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Abstract: We critically examine the classic endpoint method for particle mass determi-

nation, focusing on difficult corners of parameter space, where some of the measurements

are not independent, while others are adversely affected by the experimental resolution.

In such scenarios, mass differences can be measured relatively well, but the overall mass

scale remains poorly constrained. Using the example of the standard SUSY decay chain

q̃ → χ̃0
2 → ˜̀→ χ̃0

1, we demonstrate that sensitivity to the remaining mass scale parameter

can be recovered by measuring the two-dimensional kinematical boundary in the relevant

three-dimensional phase space of invariant masses squared. We develop an algorithm for

detecting this boundary, which uses the geometric properties of the Voronoi tessellation

of the data, and in particular, the relative standard deviation (RSD) of the volumes of

the neighbors for each Voronoi cell in the tessellation. We propose a new observable, Σ̄,

which is the average RSD per unit area, calculated over the hypothesized boundary. We

show that the location of the Σ̄ maximum correlates very well with the true values of the

new particle masses. Our approach represents the natural extension of the one-dimensional

kinematic endpoint method to the relevant three dimensions of invariant mass phase space.

1Corresponding author: immworry@gmail.com
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1 Introduction

The dark matter problem is currently our best experimental evidence for the existence

of new particles and interactions beyond the Standard Model (BSM). A great number

of ongoing experiments are trying to discover dark matter particles through direct [1] or

indirect detection [2]. In principle, dark matter particles could also be produced in high

energy collisions at the Large Hadron Collider (LHC) at CERN, providing a complementary

discovery probe in a controlled experimental environment [3].

Since the dark matter particles must be stable on cosmological timescales, in many

popular BSM models they carry some conserved quantum number. The simplest choice is

a Z2 parity, which is known as R-parity in models with low energy supersymmetry (SUSY)

[4], Kaluza-Klein (KK) parity in models with universal extra dimensions (UED) [5], T -

parity in Little Higgs models [6], etc. As a result, the dark matter particles are necessarily

produced in pairs: either directly, or in the cascade decays of other, heavier BSM particles

[7]. The prototypical such cascade decay is shown in Fig. 1, in which a new particle D

undergoes a series of two-body decays, terminating in the dark matter candidate A, which
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Figure 1: The typical cascade decay chain under consideration in this paper. Here D, C, B and
A are new BSM particles, while the corresponding SM decay products are: a QCD jet j, a “near”
lepton !±

n and a “far” lepton !∓
f . This chain is quite common in SUSY, with the identification D = q̃,

C = χ̃0
2, B = !̃ and A = χ̃0

1, where q̃ is a squark, !̃ is a slepton, and χ̃0
1 (χ̃0

2) is the first (second)
lightest neutralino. In what follows we shall quote our results in terms of the D mass mD and the
three dimensionless squared mass ratios RCD, RBC and RAB defined in eq. (1.6).

1. Introduction

SUSY is a primary target of the LHC searches for new physics beyond the Standard Model

(BSM). In SUSY models with conserved R-parity the superpartners are produced in pairs

and each one decays through a cascade decay chain down to the lightest superpartner (LSP).

If the LSP is the lightest neutralino χ̃0
1, it escapes detection, making it rather difficult to

reconstruct directly the preceding superpartners and thus measure their masses and spins.

In recognition of this fact, in recent years there has been an increased interest in developing

new techniques for mass [1–49] and spin [50–76] measurements in such SUSY-like missing

energy events.

Roughly speaking, there are three basic types of mass determination methods in SUSY1.

In this paper we concentrate on the classic method of kinematical endpoints [1]. Following

the previous SUSY studies, for illustration of our results we shall use the generic decay chain

D → jC → j!±
n B → j!±

n !∓
f A shown in Fig. 1. Here D, C, B and A are new BSM particles

with masses mD, mC , mB and mA. Their corresponding SM decay products are: a QCD jet

j, a “near” lepton !±
n and a “far” lepton !∓

f . This decay chain is quite common in SUSY,

with the identification D = q̃, C = χ̃0
2, B = !̃ and A = χ̃0

1, where q̃ is a squark, !̃ is a slepton,

and χ̃0
1 (χ̃0

2) is the first (second) lightest neutralino. However, our analysis is not limited to

SUSY only, since the chain in Fig. 1 also appears in other BSM scenarios, e.g. Universal

Extra Dimensions [77]. For concreteness, we shall assume that all three decays exhibited in

Fig. 1 are two-body, i.e. we shall consider the mass hierarchy

mD > mC > mB > mA > 0. (1.1)

1For a recent study representative of each method, see Refs. [43,47,49].
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Figure 1. The generic decay chain under consideration in this paper: D → jC → j`nB → j`n`fA,

where A, B, C and D are new BSM particles, while the SM decay products consist of one jet j

and two leptons, labelled “near” `n and “far” `f . In the SUSY case, D represents a squark q̃,

C is a heavier neutralino χ̃0
2, B is a charged slepton ˜̀ and A is the lightest neutralino χ̃0

1, which

escapes undetected. The masses of the BSM particles are denoted by mD, mC , mB and mA. The

corresponding ratios of squared masses RCD, RBC and RAB are introduced for convenience in

writing the kinematic endpoint formulas (2.4-2.11) and delineating the relevant regions in the mass

parameter space (1.1) (see also eq. (2.3) and Fig. 2 below).

is neutral and stable, and thus escapes undetected. Under those circumstances, measuring

the set of four masses

{mD,mC ,mB,mA} (1.1)

is a difficult problem, which has been attracting a lot of attention over the last 20 years

(for a review, see [8]). The main challenge stems from the fact that the momentum of

particle A is not measured, so that the standard technique of directly reconstructing the

new particles as invariant mass resonances does not apply. Instead, one has to somehow

infer the new masses (1.1) from the measured kinematic distributions of the visible SM

decay products.

In the decay chain of Fig. 1, the SM decay products are taken to be a quark jet j and

two leptons, labelled “near” `n and “far” `f . This choice is motivated by the following

arguments:

• At a hadron collider like the LHC, strong production dominates, thus particle D is

very likely to be colored. At the same time, the dark matter candidate A is neutral,

therefore the color must be shed somewhere along the decay chain in the form of a

QCD jet. Here we assume that this “color-shedding” occurs in theD → C transition1,

since one expects the strong decays of particle D to be the dominant ones.

• The presence of leptons among the SM decay products in Fig. 1 is theoretically not

guaranteed, but is nevertheless experimentally motivated. First, leptonic signatures

have significantly lower SM backgrounds and thus represent clean discovery channels.

1We note that in principle one can test this assumption experimentally, e.g. by constructing suitably

defined on-shell constrainedM2 variables corresponding to the competing event topologies [9], or by studying

the shapes and the correlations for the invariant mass variables considered below [10]. Such an exercise is

useful, but beyond the scope of this paper.
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Second, the momentum of a lepton is measured much better than that of a jet,

therefore the masses (1.1) will be measured with a better precision in a leptonic

channel (as opposed to a purely jetty channel). Finally, if the SM decay products in

Fig. 1 were all jets, in light of the arising combinatorial problem [11–16], we would

have to resort to sorted invariant mass variables [17, 18], whose kinematic endpoints

are less pronounced and thus more difficult to measure over the SM backgrounds.

• From a historical perspective, the best motivation for considering the decay chain of

Fig. 1 is that it is ubiquitous in SUSY, where D represents a squark q̃, C is a heavier

neutralino χ̃0
2, B is a charged slepton ˜̀ and A is the lightest neutralino χ̃0

1, which

escapes the detector and leads to missing transverse energy /ET . In the two most

popular frameworks of SUSY breaking, gravity-mediated and gauge-mediated, the

combination of (a) specific high scale boundary conditions, and (b) renormalization

group evolution of the soft SUSY parameters down to the weak scale, leads to just

the right mass hierarchy for the decay chain of Fig. 1 to occur. In the late 1990’s and

early 2000’s, this prompted a flurry of activity on the topic of mass determination in

such “SUSY-like” missing energy events. Soon afterwards, it was also realized that

the decay chain of Fig. 1 is not exclusive to supersymmetry, but the same final state

signature also appears in other models, e.g. minimal UED [19] and littlest Higgs [20].

To date, a large variety of mass measurement techniques for SUSY-like events have

been developed. Roughly speaking, they all can be divided into two categories.

• Exclusive methods. In this case, one takes advantage of the presence of two decay

chains in the event (they are often assumed identical) and the available /ET measure-

ment. Several approaches are then possible. For example, in the so-called “poly-

nomial methods” one attempts to solve explicitly for the momenta of the invisible

particles in a given event, possibly using additional information from prior measure-

ments of kinematic endpoints [21–35].2 Alternatively, utilizing information from both

branches, one could introduce suitable transverse3 variables whose distributions ex-

hibit an upper kinematic endpoint indicative of the parent particle mass [48–63]. In

the latter case, one still retains a residual dependence on the unknown dark matter

particle mass mA, which must be fixed by some other means, e.g. via the kink method

[64–71] or by performing a sufficient number of independent measurements [53, 57].

While they could be potentially quite sensitive, these exclusive methods are also less

robust, since they rely on the correct identification of all objects in the event, and

are thus prone to combinatorial ambiguities, the effects from /ET resolution, initial

and final state radiation, underlying event and pileup, etc.

2For long enough decay chains, the polynomial methods are able to solve for the invisible momenta, even

without additional experimental input and without a second decay chain in the event. If the decay chain of

Fig. 1 contained an additional two-body decay to a visible particle, just 5 events are sufficient for solving

the event kinematics [22, 27].
3Transversality is not strictly necessary, in fact it may even be beneficial to work with 3 + 1-dimensional

variants of those variables [36–47].
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• Inclusive methods. In this case, one focuses on the decay chain from Fig. 1 itself,

disregarding what else is going on in the event. Using only the measured momenta

of the visible SM decay products, i.e., the jet and the two leptons, one could form all

possible invariant mass combinations4, namely m``, mj`n , mj`f , and mj``, measure

their respective upper kinematic endpoints{
mmax
`` ,mmax

j`n ,m
max
j`f

,mmax
j``

}
, (1.2)

and use them to solve for the four input parameters (1.1). As just described, this

approach is too naive, as it overlooks the remaining combinatorial problem involving

the two leptons `n and `f . Since “near” and “far” cannot be distinguished on an

event by event basis, the variables mj`n and mj`f are ill defined. This is why it has

become customary to redefine the two jet-lepton invariant mass combinations as5

mjl(lo) ≡ min
{
mjln ,mjlf

}
, (1.3)

mjl(hi) ≡ max
{
mjln ,mjlf

}
. (1.4)

The distributions of the newly defined quantities (1.3) and (1.4) also exhibit upper

kinematic endpoints, mmax
jl(lo) and mmax

jl(hi), respectively. Then, instead of (1.2), one can

use the new well-defined set of measurements{
mmax
ll ,mmax

jll ,mmax
jl(lo),m

max
jl(hi)

}
(1.5)

to invert and solve for the input mass parameters (1.1). This procedure constitutes

the classic kinematic endpoint method for mass measurements, which has been suc-

cessfully tested for several SUSY benchmark points [77–84].

However, despite its robustness and simplicity, the kinematic endpoint method still

has a couple of weaknesses. As we show below, taken together, they essentially lead to an

almost flat direction in the solution space, thus jeopardizing the uniqueness of the mass

determination. The first of these two problems is purely theoretical — it is well known

that in certain regions of the parameter space (1.1) the four measurements (1.5) are not

independent, but obey the relation [81](
mmax
jll

)2
=
(
mmax
jl(hi)

)2
+ (mmax

ll )2 . (1.6)

In practice, this means that the measurements (1.5) fix only three out of the four mass

parameters (1.1), leaving one degree of freedom undetermined. In what follows, we shall

choose to parametrize this “flat direction” with the mass mA of the lightest among the four

new particles D, C, B and A. One can then use, e.g., the first three of the measurements

4In general, one is not limited to Lorentz-invariant variables only, e.g., recently it was suggested to study

the peak of the energy distribution as a measure of the mass scale [72–75].
5A more recent alternative approach is to introduce new invariant mass variables which are symmetric

functions of mj`n and mj`f , thus avoiding the need to distinguish `n from `f on an event per event basis

[76].
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in (1.5) and solve uniquely for the three heavier masses mD, mC , and mB, leaving mA as

a free parameter. We list the relevant inversion formulas in Appendix A. The obtained

one-parameter family of mass spectra
mD = mD(mA;mmax

ll ,mmax
jll ,mmax

jl(lo)),

mC = mC(mA;mmax
ll ,mmax

jll ,mmax
jl(lo)),

mB = mB(mA;mmax
ll ,mmax

jll ,mmax
jl(lo)),

mA

(1.7)

will satisfy the three measured kinematic endpoints mmax
ll , mmax

jll , and mmax
jl(lo) by construc-

tion. What is more, in parameter space regions where eq. (1.6) holds, the family (1.7) will

also obey the fourth measurement of mmax
jl(hi), so that the four measurements (1.5) will be

insufficient to lift the mA degeneracy in (1.7).

These considerations beg the following two questions, which will be addressed in this

paper.

1. In the remaining part of the parameter space, where (1.6) does not hold and mmax
jl(hi)

provides an independent fourth measurement, how well is the mA degeneracy lifted

after all? With the explicit examples of Sections 3 and 4 below, we shall show that

although in theory the additional measurement of mmax
jl(hi) determines the value of mA,

in practice this may be difficult to achieve, since the effect is very small and will be

swamped by the experimental resolution.

2. In the region of parameter space in which (1.6) holds, what additional measurement

should be used, and how well does it lift the degeneracy? In the existing literature,

the standard approach is to consider the constrained6 distribution mjll(θ>π
2
), which

exhibits a useful lower kinematic endpoint mmin
jll(θ>π

2
) [85, 86]. In what follows, we

shall therefore always supplement the original set of 4 measurements (1.5) with the

additional measurement of mmin
jll(θ>π

2
) to obtain the extended set{

mmax
ll ,mmax

jll ,mmax
jl(lo),m

max
jl(hi),m

min
jll(θ>π

2
)

}
, (1.8)

so that in principle there is sufficient information to determine the four unknown

masses. Even then, we shall show that the sensitivity of the additional experimental

input mmin
jll(θ>π

2
) to the previously found flat direction (1.7) is very low. First of all, it is

already well appreciated that the measurement of mmin
jll(θ>π

2
) is very challenging, since

6The distribution mjll(θ>π
2
) is nothing but the usual mjll distribution taken over a subset of the original

events, namely those which satisfy the additional dilepton mass constraint

mmax
ll√
2

< mll < mmax
ll .

In the rest frame of particle B, this cut implies the following restriction on the opening angle θ between

the two leptons [86]

θ >
π

2
,

thus justifying the notation for mjll(θ>π
2
).
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in the vicinity of its lower endpoint, the shape of the signal distribution is concave

downward, which makes it difficult to extract the endpoint with simple linear fitting,

and one has to use the whole shape of the mjll(θ>π
2
) distribution [87]. Secondly, as

we shall show in the examples below, the variation of the value of mmin
jll(θ>π

2
) along

the flat direction (1.7) can be numerically quite small, and therefore the sensitivity

of the added fifth measurement along the flat direction (1.7) is not that great.

Either way, we see that the known methods for lifting the degeneracy of the flat

direction (1.7) will face severe limitations once we take into account the experimental

resolution, finite statistics, backgrounds, etc. [88, 89] Thus the first goal of this paper will

be to illustrate the severity of the problem, i.e. to quantify the “flatness” of the family of

solutions (1.7). For this purpose, we shall reuse the study points from Ref. [89], which at

the time were meant to illustrate discrete ambiguities, i.e. cases where two distinct points

in mass parameter space (1.1) accidentally happen to give mathematically identical values

for all five measurements (1.8). Here we shall extend those study points to a family of

mass spectra (1.7) which give mathematically identical values for the first three7 of the

measurements (1.8), and numerically very similar values for the remaining measurements.

Having identified the problem, the second goal of the paper is to propose a novel

solution to it and investigate its viability. Our starting point is the observation that the

signal events from the decay chain in Fig. 1 populate the interior of a compact region in the

(mj`n ,m``,mj`f ) space, whose boundary is given by the surface S defined by the constraint

[17, 90, 91]

S : m̂2
j`f

=

[√
m̂2
``

(
1− m̂2

j`n

)
± mB

mC

√
m̂2
j`n

(
1− m̂2

``

)]2
, (1.9)

which, for convenience, is written in terms of the unit-normalized variables

m̂j`n =
mj`n

mmax
j`n

, m̂`` =
m``

mmax
``

, m̂j`f =
mj`f

mmax
j`f

. (1.10)

We note that both the shape and the size of the surface S depend on the input mass

spectrum (1.1), i.e., S(mA,mB,mC ,mD), and this dependence is precisely what we will be

targeting with our method to be described below.

In its traditional implementation, the kinematic endpoint method is essentially8 using

the kinematic endpoints (1.2) of the one-dimensional projections of the signal population

onto each of the three axes mj`n , m`` and mj`f , as well as onto the “radial” direction mj`` =√
m2
j`n

+m2
`` +m2

j`f
. This approach is suboptimal because it ignores correlations and

misses endpoint features along the other possible projections. The only way to guarantee

that we are using the full available information in the data is to fit to the three-dimensional

boundary (1.9) itself [92, 93], which will be the approach advocated here. As previously

7And sometimes four, if we are in parts of parameter space where (1.6) holds.
8The fact that one has to use mjl(lo) and mjl(hi) in place of mj`n and mj`f does not change the gist of

the argument.
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observed in [92] (and extended to a broader class of event topologies in [94]), most of

the signal events are populated near the phase space boundary (1.9), on which the signal

number density ρs formally becomes singular. This fact is rather fortuitous, since it implies

a relatively sharp change in the local number density as we move across the phase space

boundary, even in the presence of SM backgrounds (with some number density ρb, which

is expected to be a relatively smooth function). Thus, we need to develop a suitable

method for identifying regions in phase space where the gradient of the total number

density ρ ≡ ρb + ρs is relatively large, and then fit to them the analytical parametrization

(1.9) in order to obtain the best fit values for the four new particle masses (1.1).

The first step of this program was already accomplished in our earlier paper [93], build-

ing on the idea originally proposed in [95] for finding “edges” in two-dimensional stochastic

distributions of point data. Ref. [95] suggested that interesting features in the data, e.g.,

edge discontinuities, kinks, and so on, can be identified by analyzing the geometric prop-

erties of the Voronoi tessellation [96] of the data.9 The volume vi of a given Voronoi cell

generated by a data point at some location ~ri provides an estimate of the functional value

of the number density ρ at that location,

ρ(~ri) ∼
1

vi
. (1.11)

Therefore, in order to obtain an estimate of |~∇ρ(~r)|, we can construct variables which

compare the properties of the Voronoi cell and its direct neighbors. Among the different

options investigated in Refs. [95, 98], the relative standard deviation (RSD), σ̄i, of the

volumes of neighboring cells, was identified as the most promising tagger of edge cells. The

RSD was defined as follows. Let Ni be the set of neighbors of the i-th Voronoi cell Ci, with

volumes, {vj}, for j ∈ Ni. The RSD, σ̄i, is now defined by

σ̄i ≡
1

〈v(Ni)〉

√√√√∑
j∈Ni

(vj − 〈v(Ni)〉)2
|Ni| − 1

, (1.12)

where we have normalized by the average volume of the set of neighbors, Ni, of the i-th

cell

〈v(Ni)〉 ≡
1

|Ni|
∑
j∈Ni

vj . (1.13)

Subsequently, in [93] we showed that this procedure for tagging edge cells can be readily

extended to three-dimensional point data, as is the case here. The end result of the method

was a set of Voronoi cells which have been tagged as “edge cell candidates” since their values

of σ̄i were above the chosen threshold [93]. With the thus obtained set of edge cells in hand,

it appears that we are in a perfect position to perform a mass measurement, simply by

finding the set of values for {mA,mB,mC ,mD} which maximize the overlap between our

tagged edge cells and the hypothesized surface S. We have checked that this approach

9We note the existence of efficient codes for finding Voronoi tessellations in the form of the qHULL

algorithms [97]. Wrappers that allow the use of these algorithms in many frameworks also exist, and in this

work we use a private Python code to compute the geometric attributes of the Voronoi cells.
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indeed works and gives a reasonable estimate of the true mass spectrum. However, here

we prefer to suggest a slightly modified alternative, which accomplishes the same goal, but

with somewhat better precision.

The problem with fitting to a subset of the original data set (namely the set of Voronoi

cells which happened to pass the σ̄i cut) is that we are still throwing away useful infor-

mation, e.g., the Voronoi cells which barely failed the cut. In spite of formally failing,

those cells are nevertheless still quite likely to be edge cells. Thus, in order to retain the

full amount of information in our data, we prefer to abandon this “cut and fit” approach,

and instead design a global variable which is calculated over the full data set. The only

requirement is that the variable is maximized (or minimized, as the case may be) for the

true values of the masses {mA,mB,mC ,mD}.
In order to motivate such a variable, consider for a moment the case when the function

ρ(~r) is known analytically, then let us investigate the (normalized) surface integral∫
S̃(m̃A,m̃B ,m̃C ,m̃D) da |~∇ρ(~r)|∫

S̃(m̃A,m̃B ,m̃C ,m̃D) da
(1.14)

for some arbitrary trial10 values (m̃A, m̃B, m̃C , m̃D) of the unknown masses (1.1). The

meaning of the quantity (1.14) is very simple: it is the average gradient of ρ(~r) over the

chosen surface S̃. We expect the dominant contributions to the integral to come from

regions where the gradient is large, and we know that the gradient is largest on the true

phase space boundary S(mA,mB,mC ,mD), defined in terms of the true values of the

particle masses. However, if our choice for (m̃A, m̃B, m̃C , m̃D) is wrong, the integration

surface S̃ will be far from the true phase space boundary S, and those large contributions

will be missed. The only way to capture all of the large contributions to the integral is to

have S̃ coincide with the true S, and this is only possible if in turn the trial masses are

exactly equal to the true particle masses. This suggests a method of mass measurement

whereby the true mass spectrum is obtained as the result of an optimization problem

involving the quantity (1.14).

Of course, in our case the analytical form of the integrand |~∇ρ(~r)| is unknown, but we

can obtain a closely related quantity using the Voronoi tessellation of the data. Following

[93, 95], we shall utilize the RSD σ̄i defined in (1.12), which has been shown to be a good

indicator of edge cells, and replace the integrand in (1.14) as

|~∇ρ(~r)| −→ g(~r) ≡ σ̄i for ~r ∈ Ci. (1.15)

In other words, the gradient estimator11 function g(~r) is defined so that it is equal to the

RSD σ̄i of the Voronoi cell Ci in which the point ~r happens to be. Eqs. (1.14) and (1.15)

10From here on trial values for the masses will carry a tilde to distinguish from the true values of the

masses which will have no tilde. Correspondingly, S̃ stands for a hypothesized “trial” boundary surface

(1.9) obtained with trial values of the mass parameters.
11Note that g(~r) is not supposed to be an approximation for |~∇ρ(~r)|, the crucial property for us is that

the two functions peak in the same location.
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suggest that the variable which we should be maximizing is

Σ̄(m̃A, m̃B, m̃C , m̃D) ≡
∫
S̃(m̃A,m̃B ,m̃C ,m̃D) da g(~r)∫
S̃(m̃A,m̃B ,m̃C ,m̃D) da

. (1.16)

It obviously depends on our choice of trial masses (m̃A, m̃B, m̃C , m̃D), and as argued above,

we expect the maximum of Σ̄ to occur for the correct choice (mA,mB,mC ,mD), i.e.

max
m̃A,m̃B ,m̃C ,m̃D

Σ̄(m̃A, m̃B, m̃C , m̃D) ' Σ̄(mA,mB,mC ,mD). (1.17)

This hypothesis will be tested and validated with explicit examples below in Sections 3

and 4.

The paper is organized as follows. In the next Section 2 we shall first review the

well known formulas for the one-dimensional kinematic endpoints (1.8) and introduce the

corresponding relevant partitioning of the mass parameter space into domain regions. In

the next two sections we shall concentrate on the two most troublesome regions, (3, 2) and

(3, 1), where the problematic relationship (1.6) holds. We shall pick one study point in

each region, then study how well our conjecture (1.17) is able to determine the true mass

spectrum. In principle, (1.17) involves optimization over 4 continuous variables, which is

very time consuming (additionally, we have to perform the integration in the numerator

of (1.16) by Monte Carlo). This is why for simplicity we choose to illustrate the power of

our method with a one-dimensional toy study along the problematic flat direction (1.7). In

particular, for each of our two study points we shall assume that the first three kinematic

endpoints mmax
ll , mmax

jll , and mmax
jl(lo) are already measured, leaving us only the task of

determining the remaining degree of freedom mA along the flat direction defined in (1.7).

Correspondingly, we shall consider the whole family of mass spectra (1.7) which passes

through a given study point. This family will eventually take us into the neighboring

parameter space regions, including the third potentially problematic region, namely (2, 3),

in which (1.6) is satisfied. For each family, we shall perform the following investigations

• As a warm up, we shall first illustrate that for each of the three distributions, mll,

mjll, and mjl(lo), the endpoint along the flat direction is the same (as expected by

construction).

• We shall then investigate the variation of the kinematic endpoint of the mjl(hi) dis-

tribution along the flat direction (1.7). The endpoint value mmax
jl(hi) is expected to be

constant in regions (3, 2), (3, 1) and (2, 3), so the main question will be, how much

does it vary in the remaining parameter space regions.

• We shall similarly investigate the variation of the lower kinematic endpoint mmin
jll(θ>π

2
)

along the flat direction (1.7). Together with the previous item, this will serve as an

illustration of the main weakness of the classic kinematic endpoint method for mass

measurements.

• Then we shall illustrate the distortion of the kinematic boundary surface (1.9) along

the flat direction (1.7). The size of the distortion will be indicative of the precision
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with which one can hope to perform the mass measurement (1.17) using the kinematic

boundary surface in phase space.

• Finally, we shall perform the fitting (1.17) along the flat direction parameterized

by m̃A. We shall show results in two cases: (a) when the background events are

distributed uniformly in m2 phase space, and (b) when the background is coming

from dilepton tt̄ events.

We shall summarize and conclude in Section 5. Appendix A contains the inversion formulas

needed to define the flat direction (1.7).

2 Endpoint formulas and partitioning of parameter space

2.1 Notation and conventions

Following [89], we introduce for convenience some shorthand notation for the mass squared

ratios

Rij ≡
m2
i

m2
j

, (2.1)

where i, j ∈ {A,B,C,D}. Note that in (2.1) there are only three independent quantities,

which can be taken to be the set {RAB, RBC , RCD}. To save writing, we will also introduce

convenient shorthand notation for the five kinematic endpoints as follows

a = (mmax
ll )2 , b =

(
mmax
jll

)2
, c =

(
mmax
jl(lo)

)2
, d =

(
mmax
jl(hi)

)2
, e =

(
mmin
jll(θ>π

2
)

)2
.

(2.2)

Note that these represent the kinematic endpoints of the mass squared distributions12.

In the next two sections we shall use the three endpoint measurements mmax
ll , mmax

jll ,

and mmax
jl(lo) to fix mD, mC and mB, leaving mA as a free parameter. Another way to

think about this procedure is to note that the parameter space (1.1) can be equivalently

parametrized as

{RCD, RBC , RAB,mA} . (2.3)

Then, the endpoint measurements of mmax
ll , mmax

jll , and mmax
jl(lo) can be used to fix the ratios

RCD, RBC and RAB (see Appendix A), leaving the overall mass scale undetermined and

parametrized by mA.

2.2 Endpoint formulas

The kinematical endpoints are given by the following formulas:

a ≡ (mmax
ll )2 = m2

D RCD (1−RBC) (1−RAB); (2.4)

12Contrast to the notation of Ref. [81], which uses a, b, c, d to label the same endpoints, but for the linear

masses.
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b ≡
(
mmax
jll

)2
=



m2
D(1−RCD)(1−RAC), for RCD < RAC , case (1,−),

m2
D(1−RBC)(1−RABRCD), for RBC < RABRCD, case (2,−),

m2
D(1−RAB)(1−RBD), for RAB < RBD, case (3,−),

m2
D

(
1−√RAD

)2
, otherwise, case (4,−);

(2.5)

c ≡
(
mmax
jl(lo)

)2
=



(
mmax
jln

)2
, for (2−RAB)−1 < RBC < 1, case (−, 1),(

mmax
jl(eq)

)2
, for RAB < RBC < (2−RAB)−1, case (−, 2),(

mmax
jl(eq)

)2
, for 0 < RBC < RAB, case (−, 3);

(2.6)

d ≡
(
mmax
jl(hi)

)2
=



(
mmax
jlf

)2
, for (2−RAB)−1 < RBC < 1, case (−, 1),(

mmax
jlf

)2
, for RAB < RBC < (2−RAB)−1, case (−, 2),(

mmax
jln

)2
, for 0 < RBC < RAB, case (−, 3);

(2.7)

where (
mmax
jln

)2
= m2

D (1−RCD) (1−RBC) , (2.8)(
mmax
jlf

)2
= m2

D (1−RCD) (1−RAB) , (2.9)(
mmax
jl(eq)

)2
= m2

D (1−RCD) (1−RAB) (2−RAB)−1 . (2.10)

Finally, the endpoint mmin
jll(θ>π

2
) introduced earlier in the Introduction, is given by

e ≡
(
mmin
jll(θ>π

2
)

)2
=

1

4
m2
D

{
(1−RAB)(1−RBC)(1 +RCD) (2.11)

+ 2 (1−RAC)(1−RCD)− (1−RCD)
√

(1 +RAB)2(1 +RBC)2 − 16RAC

}
.

2.3 Partitioning of the mass parameter space

One can see that the formulas (2.5-2.7) are piecewise-defined: they are given in terms of

different expressions, depending on the parameter range for RCD, RBC and RAB. This

divides the {RCD, RBC , RAB} parameter subspace from (2.3) into several distinct regions,

illustrated in Fig. 2. Following [81], we label those by a pair of integers (Njll, Njl). As

already indicated in eqs. (2.5-2.7), the first integer Njll identifies the relevant case for mmax
jll ,

while the second integer Njl identifies the corresponding case for (mmax
jl(lo),m

max
jl(hi)). One can

show that only 9 out of the 12 pairings (Njll, Njl) are physical, and they are all exhibited
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Figure 2. A slice through the {RCD, RBC , RAB} parameter space at a fixed RCD = 0.3. The

(RBC , RAB) plane exhibits the nine definition domains (Njll, Njl) of the set of equations (2.5-2.7).

For the purposes of this paper, only six of those regions will be in play, and we have color-coded

them as follows: region (3, 1) in red, region (4, 1) in blue, region (3, 2) in cyan, region (4, 2) in

yellow, region (4, 3) in magenta, and region (2, 3) in green.

within the unit square of Fig. 2. In what follows, an individual study point within a given

region (Njll, Njl) will be marked with corresponding subscripts as PNjllNjl .

Using (2.4), (2.5) and (2.7), it is easy to check that the “bad” relation (1.6), which can

be equivalently rewritten in the new notation as

b = a+ d, (2.12)

is identically satisfied in regions (3,1), (3,2) and (2,3) of Fig. 2. Therefore, as already

discussed, in these regions one would necessarily have to rely on the additional information

provided by the measurement of the e endpoint (2.11).

Before concluding this rather short preliminary section, we direct the reader’s attention

to the color-coding in Fig. 2, where we have shaded in color six of the parameter space

regions: region (3, 1) in red, region (4, 1) in blue, region (3, 2) in cyan, region (4, 2) in

yellow, region (4, 3) in magenta, and region (2, 3) in green. It will turn out that the two

families of mass spectra considered in the next two sections will visit the six color-shaded

regions. For the benefit of the reader, in the remainder of the paper we shall strictly adhere

to this color scheme — for example, results obtained for a study point from a particular

region will always be plotted with the color of the respective region: study points in region

(3, 1) are red, study points in region (4, 1) are blue, etc.
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true branch auxilliary branch

Region (3, 1) (4, 1) (4, 3) (2, 3)

Study point P31 P41 P43 P23

mA (GeV) 236.64 5000.00 2,000.00 100.00

mB (GeV) 374.16 5126.02 2040.56 124.78

mC (GeV) 418.33 5168.03 2167.36 272.54

mD (GeV) 500.00 5256.90 2256.90 362.23

RAB 0.400 0.951 0.960 0.642

RBC 0.800 0.984 0.886 0.210

RCD 0.700 0.966 0.922 0.566

mmax
ll (GeV)

√
a 144.91

mmax
jll (GeV)

√
b 256.90

mmax
jl(lo) (GeV)

√
c 122.47

mmax
jl(hi) (GeV)

√
d 212.13 212.12 212.13 212.13

mmin
jll(θ>π

2
) (GeV)

√
e 132.10 129.73 130.79 141.78

Table 1. Mass spectrum and expected kinematic endpoints for the study point P31 from region

(3, 1) which was discussed in Ref. [89], together with three additional study points illustrating the

different regions from Fig. 2 encountered by the parameter space trajectories from Fig. 3. By

construction, all study points give identical values for the kinematic endpoints mmax
ll , mmax

jll and

mmax
jl(lo). Furthermore, in accordance with (1.6), the two study points P31 and P23 from regions (3, 1)

and (2, 3) have identical values of mmax
jl(hi). The remaining two study points P41 and P43, representing

regions (4, 1) and (4, 3), have essentially the same value for mmax
jl(hi) as well. The last row lists the

predicted values for mmin
jll(θ>π

2 ), which are slightly different, and allow discriminating between the

four endpoints in theory, but not in practice.

3 A case study in region (3, 1)

3.1 Kinematical properties along the flat direction

In this section we shall study the flat direction (1.7) in mass parameter space which is

generated by a study point P31 from region (3, 1) (the same study point was used in [89]

for a slightly different purpose). Table 1 lists some relevant information for the study point

P31: the input mass spectrum (1.1), the corresponding mass squared ratios (2.1), and the

predicted kinematic endpoints (1.8), also reminding the reader of the alternative shorthand

notation (2.2). As discussed in the Introduction, starting from the point P31, we can follow

a one-dimensional trajectory (1.7) through the parameter space (2.3) so that everywhere

along the trajectory the prediction for the three endpoints a, b and c is unchanged (see

Fig. 6 below). This trajectory is illustrated in Fig. 3, where we show its projections onto the

three planes (RBC , RAB) (left panel), (RAB, RCD) (middle panel) and (RBC , RCD) (right

panel). The lines in Fig. 3 are parametrized by the continuous test mass parameter m̃A.

For any given fixed value of m̃A, the trajectory in Fig. 3 predicts the test values for the
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Figure 3. The two trajectories in mass parameter space leading to the same endpoints a, b and c.

The lines are colored in accordance with the coloring convention for the regions depicted in Fig. 2.

The red square marks the original study point P31 from Table 1, while the circles denote the other

three study points from Table 1: P41 in region (4, 1) (blue circle), P43 in region (4, 3) (magenta

circle), and P23 in region (2, 3) (green circle).

Figure 4. Mass spectra along the flat direction specified by the study point P31. As a function of

m̃A, we plot the mass differences m̃B − m̃A (solid lines), m̃C − m̃A (dashed lines), and m̃D − m̃A

(dotted lines), which would preserve the values for the three kinematic endpoints a, b and c.

other three mass parameters, namely m̃B, m̃C and m̃D. This is shown more explicitly in

Fig. 4, where we plot the mass differences m̃B − m̃A (solid lines), m̃C − m̃A (dashed lines),

and m̃D−m̃A (dotted lines), as a function of m̃A. All lines in Figs. 3 and 4 are color-coded

using the same color conventions as for the parameter space regions in Fig. 2. Initially, as

we move away from point P31 (marked with the red square in Fig. 3), we are still within the

red region (3, 1), and the trajectory is therefore colored in red and parametrically given by

eqs. (A.8-A.10). As the value of m̃A is reduced from its nominal value (236.6 GeV) at the

point P31, the mass spectrum gets lighter and eventually we reach m̃A = 0, where (the red

portion of) the trajectory terminates at RAB = 0, RBC ' 0.67 and RCD ' 0.58. If, on the

other hand, we start increasing m̃A from its nominal P31 value, the spectrum gets heavier,

and we start approaching the neighboring region (4, 1). Eventually, at around m̃A ∼ 3600
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Figure 5. The equivalent representation of Fig. 4 in terms of the mass squared ratios RAB , RBC
and RCD (solid lines). The dotted lines depict various quantities of interest which are used to

delineate the regions in Fig. 2. The left panel shows the true branch passing through regions (3, 1)

(red) and (4, 1) (blue), while the right panel shows the auxiliary branch through regions (2, 3)

(green) and (4, 3) (magenta). The left insert zooms in on the transition between regions (3, 1) and

(4, 1) near m̃A = 3600 GeV, while the right insert focuses on the transition between regions (2, 3)

and (4, 3) near m̃A = 1800 GeV.

GeV, the trajectory crosses into region (4, 1) and thus changes its color to blue. This

transition is illustrated in the left panel of Fig. 5, where we plot the mass squared ratios

RAB, RBC and RCD (solid lines), together with some other relevant quantities (dotted

lines). In particular, the boundary between regions (3, 1) and (4, 1) is given by the relation

RAB = RBD, see (A.2) and (A.29). We can see that crossover more clearly in the insert in

the left panel of Fig. 5, where the line color changes from red to blue as soon as the RBD
(dotted) line crosses the RAB (solid) line.

Once we are in region (4, 1), we follow the blue portion of the trajectory in Fig. 3, which

is parametrically defined by eqs. (A.36-A.38). We choose a representative study point for

region (4, 1) as well — it is denoted by P41 and listed in the third (blue shaded) column

of Table 1. The corresponding mass spectrum is clearly very heavy, but is nevertheless

perfectly consistent with the three measured endpoints a, b and c, as shown in Fig. 6.

As seen in Fig. 3, the blue portion of the mass trajectory appears headed for the point

(RAB, RBC , RCD) = (1, 1, 1), which is indeed reached in the limit of m̃A → ∞, without

ever entering into the neighboring region (1, 1)13.

Fig. 3 reveals that the mass family (1.7) through our study point P31 includes a segment

which starts at (RAB, RBC , RCD) = (0, 0.67, 0.58) and ends at (RAB, RBC , RCD) = (1, 1, 1),

visiting regions (3, 1) and (4, 1). Since the actual study point P31 belongs to this segment,

in what follows we shall refer to it as “the true branch”. However, Fig. 3 also shows

that there is an additional disconnected segment of the mass trajectory through the green

region (2, 3) and the magenta region (4, 3). In the following, we shall refer to this additional

13Note that as the value of RCD increases, the (1, 1) region shrinks and for RCD = 1 it disappears

altogether.
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Figure 6. Unit-normalized invariant mass distributions for the four study points from Table 1:

the distribution of m`` (left panel), mj`(lo) (middle panel), and mj`` (right panel). The lines are

color coded according to our conventions from Fig. 2 and Table 1: red for P31, blue for P41, magenta

for P43 and green for P23.

segment as “the auxiliary branch”. Note that this terminology is introduced only for clarity

and should not be taken too literally — as far as the measured endpoints a, b and c are

concerned, all points on the true and auxiliary branches are on the same footing, since

the experimenter would have no way of knowing a priori which is the true branch and

which is the auxiliary branch. This is why we have to seriously consider points on the

auxiliary branch as well. We choose two representative study points, which are listed in

the last two columns of Table 1: point P43 belongs to the magenta region (4, 3), while

point P23 is in the green region (2, 3). As shown in Fig. 3, the auxiliary branch starts at

(RAB, RBC , RCD) = (0.5, 0, 0.48) and asymptotically meets the true branch at the corner

point (RAB, RBC , RCD) = (1, 1, 1). The transition between the two regions (2, 3) and

(4, 3) along the auxiliary branch is illustrated in the right panel of Fig. 5. According to

(A.21) and (A.54), the boundary between regions (2, 3) and (4, 3) is defined by the relation

RBC = RABRCD. The right panel of Fig. 5 confirms this: the color of the auxiliary branch

in Figs. 3 and 4 changes from green to magenta as soon as the dotted line representing the

product RABRCD crosses the solid line for RBC .

To summarize our discussion so far, we have imposed the three endpoint measurements

a, b and c on the four-dimensional parameter space (1.1), reducing it to the one-dimensional

parameter curve depicted in Figs. 3 and 4. The curve consists of two branches which

visit four of the colored regions in Fig. 2, and we have chosen one study point in each

region. The four study points are listed in Table 1, and their predicted invariant mass

distributions from the ROOT phase space generator [99] are shown in Fig. 6: m`` in the

left panel, mj`(lo) in the middle panel and mj`` in the right panel. By construction, for

any points along the mass trajectory (1.7), and in particular for the four study points from

Table 1, these distributions share common kinematic endpoints. Furthermore, as Fig. 6

reveals, the shapes of most distributions are also very similar, which makes it difficult to

pinpoint our exact location along the mass trajectory (1.7). This is why in the remainder

of this section, we shall focus on the question, what additional measurements may allows

us to discriminate experimentally points along the two branches in Figs. 3 and 4, and in
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Figure 7. Left: The prediction for the kinematic endpoint
√
d along the flat direction (1.7)

generated by P31, as a function of the trial value of the parameter m̃A. Right: The same as Fig. 6,

but for the distribution mj`(hi).

Figure 8. The same as Fig. 7, but for the endpoint
√
e and the corresponding distribution

mjll(θ>π
2 ).

particular distinguish between the four study points in Table 1.

One obvious possibility is to investigate the remaining kinematic endpoints d and e,

which are analyzed in Figs. 7 and 8, respectively. The left panels show the theoretical

predictions for the kinematic endpoints
√
d = mmax

j`(hi) and
√
e = mmin

jll(θ>π
2
) along the flat di-

rection (1.7) as a function of m̃A, while the right panels exhibit the corresponding invariant

mass distributions for each of our four study points from Table 1.

Let us first focus on Fig. 7 which illustrates the m̃A dependence of the mj`(hi) dis-

tribution and its kinematic endpoint
√
d. As we have already discussed, in regions (3, 1)

and (2, 3) the additional measurement of
√
d is not useful, since it is not independent —
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the value of d is predicted by the relation (2.12), as confirmed by the left panel in Fig. 7,

where the red and green dotted lines representing those two regions are perfectly flat and

insensitive to m̃A. However, this still leaves open the possibility that in the remaining two

regions, namely (4, 1) and (4, 3), the measurement of the d endpoint will be able to lift

the degeneracy and determine the value of mA, since, at least in theory, d is a non-trivial

function of m̃A, see (A.39b) and (A.63b). Unfortunately, Fig. 7 demonstrates that this is

not the case in practice — the m̃A dependence is extremely weak, and the endpoint value

for
√
d only changes by a few tens of MeV as m̃A is varied over a range of several TeV! This

lack of sensitivity is the reason why we have been referring to the family of mass spectra

(1.7) as a “flat direction” in mass parameter space. Clearly, due to the finite experimental

resolution, an endpoint measurement with a precision of tens of MeV is not feasible, the

anticipated experimental errors at the LHC are significantly higher, on the order of a few

GeV [100].

It is instructive to understand this lack of sensitivity analytically, by studying, e.g. the

mathematical expression (A.39b) for d which is relevant for region (4, 1). Figs. 4 and 7

already showed that region (4, 1) occurs at large values of m̃A, where the spectrum is

relatively heavy — on the order of several TeV. At the same time, the measured parameter

inputs into (A.39b), namely the endpoints a, b and c, are all on the order of several hundred

GeV. This suggests an expansion in terms of 1/m̃A as

d(a, b, c, m̃A) ≡ K0 +
K1

m̃A
+O

(
1

m̃2
A

)
. (3.1)

Using (A.39b), we get the expansion coefficients to be

K0 =
ac

(a+ c)2

(√
b+
√
b− a− c

)2
, (3.2)

K1 =
ac
[(√

b+
√
b− a− c

)
(a2 + ac− 2ab+ 2bc) + (a2 − c2)

√
b
]

(a+ c)3
. (3.3)

Interestingly, the numerical value of K0 is extremely close to b− a:

K0 ≡ lim
m̃A→∞

d = (212.047 GeV)2 ↔ b− a = (212.132 GeV)2. (3.4)

Since K0 is the leading order prediction for d, (3.4) implies that even in region (4, 1), the

relation (2.12) will still hold to a very good approximation — any deviations from it will be

1/m̃A suppressed. We can formalize this observation by introducing the value m
(b)
A which

the parameter m̃A takes when the mass trajectory (1.7) crosses the boundary between

regions (3, 1) and (4, 1). Using the continuity of the function d(a, b, c, m̃A), we can write

b− a = K0 +
K1

m̃
(b)
A

+O

 1(
m̃

(b)
A

)2
 , (3.5)

where the left-hand side is the value of d in region (3, 1) which is given by (A.11), while

the right-hand side is the value of d as predicted by the Taylor expansion (3.1) in region
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(4, 1). Eliminating K0 from (3.5), we can rewrite the expansion (3.1) in the form

d(a, b, c, m̃A) ≡ b− a+
K1

m̃A
− K1

m
(b)
A

+O
(

1

m̃2
A

)
(3.6a)

= b− a−K1
m̃A −m(b)

A

m̃Am
(b)
A

+O
(

1

m̃2
A

)
, (3.6b)

which manifestly shows that the deviations from the relation (2.12) are 1/mA suppressed.

One can check that the sign of the K1 coefficient (3.3) is positive, then (3.6b) explains why

d is a decreasing function of m̃A in region (4, 1), as observed in the left panel of Fig. 7.

Starting from (A.63b), one can repeat the same analysis for the magenta portion of

the auxiliary branch which is located in region (4, 3). As the left panel of Fig. 7 shows, the

conclusions will be the same — the d endpoint is still given approximately by the “bad”

relation (2.12), and the corrections to it are tiny and 1/mA suppressed. The right panel in

Fig. 7 explicitly demonstrates that the variation of the d endpoint along the flat direction is

unnoticeable by eye even with perfect resolution, large statistics and no background. The

shapes of the mj`(hi) distributions are also very similar. As a result, we anticipate that

the additional measurement of the d kinematic endpoint and the analysis of the associated

mj`(hi) distribution will not help much in lifting the degeneracy of the flat direction (1.7).

We now turn to the discussion of the fifth and final kinematic endpoint, e, illustrated

in Fig. 8. The left panel now shows a more promising result — the variation along the flat

direction is much larger than what we saw previously in Fig. 7. This is especially noticeable

for the auxiliary branch, where the prediction for
√
e can vary by as much as 17 GeV,

suggesting that one might be able to at least rule out some portions of it. At the same time,

the variation of
√
e along the true branch is only 4 GeV, once again making it rather difficult

to pinpoint an exact location along the true branch. Unfortunately, these theoretical

considerations are dwarfed by the experimental challenges in measuring the e endpoint,

as suggested by the right panel of Fig. 8. Unlike the other four kinematic endpoints, e

is a lower endpoint (a.k.a. “threshold”), which places it in a region where one expects

more background. More importantly, the signal distribution is very poorly populated near

its lower endpoint - the vast majority of signal events appear sufficiently far away from

the threshold, and the measurement will suffer from a large statistical uncertainty. This

casts significant doubts on the feasibility of this measurement — in previous studies, the√
e endpoint was either the measurement with the largest experimental error from the fit

(on the order of 10 GeV [79]), or one could not obtain a measurement for it at all [81].

One could hope to improve on the precision by utilizing shape information [101], but this

introduces additional systematic uncertainty, since the background shape and the shape

distortion due to cuts has to be modeled with Monte Carlo.

Being mindful of the challenges involved with the measurement of the e endpoint, in

this paper we shall look for an alternative method for lifting the degeneracy along the flat

direction. Our proposal is to study the shape of the kinematic boundary (1.9), which is a

two-dimensional surface in the three-dimensional space of observables{
m2
j`(lo),m

2
j`(hi),m

2
``

}
. (3.7)
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Figure 9. Signal kinematic boundaries in the (m2
j`(lo),m

2
j`(hi)−m2

j`(lo)) plane, at nine fixed values

of m2
``. Results are shown for several points along the true branch in regions (3, 1) and (4, 1). The

red solid line represents the case of the P31 study point with m̃A = 236.6 GeV, while the dashed

lines correspond to other values of m̃A along the true branch: m̃A = 0 (black), m̃A = 100 GeV

(gray), m̃A = 500 GeV (green), m̃A = 1000 GeV (blue), m̃A = 2000 GeV (yellow) and m̃A = 5000

GeV (magenta).

As a proof of principle, we first illustrate the change in the shape of the surface (1.9)

as we move along the flat direction. Our results are shown in Fig. 9 (for the true branch)

and in Fig. 10 (for the auxiliary branch). Following [93], we visualize the surface (1.9)

by showing a series of two-dimensional slices in the (m2
j`(lo),m

2
j`(hi) −m2

j`(lo)) plane, where

the slight modification of the “y-axis” was done in order to avoid wasted space on the

plots due to the unphysical areas with mj`(lo) > mj`(hi). Each slice is taken at a fixed

value of m2
``, starting from a very low value (10 GeV2) and going up all the way until the

kinematic endpoint (mmax
`` )2 = 20, 976 GeV2. The red solid lines in Fig. 9 correspond to
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Figure 10. The same as Fig. 9, but for the auxiliary branch going through regions (2, 3) and

(4, 3). The dashed lines represent points with m̃A = 100 GeV (black), m̃A = 500 GeV (green),

m̃A = 2000 GeV (blue) and m̃A = 6000 GeV (yellow). For reference, we also show the case of the

true mass spectrum for point P31 (red solid lines), although P31 does not belong to the auxiliary

branch.

the nominal case of the study point P31. In each panel, the signal events will be populating

the areas delineated by these red solid lines. As pointed out in [92], the density of signal

events is enhanced near the phase space boundary, i.e. signal events will cluster close to

the solid red lines; this property can be incorporated into the algorithm for detecting the

surface boundary [93]. It is worth noting that in general, each panel contains two signal

populations, which arise from the reordering (1.3-1.4) [89]. As we vary the value of m2
``,

the shape of the red solid lines changes in accordance with eq. (1.9), which follows from

simple phase space considerations. However, the main purpose of Figs. 9 and 10 is to

check how much the shape is modified relative to the nominal case of P31 when we vary
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the value of m̃A along the flat direction (1.7). The dashed lines in Fig. 9 show results for

several representative values of m̃A along the true branch: m̃A = 0 (black), m̃A = 100

GeV (gray), m̃A = 500 GeV (green), m̃A = 1000 GeV (blue), m̃A = 2000 GeV (yellow)

and m̃A = 5000 GeV (magenta). We observe noticeable shape variations, especially at

low to intermediate values of m2
``, which bodes well for our intended purpose of measuring

the value of mA. Fig. 9 aids in visualizing why sensitivity is lost when performing one-

dimensional projections. Consider, for example the variable mj`(lo). The top two rows of

Fig. 9 show that as m̃A is varied along the flat direction, the boundary contours are being

stretched vertically, which does not have any effect on the mj`(lo) endpoint. Later on, when

the events are projected vertically on the mj`(lo) axis to obtain the mj`(lo) distribution seen

in the middle panel of Fig. 6, the effects from this vertical stretching tend to be washed

out and the resulting mj`(lo) distributions have very similar shapes.

Fig. 10 shows the analogous results for the auxiliary branch. Once again, the red

solid lines represent the study point P31, while the dashed lines correspond to four values

of m̃A: m̃A = 100 GeV (black), m̃A = 500 GeV (green), m̃A = 2000 GeV (blue) and

m̃A = 6000 GeV (yellow). This time the shape variation along the flat direction is much

more significant compared to what we saw in Fig. 9. This observation agrees with our

expectation based on Fig. 8 that points on the auxiliary branch behave quite differently

from our nominal study point P31, especially at low m̃A.

3.2 A toy study with uniformly distributed background

In the remainder of this section we shall illustrate our proposed method for mass mea-

surement with two exercises. In each case, we shall assume that the standard set of one-

dimensional kinematic endpoints (1.2) has already been well measured and used to reduce

the relevant mass parameter space (1.1) to the flat direction (1.7) parametrized by the test

mass m̃A for the lightest new particle A. This is done only for simplicity — in principle,

our method would also work without any prior information from endpoint measurements,

but by using those, we are reducing the 4-dimensional optimization problem in (1.17) to

the much simpler one-dimensional optimization problem

max
m̃A

Σ̄ (m̃A, m̃B(m̃A), m̃C(m̃A), m̃D(m̃A)) ' Σ̄(mA,mB,mC ,mD), (3.8)

where m̃B(m̃A), m̃C(m̃A), and m̃D(m̃A) are the masses of particles B, C and D along the

flat direction. Our main emphasis here is on demonstrating the advantages of our method

relative to the method of kinematic endpoints. In Section 3.1 we already showed that

while the method of kinematic endpoints does a good job in reducing the unknown mass

parameter space (1.1) to the flat direction (1.7), it does a poor job of lifting the degeneracy

along the flat direction. Thus, if we can show that our method can perform the remaining

mass measurement along the flat direction, we will have accomplished our goal.

In order to make contact with our previous studies in [93], we begin with a simple toy

exercise where in addition to the signal events from the cascade decay in Fig. 1, we also

consider a certain number of background events, which we take to be uniformly distributed

in the mass squared space of observables (3.7). While the assumption of uniform back-

ground density is unrealistic, such an exercise is nevertheless worth studying for several

– 22 –



reasons. First, our method is completely general and applies in any situation where we have

a decay of the type shown in Fig. 1, while to correctly identify the relevant backgrounds,

we must be a lot more specific — we need to fix the signature, the type of production

mechanism (which determines what else is in the event), the cuts, etc. In order to retain

generality, we choose to avoid specifying those details and instead we generate background

events by pure Monte Carlo according to a flat hypothesis. Second, as shown in [93], a

uniform background distribution is actually a pretty good approximation to more realistic

backgrounds resulting, e.g., from dilepton tt̄ events (compare to the results in Section 3.3

below). Finally, our method is attempting to detect a discontinuity in the measured event

density caused by a signal kinematic boundary, so the exact shape of the background dis-

tribution is not that important, as long as it is smooth and without any sharp kinematic

features.

In order to detect the exact location of the kinematic boundary, we shall be computing

the quantity Σ̄ defined in (1.16) along the flat direction (1.7), i.e.

Σ̄(m̃A) ≡ Σ̄ (m̃A, m̃B(m̃A), m̃C(m̃A), m̃D(m̃A)) . (3.9)

We shall perform several versions of the exercise, with varying levels of signal-to-background.

For this purpose, we vary the ratio of signal to background events inside the true “samosa”

surface S(mA,mB,mC ,mD):

S/B ≡
∫
VS
ρs dV∫

VS
ρb dV

, (3.10)

where VS is the volume inside the samosa S(mA,mB,mC ,mD), while ρs and ρb are the

signal and background event densities from Section 1, respectively. In this exercise, we

shall fix the overall normalization by choosing NB = 1000 background events inside S.

Our main result is shown in Fig. 11, which plots the quantity Σ̄(m̃A) along the flat

direction, for several different choices of S/B: S/B = 3 (upper left panel), S/B = 1 (upper

right panel), S/B = 0.5 (lower left panel) and S/B = 0.2 (lower right panel). Each panel

contains two sets of points: the colored symbols represent points on the true branch, while

the black crosses indicate points on the auxiliary branch14.

There are several important lessons from Fig. 11:

• Viability of the method. We see that in each panel, the maximum of Σ̄ is obtained

for a value of m̃A which is close to the true value mA = 236.6 GeV. This validates

our conjecture15, eq. (1.17), and proves the viability of our method.

• Precision of the method. Of course, we did not recover exactly the input value for

mA, but in each case, came relatively close. Each panel of Fig. 11 contains an

insert which zooms in on the region near the peak, which is sampled more finely.

For the different values of S/B = {3.0, 1.0, 0.5, 0.2}, the Σ̄ maxima are obtained

at m̃A = {280, 290, 250, 230} GeV, correspondingly. Since the measurement is not

14Recall from Fig. 4 that for any given choice of m̃A, there is one point on the true branch and a

corresponding point on the auxiliary branch.
15Strictly speaking, Fig. 11 tests only the one-dimensional version (3.8).
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Figure 11. The quantity Σ̄(m̃A) defined in (3.9) as a function of m̃A for different values of the

signal to background ratio S/B defined in (3.10): S/B = 3 (upper left panel), S/B = 1 (upper

right panel), S/B = 0.5 (lower left panel) and S/B = 0.2 (lower right panel). The colored symbols

correspond to the true branch with the color conventions from Fig. 2, while the black crosses indicate

points on the auxiliary branch. The insert on each panel zooms in on the region near the peak

value for Σ̄(m̃A).

perfect, it may be instructive to compare the theoretical boundary for the input study

point P31 to the boundary surface found by the fit. This is illustrated in Fig. 12,

where in analogy to Figs. 9 and 10 we show two-dimensional slices at fixed m2
`` of

the Voronoi tessellation of the data for the case of S/B = 3. The Voronoi cells are

color coded by their value of σ̄i defined in (1.12). As in Figs. 9 and 10, the red solid

line in each panel is the expected signal boundary for the nominal case of point P31.

We notice that the cells with the highest values of σ̄i are indeed clustered near the

nominal boundary, in agreement with the results from Refs. [93, 95]. On the other

hand, the boundary delineated by the black dashed lines in Fig. 12 corresponds to

the best fit value of m̃A = 280 GeV, which was found in the upper left panel in

Fig. 11. The difference between the solid red and black dashed contours in Fig. 12 is

essentially a measure of the resolution of our method.

• Elimination of the auxiliary branch and the large m̃A tail of the true branch. One

very positive piece of news from Fig. 11 is that the whole auxiliary branch has very

low values for Σ̄ which makes it easy to rule it out — one can see that no point on the
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Figure 12. Two-dimensional views at fixed m2
`` of the Voronoi tessellation of the data for the case

of S/B = 3. The red solid line is the expected signal boundary for the nominal case of point P31,

i.e., with the true value m̃A = mA = 236.6 GeV. The black dashed line corresponds to the mass

spectrum with m̃A = 280 GeV, which was found to maximize the quantity Σ̄ in the top left panel

of Fig. 11.

auxiliary branch was ever in contention for the top spot. Similar comments, albeit

to a lesser extent, also apply to the long tail along the true branch at large m̃A. In

particular, region (4, 1) seems to be ruled out, as well as the large m̃A portion of

region (3, 1). In effect, the range of possible values for m̃A along the flat direction

has been significantly narrowed down to a small interval within a few tens of GeV of

the true value mA.

– 25 –



• The adverse effect of the background. Comparing the different panels in Fig. 11, we see

that as we make S/B smaller, the difference between the true and auxiliary branch is

reduced, but the auxiliary branch is still disfavored. As for the true branch, the peak

near mA still persists, even in the case when the data is dominated by background

events. This is not surprising, since the background distribution is relatively smooth,

so that in the background-dominated regions of phase space there aren’t too many

Voronoi cells with large values of σ̄i, which could adversely affect the fit.

3.3 A study with tt̄ dilepton background events

We are now in position to repeat the exercise from Section 3.2, with signal events from

D+A associated production and background taken from dilepton tt̄ events, which represent

the main background to the signature from Fig. 1 of a jet plus two opposite sign, same

flavor leptons (the electroweak backgrounds involving leptonic Z decays can be suppressed

with a Z mass veto). Events were generated at parton level for LHC at 14 TeV with

MadGraph5 [102] version 2.1.1 with the default PDF set cteq6l1. For signal we used

the SUSY version of the cascade decay in Fig. 1, and considered the associate production

of a squark q̃ with the lightest neutralino χ̃0
1, namely pp → q̃χ̃0

1 [103, 104]. Since each tt̄

background event contains two jets, there is a two-fold ambiguity in the jet selection. We

will use both possible pairings, so that each background event will contribute two entries

to our data. Of course, we do not know a priori how many of those entries will end up

inside the nominal boundary surface S(mA,mB,mC ,mD), which is why we have to use

a slightly different normalization from Sec 3.2. We shall fix the number of signal events

to NS = 3000, and then we shall consider several values16 for the number of dilepton tt̄

events: NB = {3000, 4000, 5000, 6000}. From Monte Carlo we then find that these choices

correspond to S/B = {1.52, 1.14, 0.91, 0.76} inside the S boundary, see (3.10).

Our main result is shown in Fig. 13, which is the analogue of Fig. 11 for this case. Once

again, we find that the function Σ̄(m̃A) is maximized in the vicinity of m̃A = mA = 236.6

GeV. The fitting procedure is illustrated in Fig. 14, which is the analogue of Fig. 12. The

red solid lines show the boundary contours for the nominal value of mA = 236.6 GeV, while

the black dashed lines are for the best fit value of m̃A = 280.0 GeV, which was found in

the top left panel of Fig. 13. Fig. 13 shows that once again, our procedure has disfavored

the whole auxiliary branch and narrowed down the range of viable values of m̃A to a few

tens of GeV around the nominal value mA.

4 A case study in region (3, 2)

In this section, we shall repeat the analysis from Section 3, only this time our nominal

study point, from now on labelled as P32, will be chosen within the cyan region (3, 2) of

Fig. 2. Recall that the problematic relation (2.12) was satisfied in three of the colored

regions in Fig. 2, namely (2, 3), (3, 1) and (3, 2). The former two regions, (2, 3) and (3, 1),

16The anticipated signal-to-background ratio is model-dependent. In this sense, SUSY may not be the

best case for discovery, since other scenarios, e.g., UED [105–107], have higher signal cross-sections.
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Figure 13. The analogue of Fig. 11 for the exercise with tt̄ background events considered in

Section 3.3. Results are shown for NS = 3000 signal events and several choices for the number of

background events: NB = 3000 (upper left panel), NB = 4000 (upper right panel), NB = 5000

(lower left panel) and NB = 6000 (lower right panel).

were already visited by the mass trajectory studied in Section 3, thus here for completeness

we will also illustrate the case of region (3, 2).

4.1 Kinematical properties along the flat direction

The mass spectrum for the study point P32 and the corresponding mass squared ratios and

kinematic endpoints are shown in the cyan-shaded column of Table 2. Point P32 was used

previously in Ref. [89] as an example of a discrete two-fold ambiguity, while here it serves

to define a flat direction (1.7) in mass parameter space. This flat direction is illustrated

in Figs. 15 and 16, which are the analogues of Figs. 3 and 4, respectively. According to

Figs. 15 and 16, the mass trajectory now goes through five of the six colored regions in

Fig. 2: there is a true branch through the red region (3, 1), the cyan region (3, 2) and the

the yellow region (4, 2), as well as an auxiliary branch through the yellow region (4, 2),

the magenta region (4, 3) and the green region (2, 3). As in Section 3, we choose one

representative study point in each of these regions. The four additional study points, P31,

P42, P43 and P23, are also listed in Table 2, and their columns are shaded with the color of

their respective regions in Fig. 2.
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Figure 14. The analogue of Fig. 12 for the exercise with tt̄ background events considered in

Section 3.3. The Voronoi tessellation was done for the case of NB = 3000. The red solid line is

the phase space boundary for the nominal value mA = 236.6 GeV, while the black dashed line

corresponds to the best fit value m̃A = 280.0 GeV found in the the top left panel of Fig. 13.

The flat direction depicted in Fig. 15 is again parametrized by the trial value m̃A for

the mass of the lightest new particle A. However, as seen in Fig. 16, this time the allowed

range for m̃A does not extend all the way to m̃A = 0, and instead the true and auxiliary

branch meet inside the yellow region (4, 2) around at the lowest value m̃A ∼ 89 GeV.

The transitions between two neighboring regions along the flat direction can be under-
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true branch mirror branch

Region (3, 2) (3, 1) (4, 2) (4, 3) (2, 3)

Study point P32 P31 P42 P43 P23

mA (GeV) 126.49 5000.00 90.00 150.00 500.00

mB (GeV) 282.84 5207.42 194.61 250.96 609.04

mC (GeV) 447.21 5324.17 399.99 460.80 815.72

mD (GeV) 500.00 5372.07 458.78 518.78 869.36

RAB 0.200 0.922 0.214 0.357 0.674

RBC 0.400 0.957 0.237 0.297 0.557

RCD 0.800 0.982 0.760 0.789 0.880

mmax
ll (GeV)

√
a 309.84

mmax
jll (GeV)

√
b 368.78

mmax
jl(lo) (GeV)

√
c 149.07

mmax
jl(hi) (GeV)

√
d 200.00 200.00 198.23 199.87 200.00

mmin
jll(θ>π

2
) (GeV)

√
e 247.94 237.47 253.72 250.99 243.81

Table 2. The same as Table 1, except now the starting point is a point (P32) from region (3, 2).

Figure 15. The same as Fig. 3, but for the flat direction generated by point P32 from Table 2.

stood from Fig. 17, which plots the mass squared ratios RAB, RBC and RCD (solid lines)

and several other quantities (dotted lines) which are relevant for defining the regions from

Fig. 2, as a function of the mass trajectory parameter m̃A. For example, relations (A.3)

and (A.13) imply that the boundary between the cyan region (3, 2) and the red region (3, 1)

is given by RBC = (2−RAB)−1. Indeed, the lines in Figs. 16 and 17 change color from cyan

to red when the RBC curve crosses the dotted line representing the function (2−RAB)−1

near m̃A = 173 GeV. Similarly, it follows from (A.21) and (A.54) that the boundary be-

tween the green region (2, 3) and the magenta region (4, 3) is given by RBC = RABRCD.

The right panel of Fig. 17 confirms that the line color changes from magenta to green when

the solid line for RBC is intersected by the dotted line for RABRCD. Finally, according to

(A.42) and (A.53), the transition between the yellow region (4, 2) and the magenta region

(4, 3) occurs at RAB = RBC , and this is borne out by Fig. 17 as well.
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Figure 16. The analogue of Fig. 4, but for the flat direction defined in Fig. 15.

Figure 17. The equivalent representation of Fig. 16 in terms of the mass squared ratios RAB ,

RBC and RCD (solid lines). The dotted lines depict various quantities of interest which are used

to delineate the regions in Fig. 2. The left panel shows the true branch passing through regions

(3, 2) (cyan) and (3, 1) (red), while the right panel shows the auxiliary branch through regions (4, 2)

(yellow), (4, 3) (magenta) and (2, 3) (green). The left insert zooms in on the transition between

regions (3, 2) and (3, 1) near m̃A = 173 GeV, while the right insert focuses on the transitions

between regions (4, 2) and (4, 3) near m̃A = 97 GeV and between regions (4, 3) and (2, 3) near

m̃A = 193 GeV.

By construction, all five study points from Table 2 predict identical values for the three

kinematic endpoints a, b and c. This is demonstrated in Fig. 18, which is the analogue of

Fig. 6, but for the five study points from Table 2. As before, the distributions in Fig. 18

are color-coded according to our color conventions from Fig. 2. The nominal input study

point P32 is represented by the solid line, while the dotted lines mark the other four study

points. Given that the five study points look very similar on Fig. 18, we now focus on the

remaining two distributions, mj`(hi) and mjll(θ>π
2
), which are investigated in Figs. 19 and
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Figure 18. The analogue of Fig. 6, but for the five study points exhibited in Table 2. The

distributions are color-coded according to our color conventions for the regions in Fig. 2.

Figure 19. The analogue of Fig. 19, but for the flat direction defined in Fig. 15 (left panel) and

for the five study points from Table 2 (right panel).

20. The left panels show the predictions for the kinematic endpoint
√
d = mmax

j`(hi) and

the threshold
√
e = mmin

j``(θ>π
2
), respectively, while the right panels plot the corresponding

kinematic distributions for the five study points from Table 2.

By now, we should not be surprised by the extreme flatness of the curves exhibited in

the left panel of Fig. 19. The mass trajectory from Fig. 15 passes through all three of the

regions where the endpoint d is not an independent quantity, but is fixed by the relation

(2.12) and is therefore strictly independent of m̃A. In the remaining two regions, (4, 2) and

(4, 3), Fig. 19 shows a maximal deviation of only 2 GeV from the prediction
√
d =
√
b− a

of (2.12). Taken together, the left panels of Figs. 7 and 19 justify our terminology of the

mass trajectory (1.7) as a “flat direction” in mass parameter space.

On the other hand, the left panel of Fig. 20 shows a much more significant variation of

the kinematic threshold variable
√
e along the flat direction. The total variation is on the

order of 15 GeV, which is of the same order as our previous result in Fig. 8. However, as we

already discussed in Section 3, the measurement of
√
e presents significant experimental
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Figure 20. The same as Fig. 19, but for the kinematic endpoint
√
e and the corresponding

mjll(θ>π
2 ) distribution.

challenges, as one can deduce from the very minor apparent variation of the mj``(θ>π
2
)

distributions shown in the right panel of Fig. 20. This motivates searching for alternative

methods for lifting the degeneracy along the flat direction.

As already discussed in Section 3, one such method is to track the deformation of the

shape of the kinematic boundary (1.9) along the flat direction. The effect is illustrated

in Figs. 21 and 22, which are the analogues of Figs. 9 and 10 for the example of a flat

direction considered in this section. Once again, the solid red lines in each panel indicate

the kinematic boundaries for the nominal study point P32 with m̃A = 126.5 GeV, while

the dashed lines are drawn for several other values of m̃A, chosen so that they illustrate

the typical range of shape fluctuations. Along the true branch, in Fig. 21 we plot contours

for m̃A = 100 (black), m̃A = 173 GeV (green), m̃A = 500 GeV (blue), m̃A = 2000 GeV

(yellow) and m̃A = 4000 GeV (gray). Even though we are confined to the true branch only,

when we compare Fig. 21 to its analogue, Fig. 9, we observe a much larger variation in the

shape of the kinematic boundary in the present case, which promises good prospects for the

mass measurement exercise to follow. The results shown in Fig. 22 for the auxiliary branch

are also quite good. This should not come as a surprise, since the exercise in Section 3

already indicated that the auxiliary branch has a different kinematic behavior, as reflected

in the shape of the phase space boundary.

4.2 A toy study with uniformly distributed background

In the remainder of Section 4 we shall repeat the two exercises from Sections 4.2 and 4.3,

only this time we shall use P32 as our input study point, and perform the measurement

along the corresponding flat direction described in Figs. 15 and 16.

First we consider the case of uniformly distributed (in mass squared) background

events, and proceed to evaluate the quantity Σ̄ along the flat direction. As before, we fix

NB = 1000 and then vary the signal-to-background ratio inside the boundary surface S.
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Figure 21. The same as Fig. 9, but for the true branch in Fig. 15. The red solid line represents

the case of the P32 study point with m̃A = 126.5 GeV, while the dashed lines correspond to other

values of m̃A along the true branch: m̃A = 100 (black), m̃A = 173 GeV (green), m̃A = 500 GeV

(blue), m̃A = 2000 GeV (yellow) and m̃A = 4000 GeV (gray).

Fig. 23 shows our results for the same choices of S/B as in Fig. 11: S/B = 3 (upper left

panel), S/B = 1 (upper right panel), S/B = 0.5 (lower left panel) and S/B = 0.2 (lower

right panel). We find that the function Σ̄(m̃A) once again peaks in the vicinity of the true

value mA = 126.5 GeV. Specifically, for S/B = {3.0, 1.0, 0.5, 0.2}, the maxima are found at

m̃A = {125, 125, 116, 116} GeV, to be contrasted with the true value of mA = 126.5 GeV.

In all four cases, the auxiliary branch is disfavored, as it always gives low values for Σ̄,

while the true branch is restricted to a very narrow region near the true mass spectrum.

Fig. 24 provides a consistency check on our fitting procedure, similarly to Fig. 12. We

show two-dimensional views at fixed m2
`` of the Voronoi tessellation of the data for the case

of S/B = 3. The red solid line is the expected signal boundary for the nominal case of
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Figure 22. The same as Fig. 21, but for the auxiliary branch in regions (4, 2), (4, 3) and (2, 3).

The dashed lines represent points with m̃A = 90 GeV (black), m̃A = 150 GeV (green), m̃A = 500

GeV (blue) and m̃A = 5000 GeV (yellow). For reference, we also show the case of the true mass

spectrum for point P32 (red solid lines), although P32 itself does not belong to the auxiliary branch.

point P32, i.e., with the true value m̃A = mA = 126.5 GeV. The black dashed line then

corresponds to the best fit, i.e., a mass spectrum with m̃A = 126 GeV, which was found to

maximize the quantity Σ̄ in the top left panel of Fig. 23.

4.3 A study with tt̄ dilepton background events

Our final task will be to repeat the P32 exercise with dilepton tt̄ events as was done in

Section 3.3. As before, we fix the number of signal events NS = 3000 and then consider

several values for the number of background events: NB = {3000, 4000, 5000, 6000}. In each

case, we compute the function Σ̄(m̃A) along the flat direction of Fig. 15. The results are

shown in Fig. 25, which has the same qualitative behavior as Fig. 23. The Σ̄ values for the
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Figure 23. The same as Fig. 11, but now taking point P32 as input and measuring along the flat

direction depicted in Fig. 15.

auxiliary branch tend to be low, and the branch is disfavored. The global peak of Σ̄(m̃A)

is again found in the vicinity of the right answer (for NB = {3000, 4000, 5000, 6000}, the

peak is at m̃A = {116, 125, 125, 125} GeV), and the large m̃A tail of the true branch is also

disfavored. One final consistency check is provided by Fig. 26, which shows a comparison

of the kinematic boundaries for the nominal study point P32 with mA = 126.5 GeV (red

solid lines), and the boundaries for the best fit value m̃A = 125 GeV (black dashed lines).

4.4 A detector level study

In this paper, we introduced the new Voronoi-based method for mass measurement as a

proof of principle, and showed that at the parton level it does reasonably well in the two

examples considered so far in Sections 3 and 4. Before concluding, we would like to also

test the method in the presence of detector effects (this subsection) and combinatorics (see

Sec. 4.5 below). For this purpose, we first repeat the exercise from Section 4.3, only this

time we account for the finite detector resolution by smearing the jet energies with the

typical hadronic calorimeter resolution

σ

E
=

(
1√
E

)
(4.1)
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Figure 24. The same as Fig. 12, but for the exercise performed in Section 4.2, with point P32 as

input (solid red lines). The black dashed line corresponds to the mass spectrum with m̃A = 125

GeV, which was found to maximize the quantity Σ̄ in the top left panel of Fig. 23.

and electromagnetic calorimeter resolution

( σ
E

)2
=

(
0.0363√

E

)2

+

(
0.124

E

)2

+ 0.00262 (4.2)

in CMS [108], with the energy measured in GeV. Smearing of the muon momenta is done

according to the “Full System” values in Fig. 1.5 of [108]. The result of the fitting exercise

is shown in Fig. 27. We see that the peak structure in the vicinity of the correct mass value

(126.5 GeV) is preserved, but somewhat degraded due to the detector resolution effects.
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Figure 25. The same as Fig. 13, but using study point P32 as input.

4.5 D-pair production and combinatorics effects

Our proposed mass measurement method uses a single decay chain like the one depicted

in Fig. 1. In that sense, the method is inclusive and model-independent, since it does

not depend on what else is going on in the event. In particular, the method is equally

applicable when particle D is produced singly, in pairs, or in association with another

object. Nevertheless, a well-motivated and widely studied class of models are the SUSY-

like dark matter scenarios in which all particles A, B, C and D carry negative parity under

the additional Z2 symmetry. In that case, D has to be produced in association with another

negative parity object. If A is a neutral dark matter candidate, then D must carry color,

therefore D pair-production is strong and may dominate the inclusive cross-section for D

production.

The presence of a second D decay chain in the event can either be a blessing or a

curse. If both D particles decay the same way, as in Fig. 1, we can attempt to double our

statistics by considering the second decay chain as well. However, this comes at a cost, since

now we have to face the combinatorial problem of associating the different reconstructed

final state objects to one of the two decay chains. First, there is a two-fold ambiguity of

associating each jet to the correct side, and furthermore, there is an additional two-fold

ambiguity in the case when all leptons are the same flavor. The simplest approach would

be to consider all possible combinations and use the resulting data set for building the

Voronoi tessellation, then proceeding with the fitting of the boundary surface as before.
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Figure 26. The same as Fig. 14, but for the exercise performed in Section 4.3, using study point

P32 as input. The red solid line is the phase space boundary for the nominal value mA = 126.5

GeV, while the black dashed line corresponds to the best fit value m̃A = 116 GeV found in the the

top left panel of Fig. 25.

The result from this exercise is shown in Fig. 28 for the case of 100 (left panel) and 500

(right panel) signal events. We see that despite the pollution from wrong combinatorics,

the peak in Σ̄ is still very well visible, and found in the right location.

Our final study is reserved for the most challenging example so far — a case with a

severe combinatorics problem, in the presence of SM (tt̄) background events. For signal,

let us again consider D-pair production, only this time let all three of the decay products of

the second D particle be QCD jets. Thus, each one of our signal events has 2 leptons and 4

jets, and picking the correct jet becomes a difficult task. Now, instead of using all possible
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Figure 27. The same as Fig. 25, but accounting for the detector resolution as described in the

text.

Figure 28. The same as Fig. 25, but for signal events where particles D are pair-produced and

decay as in Fig. 1. The left (right) panel is made with 100 (500) signal events.

combinations, we design a preselection cut in order to improve our chances of capturing

the correct jet pairing. For this purpose, we consider the four possible jet-lepton-lepton

combinations and compute the corresponding three-body invariant masses. Next, we rank-

order these four values [17, 18] and eliminate from further consideration the two jets which

correspond to the two largest jet-lepton-lepton invariant masses, since those jets are very

likely to come from the decay chain opposite the two leptons. The remaining two jets

still cause a two-fold ambiguity, which we handle as in Fig. 28: by simply plotting both
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Figure 29. The same as the lower two plots in Fig. 25, but for signal events where particles D

are pair-produced and one of them decays as in Fig. 1, while the other decays to 3 jets and particle

A.

combinations. The end result from the analysis is shown in Fig. 29. As in the example

from Sec. 4.3, here we also include a certain number of tt̄ background events: 5000 in the

left panel and 6000 in the right panel. The fact that the Σ̄ peak is again obtained in the

correct location indicates that our method can be viable in the presence of combinatorial

background due to pair production of particles D.

5 Conclusions

In this paper, we reconsidered the classic endpoint method for particle mass determination

in SUSY-like decay chains like the one shown in Fig. 1. Our main points are:

• We have identified a “flat direction” in the mass parameter space (1.1), along which

mass differences can be measured relatively well, but the overall mass scale remains

poorly constrained. (The analytical formulas parametrizing this flat direction can be

found in Appendix A.) We quantified the problem with examples of specific study

points, P31 and P32, considered in Sections 3 and 4, respectively.

• We then proposed a new method for mass measurements in general, and for extracting

the mass scale along the flat direction, in particular. The method takes advantage of

the changes in the shape of the two-dimensional kinematic boundary surface within

the fully differential three-dimensional space of observables, as one moves along the

flat direction. We have tested our Voronoi-based algorithm [93, 95] for detecting the

boundary surface and demonstrated that it can be usefully applied in order to lift the

degeneracy along the flat direction. This approach represents the natural extension

of the one-dimensional kinematic endpoint method to the relevant three dimensions

of invariant mass phase space.

• We introduced a new variable, Σ̄, which is the average RSD per unit area, calculated

over the hypothesized kinematic boundary. We showed that the location of the Σ̄

maximum correlates very well with the true values of the new particle masses, see

Figs. 11, 13, 23, 25, and 27.
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The work reported here can be extended in several directions. First of all, the method

can be readily generalized to longer decay chains with more visible particles, where the

boundary enhancement is even more pronounced [94], and therefore, the detection of the

boundary surface should be in principle easier. One could also try to apply Voronoi-based

boundary detection algorithms for the discovery of new physics. It is also interesting to

develop a general and universal method for estimating the statistical significance of the

local peaks found in Figs. 11, 13, 23 and 25, and hence the statistical precision of our mass

measurement. These, along with many other interesting questions, will be investigated in

future studies [109].
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A Inverse formulas

In this appendix we derive the inverse relations which define mB, mC and mD in terms of

the three measured endpoints

a ≡ (mmax
ll )2 , b ≡

(
mmax
j``

)2
, c ≡

(
mmax
jl(low)

)2
, (A.1)

and the remaining mass parameter mA. For simplicity of notation, in this appendix we

shall omit the tildes on the trial mass parameters mA, mB, mC and mD.

The case of region (3, 1)

Region (3, 1) is defined by the following conditions

RAB ≤ RBCRCD = RBD, (A.2)

RBC ≥
1

2−RAB
. (A.3)

The kinematic endpoints are given by the following formulas:

a = m2
D RCD (1−RAB)(1−RBC), (A.4)

b = m2
D (1−RBD)(1−RAB), (A.5)

c = m2
D (1−RBC)(1−RCD), (A.6)

d = m2
D (1−RCD)(1−RAB). (A.7)

The masses of B, C and D are given by

m2
B =

1

2c

{
2m2

Ac+ a(b− a− c) +
[
4m2

Aac(b− a) + a2(b− a− c)2
]1/2}

, (A.8)
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m2
C = m2

B

(
1 +

a

m2
B −m2

A

)
, (A.9)

m2
D = m2

B

(
1 +

b

m2
B −m2

A

)
, (A.10)

where in the right hand sides of the last two equations mA is an input, while mB is

calculated from (A.8). Using (A.2) it is easy to show that in this region, we always have

b− a− c = m2
D (1−RCD)(RBC −RAB) ≥ 0,

so that (A.8) always gives a non-negative result for m2
B. Substituting (A.8-A.10) into

(A.7), one can explicitly check that the mA dependence drops out and we recover the

“bad” relation (2.12) in the form

d = b− a. (A.11)

The case of region (3, 2)

Region (3, 2) is defined by the following two conditions:

RAB ≤ RBCRCD = RBD, (A.12)

RBC ≤
1

2−RAB
. (A.13)

The kinematic endpoints are given by the following formulas:

a = m2
C(1−RAB)(1−RBC), (A.14)

b = m2
D(1−RAB)(1−RBD), (A.15)

c = m2
D(1−RCD)(1−RAB)(2−RAB)−1, (A.16)

d = m2
D(1−RCD)(1−RAB). (A.17)

The masses of B, C and D are given by [101]

m2
B =

cm2
A

2c− b+ a
, (A.18)

m2
C = m2

B

(
1 +

a

m2
B −m2

A

)
, (A.19)

m2
D = m2

B

(
1 +

b

m2
B −m2

A

)
. (A.20)

In this region, we always have

2c− b+ a = m2
D (1−RCD)

(
2

2−RAB
− 1

)
≥ 0,

so that (A.18) always gives a non-negative result for m2
B. The “bad” relation (2.12) is again

satisfied in this region, so that along the flat direction the endpoint d is again constant and

given by (A.11), providing a useful cross-check on the obtained solution (A.18-A.20).
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The case of region (2, 3).

Region (2, 3) is defined by the following condition:

RBC ≤ RABRCD, (A.21)

The kinematic endpoints are given by the following formulas:

a = m2
C(1−RAB)(1−RBC), (A.22)

b = m2
D(1−RBC)(1−RABRCD), (A.23)

c = m2
D(1−RCD)(1−RAB)(2−RAB)−1, (A.24)

d = m2
D(1−RCD)(1−RBC). (A.25)

The masses of B, C and D are given by

m2
B =

2m2
A(b− a) + a(2c− b+ a) +

[
4m2

Aac(b− a) + a2(2c− b+ a)2
]1/2

2(b− a)
, (A.26)

m2
C = m2

B

(
1 +

a

m2
B −m2

A

)
, (A.27)

m2
D =

(
1 +

a

m2
B −m2

A

)[
b

a

(
m2
B −m2

A

)
+m2

A

]
. (A.28)

Using (A.22), (A.23) and (A.25) it is easy to show that in this region, we always have

b− a = d ≥ 0,

and while the term (2c− b+ a) can have either sign, the discriminant (i.e., the term inside

the square root in (A.26)) is always larger than a2(2c − b + a)2, which guarantees a non-

negative result for m2
B. In this region, the relation (2.12) is again satisfied, so that d is

again given by (A.11), which can be used to cross-check the result (A.26-A.28).

The case of region (4, 1).

Region (4, 1) is defined by the following conditions:

RAB ≥ RBCRCD = RBD, (A.29)

RBC ≥
1

2−RAB
, (A.30)

RCD ≥ RABRBC = RAC . (A.31)

For the case (4,1) the endpoints are given by the following formulas:

a = m2
C(1−RAB)(1−RBC), (A.32)

b = m2
D(1−

√
RAD)2, (A.33)
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c = m2
D(1−RCD)(1−RBC), (A.34)

d = m2
D(1−RCD)(1−RAB). (A.35)

The masses of B, C and D in terms of a, b, c and mA are given by

m2
B =

am2
D + cm2

A + (m2
A − a)(a+ c) + a

[
(a+ c−m2

A −m2
D)2 − 4m2

Am
2
D

]1/2
2(a+ c)

, (A.36)

m2
C = m2

B

(
1 +

a

m2
B −m2

A

)
, (A.37)

mD = mA +
√
b, (A.38)

where in (A.36) mD should be taken from (A.38), and the obtained result for mB should

be used in (A.37). The d endpoint is given by

d = b− a−m2
D

(√
RAB −

√
RBD

)2
(A.39a)

=
ac
{

(b− a− c)
[
b(1 +

√
r) + 2mA

√
b
√
r
]

+ 2(2b− a− c)(mA

√
b+m2

A)
}

(a+ c)
[
a(b− a− c)(1 +

√
r) + 2amA

√
b+ 2(a+ c)m2

A

] , (A.39b)

where

r ≡ 1 +
4mA(mA +

√
b)

b− a− c . (A.40)

The case of region (4, 2).

Region (4, 2) is defined by the following conditions:

RAB ≥ RBCRCD = RBD, (A.41)

RBC ≥ RAB, (A.42)

RBC ≤
1

2−RAB
, (A.43)

RCD ≥ RABRBC = RAC . (A.44)

The kinematic endpoints are given by the following formulas:

a = m2
C(1−RAB)(1−RBC), (A.45)

b = m2
D(1−

√
RAD)2, (A.46)

c = m2
D(1−RCD)(1−RAB)(2−RAB)−1, (A.47)

d = m2
D(1−RCD)(1−RAB). (A.48)

The masses of B, C, D in terms of a, b, c,mA are the following

m2
B =

1

2

[
m2
D +m2

A − a− 2c±
√

(m2
D +m2

A − a− 2c)2 − 4m2
A(m2

D − c)
]
, (A.49)
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m2
C = m2

B

(
1 +

a

m2
B −m2

A

)
, (A.50)

mD = mA +
√
b. (A.51)

Here, just as in (A.36-A.38), one should first find mD from (A.51), then use the result in

(A.49) to obtain mB, which will be needed in (A.50). The d endpoint is then given by

d = b− a−m2
D

(√
RAB −

√
RBD

)2
(A.52a)

=

c

[
a+ 3b− 2c+ 6mA

√
b+ 2m2

A −
√

(b− a− 2c+ 2mA

√
b)2 − 4(a+ c)m2

A

]
2(b− c+ 2mA

√
b+m2

A)
.(A.52b)

The case of region (4, 3).

Region (4, 3) is defined by the following conditions:

RAB ≥ RBC , (A.53)

RBC ≥ RABRCD, (A.54)

RCD ≥ RABRBC = RAC . (A.55)

For the case (4,3) the endpoints are given by the following formulas:

a = m2
C(1−RAB)(1−RBC), (A.56)

b = m2
D(1−

√
RAD)2, (A.57)

c = m2
D(1−RCD)(1−RAB)(2−RAB)−1, (A.58)

d = m2
D(1−RCD)(1−RBC). (A.59)

The masses of B, C, D in terms of a, b, c,mA are the following

m2
B =

1

2

[
m2
D +m2

A − a− 2c−
√

(m2
D +m2

A − a− 2c)2 − 4m2
A(m2

D − c)
]
, (A.60)

m2
C = m2

B

(
1 +

a

m2
B −m2

A

)
, (A.61)

mD = mA +
√
b, (A.62)

where again the masses are calculated in the order mD, mB and then mC . The d endpoint

is given by

d = b− a−m2
D

(√
RBC −

√
RABRCD

)2
(A.63a)

=

4ac

[
b− a− 2c+ 2mA

√
b+m2

A −
√

(b− a− 2c+ 2mA

√
b)2 − 4(a+ c)m2

A

]
(
b− 2c+ 2mA

√
b−

√
(b− a− 2c+ 2mA

√
b)2 − 4(a+ c)m2

A

)2

− a2
.(A.63b)
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