ program [42] at NNLO in perturbative QCD, including soft-gluon resummation at next-to-next-to-leading-log order [43]. The first uncertainty reflects uncertainties in the factorization ( $\mu_F$ ) and renormalization ( $\mu_R$ ) scales. The second one is associated with possible choices of PDFs and the value of the strong coupling constant, following the PDF4LHC prescriptions [44, 45], using the MSTW2008 68% confidence level NNLO [46, 47], CT10 NNLO [48, 49], and NNPDF2.3 5f FFN [50] PDF sets. The expected event yields for signal in all figures and tables are normalized to this cross section.

# 3 Event selection

In the SM, top quarks in pp collisions are mostly produced as  $t\bar{t}$  pairs, where each top quark decays predominantly to a W boson and a bottom quark. In  $t\bar{t}$  events where both W bosons decay leptonically, the final state contains two leptons of opposite electric charge and at least two jets coming from the hadronization of the bottom quarks.

At the trigger level, a combination of the single lepton and dilepton triggers is used. Events are required to contain either one electron with transverse momentum  $p_T > 12$  GeV and one muon with  $p_T > 17$  GeV or one electron with  $p_T > 17$  GeV and one muon with  $p_T > 8$  GeV. In addition, single-lepton triggers with one electron (muon) with  $p_T > 23$  GeV (20) are used in order to increase the efficiency. The efficiency for the combination of the single lepton and dilepton triggers is measured in data using triggers based on  $p_T$  imbalance in the event. The trigger efficiency is measured to be  $0.99 \pm 0.01$  (combined statistical and systematic uncertainties) when the selection on the leptons described below is applied. The trigger in simulation is corrected using a multiplicative data-to-simulation scale factor (SF), given by the trigger efficiency measured in data with independent monitoring triggers.

The particle-flow (PF) event algorithm [51, 52] reconstructs and identifies each individual particle with an optimized combination of information from the various elements of the CMS detector. Selected dilepton events are required to contain one isolated electron [53] and one isolated muon [54] with opposite electric charge and  $p_T > 20$  GeV and  $|\eta| < 2.4$ . Isolation requirements are based on the ratio of the scalar sum of the transverse momenta of all PF candidates, reconstructed inside a cone centered on the lepton, excluding the contribution from the lepton candidate. This isolation variable is required to be smaller than 7% (15%) of the electron (muon)  $p_T$ .

In events with more than one pair of leptons passing the selection, the two opposite-sign different-flavour leptons with the largest  $p_T$  are selected for further study. Events with W bosons decaying into  $\tau$  leptons contribute to the measurement only if the  $\tau$  leptons decay into electrons or muons that satisfy the selection requirements.

The efficiency of the lepton selection is measured using a "tag-and-probe" [55] method in a sample of same-flavour dilepton events, which is enriched in Z boson candidates. The measured  $p_{\rm T}$ - and  $\eta$ -dependent values for the combined identification and isolation efficiencies average to about 80% for electrons and 90% for muons. To account for the difference in efficiencies determined using data and simulation, the event yield in simulation is corrected using  $p_{\rm T}$ - and  $\eta$ -dependent SFs based on a comparison of lepton selection efficiencies in data and

simulation. These have an average of 0.99 for electrons and 0.98 for muons.

In order to suppress backgrounds from DY production of  $\tau$  lepton pairs with low invariant dilepton mass, tt candidate events are further required to have a dilepton pair of invariant mass  $m_{e\mu} > 20 \text{ GeV}$ .

Jets are reconstructed from the PF particle candidates using the anti- $k_t$  clustering algorithm [56, 57] with a distance parameter of 0.4. The jet momentum is determined from the vectorial sum of all particle momenta in the jet, and is found from simulation to be within 5 to 10% of the true momentum over the whole  $p_T$  spectrum and detector acceptance. An offset correction is applied to jet energies to take into account the contribution from additional proton-proton interactions within the same or nearby bunch crossings. Jet energy corrections are derived from simulation, confirmed with in situ measurements of the energy balance in dijet and photon + jet events, and are applied as a function of the jet  $p_T$  and  $\eta$  [58] to both data and simulated events. The t $\bar{t}$  candidate events are required to have at least two reconstructed jets with  $p_T > 30$  GeV and  $|\eta| < 2.4$ .

Since t $\bar{t}$  events decay into final states containing a bottom quark-antiquark pair, requiring the presence of jets identified as originating from b quarks ("b jets") reduces backgrounds from DY and W+jets production. Jets are identified as b jets using the combined secondary vertex algorithm [59, 60], with an operating point which yields an identification efficiency of 67% and a misidentification (mistag) probability of about 1% and 15% [60] for light-flavour jets (u, d, s, and gluons) and c jets, respectively. The selection requires the presence of at least one b jet in the event.

# 4 Background determination

Background events arise primarily from single top quark, DY, and VV events in which at least two prompt leptons are produced by Z or W boson decays. The single top quark and VV contributions are estimated from simulation.

The DY event yield is estimated from data using the " $R_{out/in}$ " method [1, 2, 6], where events with same-flavour leptons are used to normalize the yield of  $e^{\pm}\mu^{\mp}$  pairs from DY production of  $\tau$  lepton pairs. A data-to-simulation normalization factor is estimated from the number of events in data within a 15 GeV window around the Z boson mass and extrapolated to the number of events outside the Z mass window with corrections applied using control regions enriched in DY events in data. The SF is found to be  $0.92 \pm 0.05$  (statistical uncertainty) after applying the final event selection.

Other background sources, such as  $t\bar{t}$  or W+jets events in the lepton+jets final state, can contaminate the signal sample if a jet is incorrectly reconstructed as a lepton, or the lepton is incorrectly identified as being isolated. This is more important for electrons. For muons, the dominant contribution comes from the semileptonic decay of bottom or charm quarks. These events are grouped into the nonprompt leptons category ("non-W/Z leptons") since prompt leptons are defined as originating from decays of W or Z boson, together with contributions that can arise, for example, from decays of mesons or photon conversions.

The contribution of non-W/Z lepton events is estimated from a control region of same-sign (SS) events and propagated in the opposite-sign (OS) signal region. The SS control region is defined using the same criteria as the nominal signal region, except for requiring  $e\mu$  pairs with the same electric charge. The SS dilepton events are predominantly events containing misidentified leptons. Other SM processes produce prompt SS or charge-misidentified dilepton events

with significantly smaller rates; these are estimated using simulation and subtracted from the observed number of events in data.

The scaling from the SS control region in data to the signal region is performed through the ratio of the numbers of OS to SS events with misidentified leptons in simulation. This ratio is calculated using simulated tt and W+jets samples, which are rich in nonprompt dilepton events, and is measured to be  $1.4 \pm 0.1$  (stat). In data, 152 SS events are observed, with a contribution of  $82.1 \pm 1.9$  (stat) prompt lepton SS events as evaluated from simulation. In total  $101 \pm 8$  (stat + syst) events with misidentified leptons contaminating the signal region are predicted. This agrees within the uncertainties with predictions from the simulation.

Figure 1 shows the multiplicity of jets for events passing the dilepton criteria. The MC simulation does not describe well the data for events with  $\geq$ 4 jets, the region in which parton shower effects are expected to dominate the prediction. After requiring at least two jets, Fig. 2 shows the  $p_{\rm T}$  and  $|\eta|$  distributions of the selected leptons, and Fig. 3 shows the  $p_{\rm T}$  (a, c) and  $|\eta|$  (b, d) distributions of the two most energetic jets; Fig. 3 (e) shows the scalar sum of the transverse momenta of all jets ( $H_{\rm T}$ ) and Fig. 3 (f) the b jet multiplicity. Good agreement between data and the predictions for signal and background is observed.



Figure 1: Distribution of the jet multiplicity in events passing the dilepton selection criteria. The expected distributions for  $t\bar{t}$  signal and individual backgrounds are shown after corrections based on control regions in data are applied; the last bin contains the overflow events. The ratio of data to the sum of the expected yields is given at the bottom of the figure. The error bars, which are within the size of the points, indicate the statistical uncertainties.

# 5 Sources of systematic uncertainty

Table 1 summarizes the statistical uncertainty and the different sources of systematic uncertainties in the measured  $t\bar{t}$  production cross section.

The uncertainty in the trigger efficiency SF applied to simulation to correct for differences with respect to data is 1.1%. The uncertainty in the SF applied to correct the electron (muon) identification efficiency is found to be about 1.8% (1.5%), with some dependence on the lepton  $p_{\rm T}$  and  $\eta$ .

The modeling of lepton energy scales was studied using  $Z \rightarrow ee/\mu\mu$  events in data and simulation, resulting in an uncertainty for the electron (muon) energy scale of 1.0 (0.5)%. These values are used to obtain the effect on the signal acceptance, which is taken as a systematic uncertainty.



Figure 2: The distributions of (a)  $p_T$  and (b)  $|\eta|$  of the electron, and (c)  $p_T$  and (d)  $|\eta|$  of the muon after the selection of jets and before the b jet requirement. The expected distributions for t $\bar{t}$  signal and individual backgrounds are shown after corrections based on control regions in data are applied; for the left plots (a, c) the last bin contains the overflow events. The ratios of data to the sum of the expected yields are given at the bottom of each panel. The error bars indicate the statistical uncertainties.



Figure 3: The distributions of (a)  $p_T$  and (b)  $|\eta|$  for the leading jet, (c)  $p_T$  and (d)  $|\eta|$  for the sub-leading jet, (e)  $H_T$ , and (f) b jet multiplicity after the jets selection and before the b jet requirement. The expected distributions for t $\bar{t}$  signal and individual backgrounds are shown after corrections based on control regions in data are applied; in each plot the last bin contains the overflow events. The ratios of data to the sum of the expected yields are given at the bottom of each panel. The error bars indicate the statistical uncertainties.

Table 1: Summary of the individual contributions to the uncertainty in the  $\sigma_{t\bar{t}}$  measurement. The first and second uncertainty corresponds to the total and relative component, respectively. The total uncertainty in the result, calculated as the quadratic sum of the individual components, is also given.

| Source                                 | $\Delta \sigma_{t\bar{t}}$ (pb) | $\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$ (%) |
|----------------------------------------|---------------------------------|----------------------------------------------------|
| Experimental                           |                                 |                                                    |
| Trigger efficiencies                   | 9.7                             | 1.2                                                |
| Lepton efficiencies                    | 18.3                            | 2.3                                                |
| Lepton energy scale                    | <1                              | $\leq 0.1$                                         |
| Jet energy scale                       | 16.9                            | 2.1                                                |
| Jet energy resolution                  | 0.8                             | 0.1                                                |
| b tagging                              | 10.6                            | 1.3                                                |
| Mistagging                             | <1                              | $\leq 0.1$                                         |
| Pileup                                 | 1.4                             | 0.2                                                |
| Modeling                               |                                 |                                                    |
| $\mu_{\rm F}$ and $\mu_{\rm R}$ scales | <1                              | $\leq 0.1$                                         |
| t <del>ī</del> NLO generator           | 16.8                            | 2.1                                                |
| tt hadronization                       | 5.9                             | 0.7                                                |
| Parton shower scale                    | 6.3                             | 0.8                                                |
| PDF                                    | 4.8                             | 0.6                                                |
| Background                             |                                 |                                                    |
| Single top quark                       | 11.8                            | 1.5                                                |
| VV                                     | <1                              | $\leq 0.1$                                         |
| Drell–Yan                              | <1                              | $\leq 0.1$                                         |
| Non-W/Z leptons                        | 2.5                             | 0.3                                                |
| tīV                                    | <1                              | $\leq 0.1$                                         |
| Total systematic                       | 36.8                            | 4.6                                                |
| (no integrated luminosity)             |                                 |                                                    |
| Integrated luminosity                  | 21.4                            | 2.7                                                |
| Statistical                            | 8.3                             | 1.0                                                |
| Total                                  | 43.4                            | 5.5                                                |

The impact of uncertainties in jet energy scale (JES) and jet energy resolution (JER) is estimated from the change observed in the number of simulated t $\bar{t}$  events selected after changing the jet momenta within the JES uncertainties, and for JER by an  $|\eta|$ -dependent variation of the JER scale factors within their uncertainties.

The uncertainties resulting from the b tagging efficiency and misidentification rate are determined by varying the b tagging SF of the b jets and the light-flavour jets, respectively. These uncertainties depend on the  $p_{\rm T}$  and  $\eta$  of the jet and amount to approximately 2% for b jets and 10% for mistagged jets [60] in t $\bar{t}$  signal events. They are propagated to the t $\bar{t}$  selection efficiency using simulated events.

The uncertainty assigned to the number of pileup events in simulation is obtained by changing the inelastic proton-proton cross section, which is used to estimate the pileup in data, by  $\pm 5\%$  [61].

The systematic uncertainty related to the missing higher-order diagrams in POWHEG is estimated as follows: the uncertainty in the signal acceptance is determined by changing the  $\mu_{\rm F}$  and  $\mu_{\rm R}$  scales in POWHEG independently up and down by a factor of two, with the uncertainty

taken as the maximum observed difference.

The predictions of the NLO generators POWHEG and MG5\_aMC@NLO for  $t\bar{t}$  production are compared, where both use PYTHIA for hadronization, fragmentation, and additional radiation description. The difference in the signal acceptance between the two is taken as an uncertainty.

The uncertainty arising from the hadronization model mainly affects the JES and the fragmentation of b quark jets. The uncertainty in the JES already contains a contribution from the uncertainty in the hadronization. In addition, we determine a related uncertainty by comparing samples of events generated with POWHEG, where the hadronization is modeled with PYTHIA or HERWIG++. In what follows we refer to this difference as the hadronization uncertainty.

The impact of the choice of the parton shower scale is studied by changing the parton shower (initial and final state radiation) by a factor of 2 and 1/2 its default value. The maximum variation with respect to the central value of the signal acceptance at particle level for the fiducial volume of the analysis is taken as an uncertainty.

The uncertainty from the choice of PDF is determined by reweighting the sample of simulated  $t\bar{t}$  events according to the NNPDF3.0 PDF sets [30]. The root-mean-square of the distribution is taken as an uncertainty.

Based on recent measurements of the production cross section for single top quark [62–64] and VV [65–72] we use an uncertainty of 30% for these background processes. For DY production, an uncertainty of 15%, that covers the difference of the SF at different levels of the selection, is assumed. A 30% systematic uncertainty is estimated for the non-W/Z lepton background derived from the uncertainty in the ratio of the numbers of OS to SS events with misidentified leptons in the MC simulation.

The uncertainty in the integrated luminosity is 2.7% [73].

# 6 Results

The tt production cross section is measured by counting events and applying the expression

$$\sigma_{\mathrm{t}\bar{\mathrm{t}}} = \frac{N - N_{\mathrm{B}}}{\mathcal{A}\,\mathcal{L}},$$

where *N* is the total number of dilepton events observed in data,  $N_{\rm B}$  is the number of estimated background events,  $\mathcal{A}$  is the product of the mean acceptance, the selection efficiency, and the branching fraction into the  $e^{\pm}\mu^{\mp}$  final state, and  $\mathcal{L}$  is the integrated luminosity.

Table 2 shows the total number of events observed in data together with the total number of signal and background events determined from simulation or estimated from data. The value of A, determined from simulation assuming  $m_t = 172.5 \text{ GeV}$ , is  $(0.55 \pm 0.03)$ %, including statistical and systematic uncertainties. The measured cross section is

$$\sigma_{t\bar{t}} = 792 \pm 8 \text{ (stat)} \pm 37 \text{ (syst)} \pm 21 \text{ (lumi) pb},$$

for a top quark mass of 172.5 GeV.

As a cross-check, analogous measurements have been performed using independent data samples with same-flavour leptons in the final state. The results obtained in the  $e^+e^-$  and  $\mu^+\mu^-$  channels are consistent with the result in the  $e^{\pm}\mu^{\mp}$  channel. Given their larger uncertainties, the results are not combined with the main one in the  $e^{\pm}\mu^{\mp}$  channel.

Table 2: Number of dilepton events obtained after applying the full selection. The results are given for the individual sources of background, t $\bar{t}$  signal with a top quark mass of 172.5 GeV and  $\sigma_{t\bar{t}} = 832^{+40}_{-46}$  pb, and data. The uncertainties correspond to statistical and systematic components.

|                       | Number of                      |  |
|-----------------------|--------------------------------|--|
| Source                | $\mathrm{e}^\pm\mu^\mp$ events |  |
| Drell–Yan             | $46\pm5\pm7$                   |  |
| Non-W/Z leptons       | $101\pm8\pm30$                 |  |
| Single top quark      | $464\pm 6\pm 145$              |  |
| VV                    | $15\pm2\pm5$                   |  |
| tīV                   | $31\pm1\pm10$                  |  |
| Total background      | $657 \pm 11 \pm 148$           |  |
| t <del>ī</del> signal | $10197\pm 14\pm 445$           |  |
| Data                  | 10368                          |  |

The measured fiducial cross section for t $\bar{t}$  production with two leptons (one electron and one muon) in the range  $p_T > 20$  GeV and  $|\eta| < 2.4$ , at least two jets with  $p_T > 30$  GeV and  $|\eta| < 2.4$ , and at least one b jet is  $\sigma_{t\bar{t}}^{fid} = 12.1 \pm 0.5$  (stat)  $\pm 0.1$  (syst)  $\pm 0.3$  (lumi) pb.

The acceptance has been measured in the range 166.5–178.5 GeV and is parameterized as a linear function of  $m_t$ . The cross section varies by 3.7 pb when the top quark mass changes 0.5 GeV.

# 7 Summary

A measurement of the t $\bar{t}$  production cross section in proton-proton collisions at  $\sqrt{s} = 13$  TeV is presented for events containing an oppositely charged electron-muon pair, and two or more jets, of which at least one is tagged as originating from a b quark. The measurement is performed through an event-counting method based on a data sample corresponding to an integrated luminosity of 2.2 fb<sup>-1</sup>. The measured cross section is

$$\sigma_{t\bar{t}} = 792 \pm 8 \,(\text{stat}) \pm 37 \,(\text{syst}) \pm 21 \,(\text{lumi}) \,\text{pb},$$

with a total relative uncertainty of 5.5%. The measurement, that supersedes [12], is consistent with recent measurements from the ATLAS [24] and CMS [12] experiments and with the standard model prediction of  $\sigma_{t\bar{t}} = 832^{+40}_{-46}$  pb for a top quark mass of 172.5 GeV.

# Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543 and 2014/15/B/ST2/03998, Sonata-bis 2012/07/E/ST2/01406; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.

# References

- [1] CMS Collaboration, "First measurement of the cross section for top-quark pair production in proton-proton collisions at  $\sqrt{s} = 7 \text{ TeV}$ ", *Phys. Lett. B* **695** (2010) 424, doi:10.1016/j.physletb.2010.11.058.
- [2] CMS Collaboration, "Measurement of the t $\bar{t}$  production cross section and the top quark mass in the dilepton channel in pp collisions at  $\sqrt{s} = 7$  TeV", *J. High Energy Phys.* 07 (2011) 049, doi:10.1007/JHEP07(2011)049.
- [3] CMS Collaboration, "Measurement of the tr̄ production cross section in pp collisions at  $\sqrt{s} = 7$  TeV using the kinematic properties of events with leptons and jets", *Eur. Phys. J.* C **71** (2011) 1721, doi:10.1140/epjc/s10052-011-1721-3.
- [4] CMS Collaboration, "Measurement of the *tī* production cross section in *pp* collisions at 7 TeV in lepton + jets events using *b*-quark jet identification", *Phys. Rev. D* 84 (2011) 092004, doi:10.1103/PhysRevD.84.092004.
- [5] CMS Collaboration, "Measurement of the top quark pair production cross section in pp collisions at  $\sqrt{s} = 7$  TeV in dilepton final states containing a  $\tau$ ", *Phys. Rev. D* **85** (2012) 112007, doi:10.1103/PhysRevD.85.112007, arXiv:1203.6810.
- [6] CMS Collaboration, "Measurement of the tt production cross section in the dilepton channel in pp collisions at √s = 7 TeV", JHEP 11 (2012) 067, doi:10.1007/JHEP11 (2012) 067, arXiv:1208.2671.

- [7] CMS Collaboration, "Measurement of the tr̄ production cross section in pp collisions at  $\sqrt{s} = 7$  TeV with lepton + jets final states", *Phys. Lett. B* 720 (2013) 83, doi:10.1016/j.physletb.2013.02.021, arXiv:1212.6682.
- [8] CMS Collaboration, "Measurement of the tr production cross section in the  $\tau$ +jets channel in pp collisions at  $\sqrt{s} = 7 \text{ TeV}$ ", Eur. Phys. J. C **73** (2013) 2386, doi:10.1140/epjc/s10052-013-2386-x.
- [9] CMS Collaboration, "Measurement of the tr̄ production cross section in the all-jet final state in pp collisions at √s = 7 TeV", JHEP 05 (2013) 065, doi:10.1007/JHEP05 (2013) 065, arXiv:1302.0508.
- [10] CMS Collaboration, "Measurement of the tr̄ production cross section in the dilepton channel in pp collisions at √s = 8 TeV", JHEP 02 (2014) 024, doi:10.1007/JHEP02 (2014) 024, arXiv:1312.7582. [Erratum: doi:10.1007/JHEP02 (2014) 102].
- [11] CMS Collaboration, "Measurement of the tr̄ production cross section in pp collisions at  $\sqrt{s} = 8$  TeV in dilepton final states containing one  $\tau$  lepton", *Phys. Lett. B* **739** (2014) 23, doi:10.1016/j.physletb.2014.10.032, arXiv:1407.6643.
- [12] CMS Collaboration, "Measurement of the Top Quark Pair Production Cross Section in Proton-Proton Collisions at  $\sqrt{s} = 13$  TeV", *Phys. Rev. Lett.* **116** (2016) 052002, doi:10.1103/PhysRevLett.116.052002, arXiv:1510.05302.
- [13] CMS Collaboration, "Measurement of the tr̄ production cross section in the e $\mu$  channel in proton-proton collisions at  $\sqrt{s} = 7$  and 8 TeV", *JHEP* **08** (2016) 029, doi:10.1007/JHEP08 (2016) 029, arXiv:1603.02303.
- [14] ATLAS Collaboration, "Measurement of the top quark-pair production cross section with ATLAS in *pp* collisions at  $\sqrt{s} = 7$  TeV", *Eur. Phys. J. C* **71** (2011) 1577, doi:10.1140/epjc/s10052-011-1577-6, arXiv:1012.1792.
- [15] ATLAS Collaboration, "Measurement of the top quark pair production cross section in *pp* collisions at  $\sqrt{s} = 7$  TeV in dilepton final states with ATLAS", *Phys. Lett. B* **707** (2012) 459, doi:10.1016/j.physletb.2011.12.055, arXiv:1108.3699.
- [16] ATLAS Collaboration, "Measurement of the top quark pair production cross-section with ATLAS in the single lepton channel", *Phys. Lett. B* 711 (2012) 244, doi:10.1016/j.physletb.2012.03.083, arXiv:1201.1889.
- [17] ATLAS Collaboration, "Measurement of the cross section for top-quark pair production in *pp* collisions at  $\sqrt{s} = 7$  TeV with the ATLAS detector using final states with two high-*p*<sub>T</sub> leptons", *JHEP* **05** (2012) 059, doi:10.1007/JHEP05(2012)059, arXiv:1202.4892.
- [18] ATLAS Collaboration, "Measurement of  $t\bar{t}$  production with a veto on additional central jet activity in *pp* collisions at  $\sqrt{s} = 7$  TeV using the ATLAS detector", *Eur. Phys. J. C* **72** (2012) 2043, doi:10.1140/epjc/s10052-012-2043-9, arXiv:1203.5015.
- [19] ATLAS Collaboration, "Measurement of the top quark pair cross section with ATLAS in *pp* collisions at sqrt(s) = 7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton", *Phys. Lett. B* **717** (2012) 89, doi:10.1016/j.physletb.2012.09.032, arXiv:1205.2067.

- [20] ATLAS Collaboration, "Measurement of the tt production cross section in the tau+jets channel using the ATLAS detector", Eur. Phys. J. C 73 (2013) 2328, doi:10.1140/epjc/s10052-013-2328-7, arXiv:1211.7205.
- [21] ATLAS Collaboration, "Measurement of the  $t\bar{t}$  production cross-section using  $e\mu$  events with *b*-tagged jets in *pp* collisions at  $\sqrt{s} = 7$  and 8 TeV with the ATLAS detector", *Eur. Phys. J. C* **74** (2014) 3109, doi:10.1140/epjc/s10052-014-3109-7, arXiv:1406.5375.
- [22] ATLAS Collaboration, "Measurement of the *tt* production cross-section as a function of jet multiplicity and jet transverse momentum in 7 TeV proton-proton collisions with the ATLAS detector", JHEP 01 (2015) 020, doi:10.1007/JHEP01 (2015) 020, arXiv:1407.0891.
- [23] ATLAS Collaboration, "Measurement of the top pair production cross section in 8 TeV proton-proton collisions using kinematic information in the lepton+jets final state with ATLAS", *Phys. Rev. D* 91 (2015) 112013, doi:10.1103/PhysRevD.91.112013, arXiv:1504.04251.
- [24] ATLAS Collaboration, "Measurement of the  $t\bar{t}$  production cross-section using  $e\mu$  events with b-tagged jets in pp collisions at  $\sqrt{s} = 13$  TeV with the ATLAS detector", *Phys. Lett. B* **761** (2016) 136, doi:10.1016/j.physletb.2016.08.019, arXiv:1606.02699.
- [25] M. Czakon, M. L. Mangano, A. Mitov, and J. Rojo, "Constraints on the gluon PDF from top quark pair production at hadron colliders", *JHEP* 07 (2013) 167, doi:10.1007/JHEP07 (2013)167, arXiv:1303.7215.
- [26] ATLAS Collaboration, "ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider", Eur. Phys. J. C 75 (2015) 510, doi:10.1140/epjc/s10052-015-3726-9, arXiv:1506.08616. [Erratum:doi:10.1140/epjc/s10052-016-3935-x].
- [27] CMS Collaboration, "The CMS experiment at the CERN LHC", JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.
- [28] S. Frixione, P. Nason, and C. Oleari, "Matching NLO QCD computations with parton shower simulations: the POWHEG method", JHEP 11 (2007) 070, doi:10.1088/1126-6708/2007/11/070, arXiv:0709.2092.
- [29] S. Alioli, P. Nason, C. Oleari, and E. Re, "A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX", JHEP 06 (2010) 043, doi:10.1007/JHEP06(2010)043, arXiv:1002.2581.
- [30] F. Demartin et al., "The impact of PDF and α<sub>s</sub> uncertainties on Higgs Production in gluon fusion at hadron colliders", *Phys. Rev. D* 82 (2010) 014002, doi:10.1103/PhysRevD.82.014002, arXiv:1004.0962.
- [31] T. Sjöstrand, S. Mrenna, and P. Skands, "PYTHIA 6.4 physics and manual", JHEP 05 (2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.
- [32] T. Sjöstrand et al., "An Introduction to PYTHIA 8.2", *Comput. Phys. Commun.* **191** (2015) 159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012.
- [33] CMS Collaboration, "Underlying Event Tunes and Double Parton Scattering", CMS Physics Analysis Summary CMS-PAS-GEN-14-001, 2014.

- [34] P. Skands, S. Carrazza, and J. Rojo, "Tuning PYTHIA 8.1: the Monash 2013 tune", Eur. Phys. J. C 74 (2014) 3024, doi:10.1140/epjc/s10052-014-3024-y, arXiv:1404.5630.
- [35] M. Bähr et al., "Herwig++ physics and manual", Eur. Phys. J. C 58 (2008) 639, doi:10.1140/epjc/s10052-008-0798-9, arXiv:0803.0883.
- [36] J. Alwall et al., "The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations", *JHEP* 07 (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301.
- [37] P. Artoisenet, R. Frederix, O. Mattelaer, and R. Rietkerk, "Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations", *JHEP* 03 (2013) 015, doi:10.1007/JHEP03 (2013) 015, arXiv:1212.3460.
- [38] S. Alioli, P. Nason, C. Oleari, and E. Re, "NLO single-top production matched with shower in POWHEG: s- and t-channel contributions", JHEP 09 (2009) 111, doi:10.1088/1126-6708/2009/09/111, arXiv:0907.4076. [Erratum: doi:10.1007/JHEP02 (2010) 011].
- [39] E. Re, "Single-top Wt-channel production matched with parton showers using the POWHEG method", Eur. Phys. J. C 71 (2011) 1547, doi:10.1140/epjc/s10052-011-1547-z, arXiv:1009.2450.
- [40] N. Kidonakis, "Top Quark Production", Proceedings, Helmholtz International Summer School on Physics of Heavy Quarks and Hadrons (HQ 2013) (2014) 139, doi:10.3204/DESY-PROC-2013-03/Kidonakis, arXiv:1311.0283.
- [41] J. M. Campbell and R. K. Ellis, "MCFM for the Tevatron and the LHC", Nucl. Phys. Proc. Suppl. 205-206 (2010) 10, doi:10.1016/j.nuclphysbps.2010.08.011, arXiv:1007.3492.
- [42] M. Czakon and A. Mitov, "Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders", *Comput. Phys. Commun.* 185 (2014) 2930, doi:10.1016/j.cpc.2014.06.021, arXiv:1112.5675.
- [43] M. Czakon, P. Fiedler and A. Mitov, "The total top quark production cross-section at hadron colliders through O(α<sup>4</sup><sub>5</sub>)", *Phys. Rev. Lett.* **110** (2013) 252004, doi:10.1103/PhysRevLett.110.252004, arXiv:1303.6254.
- [44] S. Alekhin et al., "The PDF4LHC Working Group Interim Report", (2011). arXiv:1101.0536.
- [45] M. Botje et al., "The PDF4LHC Working Group Interim Recommendations", (2011). arXiv:1101.0538.
- [46] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, "Parton distributions for the LHC", *Eur. Phys. J. C* 63 (2009) 189, doi:10.1140/epjc/s10052-009-1072-5, arXiv:0901.0002.
- [47] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, "Uncertainties on α<sub>s</sub> in global PDF analyses and implications for predicted hadronic cross sections", *Eur. Phys. J. C* 64 (2009) 653, doi:10.1140/epjc/s10052-009-1164-2, arXiv:0905.3531.

- [48] H.-L. Lai et al., "New parton distributions for collider physics", Phys. Rev. D 82 (2010) 074024, doi:10.1103/PhysRevD.82.074024, arXiv:1007.2241.
- [49] J. Gao et al., "CT10 next-to-next-to-leading order global analysis of QCD", Phys. Rev. D 89 (2014) 033009, doi:10.1103/PhysRevD.89.033009, arXiv:1302.6246.
- [50] NNPDF Collaboration, "Parton distributions with LHC data", Nucl. Phys. B 867 (2013) 244, doi:10.1016/j.nuclphysb.2012.10.003, arXiv:1207.1303.
- [51] CMS Collaboration, "Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus, and MET", CMS Physics Analysis Summary CMS-PAS-PFT-09-001, 2009.
- [52] CMS Collaboration, "Commissioning of the Particle-flow Event Reconstruction with the first LHC collisions recorded in the CMS detector", CMS Physics Analysis Summary CMS-PAS-PFT-10-001, 2010.
- [53] CMS Collaboration, "Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at  $\sqrt{s} = 8 \text{ TeV}$ ", *JINST* **10** (2015) P06005, doi:10.1088/1748-0221/10/06/P06005.
- [54] CMS Collaboration, "Performance of CMS muon reconstruction in pp collision events at  $\sqrt{s} = 7 \text{ TeV}$ ", JINST 7 (2012) P10002, doi:10.1088/1748-0221/7/10/P10002, arXiv:1206.4071.
- [55] CMS Collaboration, "Measurements of Inclusive W and Z Cross Sections in pp Collisions at  $\sqrt{s} = 7 \text{ TeV}$ ", *JHEP* **01** (2011) 080, doi:10.1007/JHEP01(2011)080, arXiv:1012.2466.
- [56] M. Cacciari, G. P. Salam, and G. Soyez, "The anti-k<sub>t</sub> jet clustering algorithm", JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
- [57] M. Cacciari, G. P. Salam, and G. Soyez, "FastJet user manual", Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.
- [58] CMS Collaboration, "Determination of jet energy calibration and transverse momentum resolution in CMS", JINST 6 (2011) P11002, doi:10.1088/1748-0221/6/11/P11002.
- [59] CMS Collaboration, "Identification of b-quark jets with the CMS experiment", JINST 8 (2013) P04013, doi:10.1088/1748-0221/8/04/P04013, arXiv:1211.4462.
- [60] CMS Collaboration, "Identification of b quark jets at the CMS experiment in the LHC Run2", CMS Physics Analysis Summary CMS-PAS-BTV-15-001, 2016.
- [61] ATLAS Collaboration, "Measurement of the Inelastic Proton-Proton Cross Section at  $\sqrt{s} = 13$  TeV with the ATLAS Detector at the LHC", *Phys. Rev. Lett.* **117** (2016) 182002, doi:10.1103/PhysRevLett.117.182002, arXiv:1606.02625.
- [62] CMS Collaboration, "Measurement of the single-top-quark *t*-channel cross section in pp collisions at √s = 7 TeV", JHEP 12 (2012) 035, doi:10.1007/JHEP12(2012)035, arXiv:1209.4533.
- [63] CMS Collaboration, "Observation of the Associated Production of a Single Top Quark and a W Boson in *pp* Collisions at  $\sqrt{s} = 8 \text{ TeV}$ ", *Phys. Rev. Lett.* **112** (2014) 231802, doi:10.1103/PhysRevLett.112.231802.

- [64] CMS Collaboration, "Evidence for Associated Production of a Single Top Quark and W Boson in pp collisions at √s = 7 TeV", Phys. Rev. Lett. 110 (2013) 022003, doi:10.1103/PhysRevLett.110.022003.
- [65] CMS Collaboration, "Measurement of the W<sup>+</sup>W<sup>−</sup> and ZZ production cross section in pp collisions at √s = 8 TeV", Phys. Lett. B 721 (2013) 190, doi:10.1016/j.physletb.2013.03.027, arXiv:1301.4698.
- [66] CMS Collaboration, "Measurement of the W<sup>+</sup>W<sup>-</sup> cross section in pp collisions at  $\sqrt{s} = 7$  TeV and limits on anomalous WW $\gamma$  and WWZ couplings", *Eur. Phys. J. C* **73** (2013) 2610, doi:10.1140/epjc/s10052-013-2610-8, arXiv:1306.1126.
- [67] CMS Collaboration, "Measurement of W<sup>+</sup>W<sup>−</sup> production and search for the Higgs boson in pp collisions at √s = 7 TeV", *Phys. Lett. B* 699 (2011) 25, doi:10.1016/j.physletb.2011.03.056.
- [68] CMS Collaboration, "Measurement of the ZZ production cross section and  $Z \rightarrow \ell^+ \ell^- \ell'^+ \ell'^-$  branching fraction in pp collisions at  $\sqrt{s} = 13$  TeV", (2016). arXiv:1607.08834. *Submitted to Phys. Lett. B.*
- [69] CMS Collaboration, "Measurement of the WZ production cross section in pp collisions at  $\sqrt{s} = 13$  TeV", (2016). arXiv:1607.06943. Submitted to Phys. Lett. B.
- [70] ATLAS Collaboration, "Measurement of the WW cross section in √s = 7 TeV pp collisions with the ATLAS detector and limits on anomalous gauge couplings", *Phys. Lett. B* 712 (2012) 289, doi:10.1016/j.physletb.2012.05.003, arXiv:1203.6232.
- [71] ATLAS Collaboration, "Measurement of the W<sup>±</sup>Z production cross section and limits on anomalous triple gauge couplings in proton-proton collisions at √s = 7 TeV with the ATLAS detector", *Phys. Lett. B* 709 (2012) 341, doi:10.1016/j.physletb.2012.02.053, arXiv:1111.5570.
- [72] ATLAS Collaboration, "Measurement of the ZZ Production Cross Section and Limits on Anomalous Neutral Triple Gauge Couplings in Proton-Proton Collisions at  $\sqrt{s} = 7$  TeV with the ATLAS Detector", *Phys. Rev. Lett.* **108** (2012) 041804, doi:10.1103/PhysRevLett.108.041804, arXiv:1110.5016.
- [73] CMS Collaboration, "CMS Luminosity Measurement for the 2015 Data Taking Period", CMS Physics Analysis Summary CMS-PAS-LUM-15-001, 2016.

# A The CMS Collaboration

# Yerevan Physics Institute, Yerevan, Armenia

V. Khachatryan, A.M. Sirunyan, A. Tumasyan

## Institut für Hochenergiephysik, Wien, Austria

W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth<sup>1</sup>, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler<sup>1</sup>, A. König, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck<sup>1</sup>, J. Strauss, W. Waltenberger, C.-E. Wulz<sup>1</sup>

## Institute for Nuclear Problems, Minsk, Belarus

O. Dvornikov, V. Makarenko, V. Zykunov

National Centre for Particle and High Energy Physics, Minsk, Belarus

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

# Universiteit Antwerpen, Antwerpen, Belgium

S. Alderweireldt, E.A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

## Vrije Universiteit Brussel, Brussel, Belgium

S. Abu Zeid, F. Blekman, J. D'Hondt, N. Daci, I. De Bruyn, K. Deroover, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

## Université Libre de Bruxelles, Bruxelles, Belgium

H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Léonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, R. Yonamine, F. Zenoni, F. Zhang<sup>2</sup>

# Ghent University, Ghent, Belgium

A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, G. Garcia, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schöfbeck, A. Sharma, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis

# Université Catholique de Louvain, Louvain-la-Neuve, Belgium

H. Bakhshiansohi, C. Beluffi<sup>3</sup>, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, P. Jez, M. Komm, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, C. Nuttens, K. Piotrzkowski, L. Quertenmont, M. Selvaggi, M. Vidal Marono, S. Wertz

Université de Mons, Mons, Belgium N. Beliy

# Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

W.L. Aldá Júnior, F.L. Alves, G.A. Alves, L. Brito, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles

### Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato<sup>4</sup>, A. Custódio, E.M. Da Costa, G.G. Da Silveira<sup>5</sup>, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznajder, E.J. Tonelli Manganote<sup>4</sup>, A. Vilela Pereira

Universidade Estadual Paulista<sup>*a*</sup>, Universidade Federal do ABC<sup>*b*</sup>, São Paulo, Brazil S. Ahuja<sup>*a*</sup>, C.A. Bernardes<sup>*b*</sup>, S. Dogra<sup>*a*</sup>, T.R. Fernandez Perez Tomei<sup>*a*</sup>, E.M. Gregores<sup>*b*</sup>,

P.G. Mercadante<sup>b</sup>, C.S. Moon<sup>a</sup>, S.F. Novaes<sup>a</sup>, Sandra S. Padula<sup>a</sup>, D. Romero Abad<sup>b</sup>, J.C. Ruiz Vargas

### Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

# University of Sofia, Sofia, Bulgaria

A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

### **Beihang University, Beijing, China** W. Fang<sup>6</sup>

## Institute of High Energy Physics, Beijing, China

M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen<sup>7</sup>, T. Cheng, C.H. Jiang, D. Leggat, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, H. Zhang, J. Zhao

**State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China** Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu

## Universidad de Los Andes, Bogota, Colombia

C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. González Hernández, J.D. Ruiz Alvarez, J.C. Sanabria

# University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac

# **University of Split, Faculty of Science, Split, Croatia** Z. Antunovic, M. Kovac

**Institute Rudjer Boskovic, Zagreb, Croatia** V. Brigljevic, D. Ferencek, K. Kadija, S. Micanovic, L. Sudic, T. Susa

# University of Cyprus, Nicosia, Cyprus

A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, D. Tsiakkouri

**Charles University, Prague, Czech Republic** M. Finger<sup>8</sup>, M. Finger Jr.<sup>8</sup>

**Universidad San Francisco de Quito, Quito, Ecuador** E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt Y. Assran<sup>9,10</sup>, T. Elkafrawy<sup>11</sup>, A. Mahrous<sup>12</sup>

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia B. Calpas, M. Kadastik, M. Murumaa, L. Perrini, M. Raidal, A. Tiko, C. Veelken

**Department of Physics, University of Helsinki, Helsinki, Finland** P. Eerola, J. Pekkanen, M. Voutilainen

**Helsinki Institute of Physics, Helsinki, Finland** J. Härkönen, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland

### **Lappeenranta University of Technology, Lappeenranta, Finland** J. Talvitie, T. Tuuva

### IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche

### Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Miné, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi

# Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

J.-L. Agram<sup>13</sup>, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte<sup>13</sup>, X. Coubez, J.-C. Fontaine<sup>13</sup>, D. Gelé, U. Goerlach, A.-C. Le Bihan, K. Skovpen, P. Van Hove

# Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

S. Gadrat

# Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C.A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov<sup>14</sup>, D. Sabes, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret

# Georgian Technical University, Tbilisi, Georgia

T. Toriashvili<sup>15</sup>

Tbilisi State University, Tbilisi, Georgia

## Z. Tsamalaidze<sup>8</sup>

# RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

C. Autermann, S. Beranek, L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, C. Schomakers, J. Schulz, T. Verlage, H. Weber, V. Zhukov<sup>14</sup>

### RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg,
T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen,
M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook,
M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thüer

# RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

V. Cherepanov, G. Flügge, F. Hoehle, B. Kargoll, T. Kress, A. Künsken, J. Lingemann, T. Müller, A. Nehrkorn, A. Nowack, I.M. Nugent, C. Pistone, O. Pooth, A. Stahl<sup>16</sup>

# Deutsches Elektronen-Synchrotron, Hamburg, Germany

M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A.A. Bin Anuar, K. Borras<sup>17</sup>, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Dolinska, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo<sup>18</sup>,

J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, P. Gunnellini, A. Harb, J. Hauk, M. Hempel<sup>19</sup>, H. Jung, A. Kalogeropoulos, O. Karacheban<sup>19</sup>, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krücker, W. Lange, A. Lelek, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann<sup>19</sup>, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.Ö. Sahin, P. Saxena, T. Schoerner-Sadenius, C. Seitz, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, C. Wissing

## University of Hamburg, Hamburg, Germany

V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, M. Hoffmann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo<sup>16</sup>, T. Peiffer, A. Perieanu, J. Poehlsen, C. Sander, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald

### Institut für Experimentelle Kernphysik, Karlsruhe, Germany

M. Akbiyik, C. Barth, S. Baur, C. Baus, J. Berger, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, S. Fink, B. Freund, R. Friese, M. Giffels, A. Gilbert, P. Goldenzweig, D. Haitz, F. Hartmann<sup>16</sup>, S.M. Heindl, U. Husemann, I. Katkov<sup>14</sup>, S. Kudella, P. Lobelle Pardo, H. Mildner, M.U. Mozer, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, S. Röcker, F. Roscher, M. Schröder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, J. Wagner-Kuhr, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf

# Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis

## National and Kapodistrian University of Athens, Athens, Greece

S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

#### University of Ioánnina, Ioánnina, Greece

I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas

# MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary

N. Filipovic

### Wigner Research Centre for Physics, Budapest, Hungary

G. Bencze, C. Hajdu, P. Hidas, D. Horvath<sup>20</sup>, F. Sikler, V. Veszpremi, G. Vesztergombi<sup>21</sup>, A.J. Zsigmond

**Institute of Nuclear Research ATOMKI, Debrecen, Hungary** N. Beni, S. Czellar, J. Karancsi<sup>22</sup>, A. Makovec, J. Molnar, Z. Szillasi

## Institute of Physics, University of Debrecen

M. Bartók<sup>21</sup>, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India S. Bahinipati, S. Choudhury<sup>23</sup>, P. Mal, K. Mandal, A. Nayak<sup>24</sup>, D.K. Sahoo, N. Sahoo, S.K. Swain

### Panjab University, Chandigarh, India

S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, U.Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, M. Mittal, J.B. Singh, G. Walia

### University of Delhi, Delhi, India

Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma

### Saha Institute of Nuclear Physics, Kolkata, India

R. Bhattacharya, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur

**Indian Institute of Technology Madras, Madras, India** P.K. Behera

### Bhabha Atomic Research Centre, Mumbai, India

R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty<sup>16</sup>, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar

### Tata Institute of Fundamental Research-A, Mumbai, India

T. Aziz, S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, B. Sutar

# Tata Institute of Fundamental Research-B, Mumbai, India

S. Banerjee, S. Bhowmik<sup>25</sup>, R.K. Dewanjee, S. Ganguly, M. Guchait, Sa. Jain, S. Kumar, M. Maity<sup>25</sup>, G. Majumder, K. Mazumdar, T. Sarkar<sup>25</sup>, N. Wickramage<sup>26</sup>

### Indian Institute of Science Education and Research (IISER), Pune, India

S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, A. Rane, S. Sharma

# Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

H. Behnamian, S. Chenarani<sup>27</sup>, E. Eskandari Tadavani, S.M. Etesami<sup>27</sup>, A. Fahim<sup>28</sup>, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi<sup>29</sup>, F. Rezaei Hosseinabadi, B. Safarzadeh<sup>30</sup>, M. Zeinali

### University College Dublin, Dublin, Ireland

M. Felcini, M. Grunewald

# INFN Sezione di Bari<sup>*a*</sup>, Università di Bari<sup>*b*</sup>, Politecnico di Bari<sup>*c*</sup>, Bari, Italy

M. Abbrescia<sup>*a*,*b*</sup>, C. Calabria<sup>*a*,*b*</sup>, C. Caputo<sup>*a*,*b*</sup>, A. Colaleo<sup>*a*</sup>, D. Creanza<sup>*a*,*c*</sup>, L. Cristella<sup>*a*,*b*</sup>, N. De Filippis<sup>*a*,*c*</sup>, M. De Palma<sup>*a*,*b*</sup>, L. Fiore<sup>*a*</sup>, G. Iaselli<sup>*a*,*c*</sup>, G. Maggi<sup>*a*,*c*</sup>, M. Maggi<sup>*a*</sup>, G. Miniello<sup>*a*,*b*</sup>, S. My<sup>*a*,*b*</sup>, S. Nuzzo<sup>*a*,*b*</sup>, A. Pompili<sup>*a*,*b*</sup>, G. Pugliese<sup>*a*,*c*</sup>, R. Radogna<sup>*a*,*b*</sup>, A. Ranieri<sup>*a*</sup>, G. Selvaggi<sup>*a*,*b*</sup>, L. Silvestris<sup>*a*,16</sup>, R. Venditti<sup>*a*,*b*</sup>, P. Verwilligen<sup>*a*</sup>

## INFN Sezione di Bologna<sup>*a*</sup>, Università di Bologna<sup>*b*</sup>, Bologna, Italy

G. Abbiendi<sup>a</sup>, C. Battilana, D. Bonacorsi<sup>a,b</sup>, S. Braibant-Giacomelli<sup>a,b</sup>, L. Brigliadori<sup>a,b</sup>,
R. Campanini<sup>a,b</sup>, P. Capiluppi<sup>a,b</sup>, A. Castro<sup>a,b</sup>, F.R. Cavallo<sup>a</sup>, S.S. Chhibra<sup>a,b</sup>, G. Codispoti<sup>a,b</sup>,
M. Cuffiani<sup>a,b</sup>, G.M. Dallavalle<sup>a</sup>, F. Fabbri<sup>a</sup>, A. Fanfani<sup>a,b</sup>, D. Fasanella<sup>a,b</sup>, P. Giacomelli<sup>a</sup>,
C. Grandi<sup>a</sup>, L. Guiducci<sup>a,b</sup>, S. Marcellini<sup>a</sup>, G. Masetti<sup>a</sup>, A. Montanari<sup>a</sup>, F.L. Navarria<sup>a,b</sup>,
A. Perrotta<sup>a</sup>, A.M. Rossi<sup>a,b</sup>, T. Rovelli<sup>a,b</sup>, G.P. Siroli<sup>a,b</sup>, N. Tosi<sup>a,b,16</sup>

# INFN Sezione di Catania<sup>*a*</sup>, Università di Catania<sup>*b*</sup>, Catania, Italy

S. Albergo<sup>*a,b*</sup>, M. Chiorboli<sup>*a,b*</sup>, S. Costa<sup>*a,b*</sup>, A. Di Mattia<sup>*a*</sup>, F. Giordano<sup>*a,b*</sup>, R. Potenza<sup>*a,b*</sup>, A. Tricomi<sup>*a,b*</sup>, C. Tuve<sup>*a,b*</sup>

### INFN Sezione di Firenze<sup>*a*</sup>, Università di Firenze<sup>*b*</sup>, Firenze, Italy

G. Barbagli<sup>*a*</sup>, V. Ciulli<sup>*a*,*b*</sup>, C. Civinini<sup>*a*</sup>, R. D'Alessandro<sup>*a*,*b*</sup>, E. Focardi<sup>*a*,*b*</sup>, V. Gori<sup>*a*,*b*</sup>, P. Lenzi<sup>*a*,*b*</sup>, M. Meschini<sup>*a*</sup>, S. Paoletti<sup>*a*</sup>, G. Sguazzoni<sup>*a*</sup>, L. Viliani<sup>*a*,*b*,16</sup>

### INFN Laboratori Nazionali di Frascati, Frascati, Italy

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera<sup>16</sup>

# INFN Sezione di Genova<sup>*a*</sup>, Università di Genova<sup>*b*</sup>, Genova, Italy

V. Calvelli<sup>*a*,*b*</sup>, F. Ferro<sup>*a*</sup>, M. Lo Vetere<sup>*a*,*b*</sup>, M.R. Monge<sup>*a*,*b*</sup>, E. Robutti<sup>*a*</sup>, S. Tosi<sup>*a*,*b*</sup>

# INFN Sezione di Milano-Bicocca<sup>*a*</sup>, Università di Milano-Bicocca<sup>*b*</sup>, Milano, Italy

L. Brianza<sup>16</sup>, M.E. Dinardo<sup>*a*,*b*</sup>, S. Fiorendi<sup>*a*,*b*</sup>, S. Gennai<sup>*a*</sup>, A. Ghezzi<sup>*a*,*b*</sup>, P. Govoni<sup>*a*,*b*</sup>, M. Malberti,

S. Malvezzi<sup>*a*</sup>, R.A. Manzoni<sup>*a*,*b*,16</sup>, D. Menasce<sup>*a*</sup>, L. Moroni<sup>*a*</sup>, M. Paganoni<sup>*a*,*b*</sup>, D. Pedrini<sup>*a*</sup>, S. Pigazzini, S. Ragazzi<sup>*a*,*b*</sup>, T. Tabarelli de Fatis<sup>*a*,*b*</sup>

# INFN Sezione di Napoli<sup>*a*</sup>, Università di Napoli 'Federico II'<sup>*b*</sup>, Napoli, Italy, Università della Basilicata<sup>*c*</sup>, Potenza, Italy, Università G. Marconi<sup>*d*</sup>, Roma, Italy

S. Buontempo<sup>*a*</sup>, N. Cavallo<sup>*a,c*</sup>, G. De Nardo, S. Di Guida<sup>*a,d*,16</sup>, M. Esposito<sup>*a,b*</sup>, F. Fabozzi<sup>*a,c*</sup>, F. Fienga<sup>*a,b*</sup>, A.O.M. Iorio<sup>*a,b*</sup>, G. Lanza<sup>*a*</sup>, L. Lista<sup>*a*</sup>, S. Meola<sup>*a,d*,16</sup>, P. Paolucci<sup>*a*,16</sup>, C. Sciacca<sup>*a,b*</sup>, F. Thyssen

# INFN Sezione di Padova <sup>a</sup>, Università di Padova <sup>b</sup>, Padova, Italy, Università di Trento <sup>c</sup>, Trento, Italy

P. Azzi<sup>*a*,16</sup>, N. Bacchetta<sup>*a*</sup>, L. Benato<sup>*a*,*b*</sup>, D. Bisello<sup>*a*,*b*</sup>, A. Boletti<sup>*a*,*b*</sup>, R. Carlin<sup>*a*,*b*</sup>, A. Carvalho Antunes De Oliveira<sup>*a*,*b*</sup>, P. Checchia<sup>*a*</sup>, M. Dall'Osso<sup>*a*,*b*</sup>, P. De Castro Manzano<sup>*a*</sup>, T. Dorigo<sup>*a*</sup>, U. Dosselli<sup>*a*</sup>, F. Gasparini<sup>*a*,*b*</sup>, U. Gasparini<sup>*a*,*b*</sup>, A. Gozzelino<sup>*a*</sup>, S. Lacaprara<sup>*a*</sup>, M. Margoni<sup>*a*,*b*</sup>, A.T. Meneguzzo<sup>*a*,*b*</sup>, J. Pazzini<sup>*a*,*b*</sup>, N. Pozzobon<sup>*a*,*b*</sup>, P. Ronchese<sup>*a*,*b*</sup>, F. Simonetto<sup>*a*,*b*</sup>, E. Torassa<sup>*a*</sup>, M. Zanetti, P. Zotto<sup>*a*,*b*</sup>, G. Zumerle<sup>*a*,*b*</sup>

# INFN Sezione di Pavia<sup>*a*</sup>, Università di Pavia<sup>*b*</sup>, Pavia, Italy

A. Braghieri<sup>*a*</sup>, A. Magnani<sup>*a,b*</sup>, P. Montagna<sup>*a,b*</sup>, S.P. Ratti<sup>*a,b*</sup>, V. Re<sup>*a*</sup>, C. Riccardi<sup>*a,b*</sup>, P. Salvini<sup>*a*</sup>, I. Vai<sup>*a,b*</sup>, P. Vitulo<sup>*a,b*</sup>

# INFN Sezione di Perugia<sup>*a*</sup>, Università di Perugia<sup>*b*</sup>, Perugia, Italy

L. Alunni Solestizi<sup>*a,b*</sup>, G.M. Bilei<sup>*a*</sup>, D. Ciangottini<sup>*a,b*</sup>, L. Fanò<sup>*a,b*</sup>, P. Lariccia<sup>*a,b*</sup>, R. Leonardi<sup>*a,b*</sup>, G. Mantovani<sup>*a,b*</sup>, M. Menichelli<sup>*a*</sup>, A. Saha<sup>*a*</sup>, A. Santocchia<sup>*a,b*</sup>

**INFN Sezione di Pisa**<sup>*a*</sup>, **Università di Pisa**<sup>*b*</sup>, **Scuola Normale Superiore di Pisa**<sup>*c*</sup>, **Pisa, Italy** K. Androsov<sup>*a*,31</sup>, P. Azzurri<sup>*a*,16</sup>, G. Bagliesi<sup>*a*</sup>, J. Bernardini<sup>*a*</sup>, T. Boccali<sup>*a*</sup>, R. Castaldi<sup>*a*</sup>, M.A. Ciocci<sup>*a*,31</sup>, R. Dell'Orso<sup>*a*</sup>, S. Donato<sup>*a*,*c*</sup>, G. Fedi, A. Giassi<sup>*a*</sup>, M.T. Grippo<sup>*a*,31</sup>, F. Ligabue<sup>*a*,*c*</sup>, T. Lomtadze<sup>*a*</sup>, L. Martini<sup>*a*,*b*</sup>, A. Messineo<sup>*a*,*b*</sup>, F. Palla<sup>*a*</sup>, A. Rizzi<sup>*a*,*b*</sup>, A. Savoy-Navarro<sup>*a*,32</sup>, P. Spagnolo<sup>*a*</sup>, R. Tenchini<sup>*a*</sup>, G. Tonelli<sup>*a*,*b*</sup>, A. Venturi<sup>*a*</sup>, P.G. Verdini<sup>*a*</sup>

# INFN Sezione di Roma<sup>*a*</sup>, Università di Roma<sup>*b*</sup>, Roma, Italy

L. Barone<sup>*a,b*</sup>, F. Cavallari<sup>*a*</sup>, M. Cipriani<sup>*a,b*</sup>, D. Del Re<sup>*a,b*,16</sup>, M. Diemoz<sup>*a*</sup>, S. Gelli<sup>*a,b*</sup>, E. Longo<sup>*a,b*</sup>, F. Margaroli<sup>*a,b*</sup>, B. Marzocchi<sup>*a,b*</sup>, P. Meridiani<sup>*a*</sup>, G. Organtini<sup>*a,b*</sup>, R. Paramatti<sup>*a*</sup>, F. Preiato<sup>*a,b*</sup>, S. Rahatlou<sup>*a,b*</sup>, C. Rovelli<sup>*a*</sup>, F. Santanastasio<sup>*a,b*</sup>

# INFN Sezione di Torino <sup>*a*</sup>, Università di Torino <sup>*b*</sup>, Torino, Italy, Università del Piemonte Orientale <sup>*c*</sup>, Novara, Italy

N. Amapane<sup>*a,b*</sup>, R. Arcidiacono<sup>*a,c*,16</sup>, S. Argiro<sup>*a,b*</sup>, M. Arneodo<sup>*a,c*</sup>, N. Bartosik<sup>*a*</sup>, R. Bellan<sup>*a,b*</sup>, C. Biino<sup>*a*</sup>, N. Cartiglia<sup>*a*</sup>, F. Cenna<sup>*a,b*</sup>, M. Costa<sup>*a,b*</sup>, R. Covarelli<sup>*a,b*</sup>, A. Degano<sup>*a,b*</sup>, N. Demaria<sup>*a*</sup>, L. Finco<sup>*a,b*</sup>, B. Kiani<sup>*a,b*</sup>, C. Mariotti<sup>*a*</sup>, S. Maselli<sup>*a*</sup>, E. Migliore<sup>*a,b*</sup>, V. Monaco<sup>*a,b*</sup>, E. Monteil<sup>*a,b*</sup>, M.M. Obertino<sup>*a,b*</sup>, L. Pacher<sup>*a,b*</sup>, N. Pastrone<sup>*a*</sup>, M. Pelliccioni<sup>*a*</sup>, G.L. Pinna Angioni<sup>*a,b*</sup>, F. Ravera<sup>*a,b*</sup>,

A. Romero<sup>*a,b*</sup>, M. Ruspa<sup>*a,c*</sup>, R. Sacchi<sup>*a,b*</sup>, K. Shchelina<sup>*a,b*</sup>, V. Sola<sup>*a*</sup>, A. Solano<sup>*a,b*</sup>, A. Staiano<sup>*a*</sup>, P. Traczyk<sup>*a,b*</sup>

**INFN Sezione di Trieste**<sup>*a*</sup>, **Università di Trieste**<sup>*b*</sup>, **Trieste**, **Italy** S. Belforte<sup>*a*</sup>, M. Casarsa<sup>*a*</sup>, F. Cossutti<sup>*a*</sup>, G. Della Ricca<sup>*a*,*b*</sup>, A. Zanetti<sup>*a*</sup>

**Kyungpook National University, Daegu, Korea** D.H. Kim, G.N. Kim, M.S. Kim, S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang

**Chonbuk National University, Jeonju, Korea** A. Lee

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea H. Kim

Hanyang University, Seoul, Korea J.A. Brochero Cifuentes, T.J. Kim

Korea University, Seoul, Korea S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, B. Lee, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh

Seoul National University, Seoul, Korea J. Almond, J. Kim, H. Lee, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu

**University of Seoul, Seoul, Korea** M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu

**Sungkyunkwan University, Suwon, Korea** Y. Choi, J. Goh, C. Hwang, J. Lee, I. Yu

**Vilnius University, Vilnius, Lithuania** V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia I. Ahmed, Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali<sup>33</sup>, F. Mohamad Idris<sup>34</sup>, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

**Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico** H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz<sup>35</sup>, A. Hernandez-Almada, R. Lopez-Fernandez, R. Magaña Villalba, J. Mejia Guisao, A. Sanchez-Hernandez

**Universidad Iberoamericana, Mexico City, Mexico** S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

**Benemerita Universidad Autonoma de Puebla, Puebla, Mexico** S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

**Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico** A. Morelos Pineda

**University of Auckland, Auckland, New Zealand** D. Krofcheck

University of Canterbury, Christchurch, New Zealand P.H. Butler

### National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas

### National Centre for Nuclear Research, Swierk, Poland

H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski

**Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland** K. Bunkowski, A. Byszuk<sup>36</sup>, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak

### Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela, P. Vischia

### Joint Institute for Nuclear Research, Dubna, Russia

V. Alexakhin, M. Gavrilenko, I. Golutvin, A. Kamenev, V. Karjavin, V. Korenkov, A. Lanev, A. Malakhov, V. Matveev<sup>37,38</sup>, V.V. Mitsyn, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, E. Tikhonenko, A. Zarubin

### Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim<sup>39</sup>, E. Kuznetsova<sup>40</sup>, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev

### Institute for Nuclear Research, Moscow, Russia

Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

#### Institute for Theoretical and Experimental Physics, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin

**Moscow Institute of Physics and Technology** A. Bylinkin<sup>38</sup>

# National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia

M. Chadeeva<sup>41</sup>, O. Markin, E. Popova

## P.N. Lebedev Physical Institute, Moscow, Russia

V. Andreev, M. Azarkin<sup>38</sup>, I. Dremin<sup>38</sup>, M. Kirakosyan, A. Leonidov<sup>38</sup>, S.V. Rusakov, A. Terkulov

# Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin<sup>42</sup>, L. Dudko, A. Ershov, V. Klyukhin, N. Korneeva, I. Lokhtin, I. Miagkov, S. Obraztsov, M. Perfilov, S. Petrushanko, V. Savrin

# Novosibirsk State University (NSU), Novosibirsk, Russia V. Blinov<sup>43</sup>, Y.Skovpen<sup>43</sup>

# State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

# University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

P. Adzic<sup>44</sup>, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic

# Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

J. Alcaraz Maestre, M. Barrio Luna, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares

### Universidad Autónoma de Madrid, Madrid, Spain

J.F. de Trocóniz, M. Missiroli, D. Moran

### Universidad de Oviedo, Oviedo, Spain

J. Cuevas, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, S. Sanchez Cruz, I. Suárez Andrés, J.M. Vizan Garcia

# Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

I.J. Cabrillo, A. Calderon, J.R. Castiñeiras De Saa, E. Curras, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte

### CERN, European Organization for Nuclear Research, Geneva, Switzerland

D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, P. Bloch, A. Bocci, A. Bonato, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, M. D'Alfonso, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di Marco<sup>45</sup>, M. Dobson, B. Dorney, T. du Pree, D. Duggan, M. Dünser, N. Dupont, A. Elliott-Peisert, S. Fartoukh, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, M. Girone, F. Glege, D. Gulhan, S. Gundacker, M. Guthoff, J. Hammer, P. Harris, J. Hegeman, V. Innocente, P. Janot, J. Kieseler, H. Kirschenmann, V. Knünz, A. Kornmayer<sup>16</sup>, M.J. Kortelainen, K. Kousouris, M. Krammer<sup>1</sup>, C. Lange, P. Lecoq, C. Lourenço, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic<sup>46</sup>, F. Moortgat, S. Morovic, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, A. Racz, T. Reis, G. Rolandi<sup>47</sup>, M. Rovere, M. Ruan, H. Sakulin, J.B. Sauvan, C. Schäfer, C. Schwick, M. Seidel, A. Sharma, P. Silva, P. Sphicas<sup>48</sup>, J. Steggemann, M. Stoye, Y. Takahashi, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns<sup>49</sup>, G.I. Veres<sup>21</sup>, N. Wardle, H.K. Wöhri, A. Zagozdzinska<sup>36</sup>, W.D. Zeuner

### Paul Scherrer Institut, Villigen, Switzerland

W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe

### Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

F. Bachmair, L. Bäni, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, P. Lecomte<sup>†</sup>, W. Lustermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M.T. Meinhard, D. Meister,

F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Rossini, M. Schönenberger, A. Starodumov<sup>50</sup>, V.R. Tavolaro, K. Theofilatos, R. Wallny

### Universität Zürich, Zurich, Switzerland

T.K. Aarrestad, C. Amsler<sup>51</sup>, L. Caminada, M.F. Canelli, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, Y. Yang, A. Zucchetta

## National Central University, Chung-Li, Taiwan

V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu, A. Pozdnyakov, S.S. Yu

## National Taiwan University (NTU), Taipei, Taiwan

Arun Kumar, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Miñano Moya, E. Paganis, A. Psallidas, J.f. Tsai, Y.M. Tzeng

**Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand** B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee

### Cukurova University - Physics Department Science and Art Faculty

A. Adiguzel, M.N. Bakirci<sup>52</sup>, S. Cerci<sup>53</sup>, S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, I. Hos, E.E. Kangal<sup>54</sup>, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut<sup>55</sup>, K. Ozdemir<sup>56</sup>, B. Tali<sup>53</sup>, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

**Middle East Technical University, Physics Department, Ankara, Turkey** B. Bilin, S. Bilmis, B. Isildak<sup>57</sup>, G. Karapinar<sup>58</sup>, M. Yalvac, M. Zeyrek

**Bogazici University, Istanbul, Turkey** E. Gülmez, M. Kaya<sup>59</sup>, O. Kaya<sup>60</sup>, E.A. Yetkin<sup>61</sup>, T. Yetkin<sup>62</sup>

### **Istanbul Technical University, Istanbul, Turkey** A. Cakir, K. Cankocak, S. Sen<sup>63</sup>

# Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine

B. Grynyov

# National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine L. Levchuk, P. Sorokin

### University of Bristol, Bristol, United Kingdom

R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold<sup>64</sup>, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith

### Rutherford Appleton Laboratory, Didcot, United Kingdom

K.W. Bell, A. Belyaev<sup>65</sup>, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams

# Imperial College, London, United Kingdom

M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne,

A. Elwood, D. Futyan, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, R. Lucas<sup>64</sup>,
L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, A. Nikitenko<sup>50</sup>, J. Pela, B. Penning,
M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, C. Seez, S. Summers, A. Tapper, K. Uchida,
M. Vazquez Acosta<sup>66</sup>, T. Virdee<sup>16</sup>, J. Wright, S.C. Zenz

### Brunel University, Uxbridge, United Kingdom

J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

### Baylor University, Waco, USA

A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika

### The University of Alabama, Tuscaloosa, USA

O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio, C. West

### Boston University, Boston, USA

D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

### Brown University, Providence, USA

G. Benelli, E. Berry, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, O. Jesus, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, E. Spencer, R. Syarif

### University of California, Davis, Davis, USA

R. Breedon, G. Breto, D. Burns, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay

### University of California, Los Angeles, USA

C. Bravo, R. Cousins, P. Everaerts, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, D. Saltzberg, C. Schnaible, E. Takasugi, V. Valuev, M. Weber

#### University of California, Riverside, Riverside, USA

K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, H. Wei, S. Wimpenny, B. R. Yates

# University of California, San Diego, La Jolla, USA

J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, R. Gerosa, A. Holzner, D. Klein, V. Krutelyov, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech<sup>67</sup>, C. Welke, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta

### University of California, Santa Barbara - Department of Physics, Santa Barbara, USA

N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, J. Richman, D. Stuart, I. Suarez, J. Yoo

#### California Institute of Technology, Pasadena, USA

D. Anderson, A. Apresyan, J. Bendavid, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, J.M. Lawhorn, A. Mott, H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu

# Carnegie Mellon University, Pittsburgh, USA

M.B. Andrews, V. Azzolini, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg

### University of Colorado Boulder, Boulder, USA

J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, K. Stenson, S.R. Wagner

### Cornell University, Ithaca, USA

J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek

## Fairfield University, Fairfield, USA

D. Winn

## Fermi National Accelerator Laboratory, Batavia, USA

S. Abdullin, M. Albrow, G. Apollinari, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir<sup>†</sup>, M. Cremonesi, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, D. Hare, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, N. Magini, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, C. Newman-Holmes<sup>†</sup>, V. O'Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck

### University of Florida, Gainesville, USA

D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, J.F. Low, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, L. Shchutska, D. Sperka, L. Thomas, J. Wang, S. Wang, J. Yelton

### Florida International University, Miami, USA

S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

### Florida State University, Tallahassee, USA

A. Ackert, J.R. Adams, T. Adams, A. Askew, S. Bein, B. Diamond, S. Hagopian, V. Hagopian, K.F. Johnson, A. Khatiwada, H. Prosper, A. Santra

### Florida Institute of Technology, Melbourne, USA

M.M. Baarmand, V. Bhopatkar, S. Colafranceschi<sup>68</sup>, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva

# University of Illinois at Chicago (UIC), Chicago, USA

M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, K. Jung, P. Kurt, C. O'Brien, I.D. Sandoval Gonzalez, P. Turner, N. Varelas, H. Wang, Z. Wu, M. Zakaria, J. Zhang

# The University of Iowa, Iowa City, USA

B. Bilki<sup>69</sup>, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya<sup>70</sup>, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok<sup>71</sup>, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi

### Johns Hopkins University, Baltimore, USA

I. Anderson, B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, C. Martin, M. Osherson, J. Roskes, U. Sarica, M. Swartz, M. Xiao, Y. Xin, C. You

#### The University of Kansas, Lawrence, USA

A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, C. Bruner, J. Castle, L. Forthomme, R.P. Kenny III, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, S. Sanders, R. Stringer, J.D. Tapia Takaki, Q. Wang

### Kansas State University, Manhattan, USA

A. Ivanov, K. Kaadze, S. Khalil, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda

# Lawrence Livermore National Laboratory, Livermore, USA

F. Rebassoo, D. Wright

### University of Maryland, College Park, USA

C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar

### Massachusetts Institute of Technology, Cambridge, USA

D. Abercrombie, B. Allen, A. Apyan, R. Barbieri, A. Baty, R. Bi, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, Z. Demiragli, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, K. Krajczar, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Sumorok, K. Tatar, M. Varma, D. Velicanu, J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang, V. Zhukova

#### University of Minnesota, Minneapolis, USA

A.C. Benvenuti, R.M. Chatterjee, A. Evans, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S.C. Kao, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz

### University of Mississippi, Oxford, USA

J.G. Acosta, S. Oliveros

#### University of Nebraska-Lincoln, Lincoln, USA

E. Avdeeva, R. Bartek, K. Bloom, D.R. Claes, A. Dominguez, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, A. Malta Rodrigues, F. Meier, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger

#### State University of New York at Buffalo, Buffalo, USA

M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, A. Parker, S. Rappoccio, B. Roozbahani

### Northeastern University, Boston, USA

G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood

### Northwestern University, Evanston, USA

S. Bhattacharya, K.A. Hahn, A. Kubik, A. Kumar, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco

### University of Notre Dame, Notre Dame, USA

N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon,

N. Marinelli, F. Meng, C. Mueller, Y. Musienko<sup>37</sup>, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard

### The Ohio State University, Columbus, USA

J. Alimena, L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, R. Hughes, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin

### Princeton University, Princeton, USA

S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, D. Lange, J. Luo, D. Marlow, J. Mc Donald, T. Medvedeva, K. Mei, M. Mooney, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully, A. Zuranski

University of Puerto Rico, Mayaguez, USA

S. Malik

### Purdue University, West Lafayette, USA

A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, D.H. Miller, N. Neumeister, J.F. Schulte, X. Shi, J. Sun, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu

# Purdue University Calumet, Hammond, USA

N. Parashar, J. Stupak

## **Rice University, Houston, USA**

A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, Z. Tu, J. Zabel

#### University of Rochester, Rochester, USA

B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti

## Rutgers, The State University of New Jersey, Piscataway, USA

A. Agapitos, J.P. Chou, E. Contreras-Campana, Y. Gershtein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, K. Nash, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

#### University of Tennessee, Knoxville, USA

A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

# Texas A&M University, College Station, USA

O. Bouhali<sup>72</sup>, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, E. Juska, T. Kamon<sup>73</sup>, R. Mueller, Y. Pakhotin, R. Patel, A. Perloff, L. Perniè, D. Rathjens, A. Rose, A. Safonov, A. Tatarinov, K.A. Ulmer

### Texas Tech University, Lubbock, USA

N. Akchurin, C. Cowden, J. Damgov, F. De Guio, C. Dragoiu, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang

# Vanderbilt University, Nashville, USA

S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

#### University of Virginia, Charlottesville, USA

M.W. Arenton, P. Barria, B. Cox, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia

#### Wayne State University, Detroit, USA

C. Clarke, R. Harr, P.E. Karchin, J. Sturdy

### University of Wisconsin - Madison, Madison, WI, USA

D.A. Belknap, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods

†: Deceased

1: Also at Vienna University of Technology, Vienna, Austria

2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

- 4: Also at Universidade Estadual de Campinas, Campinas, Brazil
- 5: Also at Universidade Federal de Pelotas, Pelotas, Brazil
- 6: Also at Université Libre de Bruxelles, Bruxelles, Belgium
- 7: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
- 8: Also at Joint Institute for Nuclear Research, Dubna, Russia
- 9: Also at Suez University, Suez, Egypt
- 10: Now at British University in Egypt, Cairo, Egypt
- 11: Also at Ain Shams University, Cairo, Egypt
- 12: Now at Helwan University, Cairo, Egypt
- 13: Also at Université de Haute Alsace, Mulhouse, France

14: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

- 15: Also at Tbilisi State University, Tbilisi, Georgia
- 16: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
- 17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
- 18: Also at University of Hamburg, Hamburg, Germany
- 19: Also at Brandenburg University of Technology, Cottbus, Germany
- 20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary

21: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary

- 22: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
- 23: Also at Indian Institute of Science Education and Research, Bhopal, India
- 24: Also at Institute of Physics, Bhubaneswar, India
- 25: Also at University of Visva-Bharati, Santiniketan, India
- 26: Also at University of Ruhuna, Matara, Sri Lanka
- 27: Also at Isfahan University of Technology, Isfahan, Iran

28: Also at University of Tehran, Department of Engineering Science, Tehran, Iran

29: Also at Yazd University, Yazd, Iran

30: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran

- 31: Also at Università degli Studi di Siena, Siena, Italy
- 32: Also at Purdue University, West Lafayette, USA
- 33: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
- 34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
- 35: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
- 36: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland

37: Also at Institute for Nuclear Research, Moscow, Russia

38: Now at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia

39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia

40: Also at University of Florida, Gainesville, USA

41: Also at P.N. Lebedev Physical Institute, Moscow, Russia

42: Also at California Institute of Technology, Pasadena, USA

43: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia

44: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia

45: Also at INFN Sezione di Roma; Università di Roma, Roma, Italy

46: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

47: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy

48: Also at National and Kapodistrian University of Athens, Athens, Greece

49: Also at Riga Technical University, Riga, Latvia

50: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia

51: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland

52: Also at Gaziosmanpasa University, Tokat, Turkey

53: Also at Adiyaman University, Adiyaman, Turkey

54: Also at Mersin University, Mersin, Turkey

55: Also at Cag University, Mersin, Turkey

56: Also at Piri Reis University, Istanbul, Turkey

57: Also at Ozyegin University, Istanbul, Turkey

58: Also at Izmir Institute of Technology, Izmir, Turkey

59: Also at Marmara University, Istanbul, Turkey

60: Also at Kafkas University, Kars, Turkey

61: Also at Istanbul Bilgi University, Istanbul, Turkey

62: Also at Yildiz Technical University, Istanbul, Turkey

63: Also at Hacettepe University, Ankara, Turkey

64: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom

65: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom

66: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain

67: Also at Utah Valley University, Orem, USA

68: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy

69: Also at Argonne National Laboratory, Argonne, USA

70: Also at Erzincan University, Erzincan, Turkey

71: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey

72: Also at Texas A&M University at Qatar, Doha, Qatar

73: Also at Kyungpook National University, Daegu, Korea