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Abstract

We derive simple techniques which allow us to relate Picard-Fuchs differential equations
for the periods of holomorphic p-forms on certain complex manifolds to their moduli space
and its modular group (target space duality). For Calabi-Yan manifolds the special geometry
of moduli space gives the Zamolodchikov metric and the Yukawa couplings in terms of the
periods. For general N = 2 superconformal theories these equations exactly determine
perturbed correlation functions of the chiral rings of primary fields.
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Picard-Fuchs Equations and the Moduli Space of
N = 2 Superconformal Field Theories

Introduction

Recently, stunning developments have occurred in the understanding of the moduli space
of a class of superconformal field theories (SCFT), the N = 2 theories which are related
to target-space supersymmetry [1}. The progress has been achieved in three different areas,
namely Landau-Ginzburg [2] models, topological (N = 2 twisted) SCFT’s [3, 4, 5, 6] and spe-
cial geometry of Calabi-Yau (CY) moduli space [7]-{11]. In particular, with seemingly rather
different techniques, the dynamics of SCFT’s, which determines the evolution in coupling
constant space of the correlation functions, has recently been encoded in certain differential
equations for some functions of the “moduli” deformations which in turn determine all other
correlation functions. This is rather transparent in SCFT’s and in the special geometry of
Calabi-Yau threefolds where all the dynamical information on the moduli evolution relies
on a holomorphic function F(¢) of the moduli coordinates (two functions in the case of
CY threefolds due to the two independent spaces of moduli deformations). On the other
hand, although there are strong similarities between topological theories and special geom-
etry, their structure is rather different. For instance in topological field theories the space
of deformations is locally flat, while this is not so for the special geometry. Moreover the
formula [6]

< ¢ididr >= 0;0,00.F = Cyj (1)

is valid for any deformation (both marginal and non-marginal) in topological theories, irre-
spective of the value of the central charge ¢ (related to the U(1) charge). On the contrary
in special geometry , equation (1) plays a particular role due to the special value of ¢ = 9.
In fact in the latter case Cjj is related to the Yukawa couplings of the 27 and 27 families,
as well as to the metric of the moduli space [7]. Such a metric is given by

Gy = 0:6;K
K = —log(2F 4+ 2F — (¢ — ) (F: = F) (2)
In terms of the prepotential appearing in (1) the Riemann tensor satisfies the relation [11]
Ri}'lﬁ = G,‘E,‘G”', + G,‘EGG — (CXP 2K) a{alakf 335;65.7:" Gpﬁ (3)

Equation (8) has been derived both from N = 2 space-time supersymmetry and from
the superconformal Ward identities. Interestingly it can also be derived from algebraic
geometry, as an equation for the metric of the (1,1) and (2, 1) moduli of CY threefolds given
respectively by



Gi; = 0:6;Y (4)
Y = —logV

where V = fJAJAJ (for the Kahler class deformations) and V = 2 f QA (for the complex
structure deformations); J is the Kahler two-form and (2 is the deformed holomorphic three-
form.

In this note we will show, based on a previous conjecture of one of the authors [12], that
the equations defining the non-trivial moduli dependence of the correlators are nothing but
the differential equations, known as Picard-Fuchs equations, for the periods associated to the
defining polynomial X in CP"™ which specifies the manifold of compactification. Although
the method is completely general we will apply it to the case of two rather different manifolds
which correspond to a ¢ = 3 and a ¢ = 9, N = 2 superconformal field theory, respectively,
the (Z; orbifoldized) torus and the mirror manifold of P4(5). These manifolds are similarly
manageable because they correspond to a defining cubic and quintic polynomial with one
marginal deformation. However it should be noted that regarded as complex manifolds they
are rather different, as shown by their moduli space and associated duality groups (discrete
isometries). In principle the differential equations for the periods can be obtained explicitly
by evaluating the periods as integrals of the deformed p-form along the b, homology cycles
(b, is the p - Betti number). In the examples under consideration, p = 1, b = 2 for the
torus, and p = 3, bs = 4 for the CY manifold. The periods are given by

()= [ Q) a=1,..5, (5)

It is not an easy task to evaluate (5) for generic manifolds, although for the two examples
at hand this was explicitly done [8, 9, 10]. A better strategy consists of writing a matrix first-
order differential equation (for the case of one modulus), which only uses a special mapping
from a certain polynomial basis associated to the defining polynomial and the cohomology
spaces (H*' and H>? in the CY case). Using this method there is no real difference between
the cubic and the quintic, with the exception that the matrix is 2 x 2 in one case and 4 x 4 in
the other case, yielding precisely the second- and fourth-order Picard-Fuchs equations whose
independent solutions are exactly the periods of the deformed one-and three-forms in each
case [13].

Mathematical Preliminaries

In this section we intend to give a brief summary of the essential elements of the math-
ematical work that implements the program sketched above. Our objective is to give the
reader a guide to the major results without presenting derivations or proofs, and then pro-
ceed to specialize to the two examples that we have been addressing. We base our results
totally on the work completed in the 1960°s by B. Dwork and N. Katz [14, 15, 16] and we
do not pretend with this brief summary to do justice to such complete and rigorous papers.



An appropriate point to start is with the simple case of a non-singular projective curve
X of genus g defined over a field K of characteristic zero. A meromorphic differential of
the second kind, is determined by the fact that all its residues are zero. Define the quotient
space of differentials of the second kind modulo exact differentials. The periods can then be
obtained by integrating an element w of the quotient space over a basis (y;¢ = 1...2g) of
H,(X, K). The effect of this is to map the quotient isomorphically to K 29. Then the quotient
is dual to H,(X, K) and identified with H'(X, K), defining in this way a cohomology group
that is defined over K.
In general X will depend on certain K parameters. It is natural to expect the periods to
depend on such parameters and to be able to be differentiated with respect to them. Given
a derivation D of K it is found that the quotient space has the structure of a module over
the algebra of derivations of the base field K and that the periods satisfy the Picard-Fuchs
equations
2g
Z a; D w=0
i=0 Vi

with apy - .., 02 eK.

One expects the same to occur for a non-singular A of higher dimension. However in
this case the differentials of the second kind no longer give the cohormology over K as they
do for curves. A closed meromorphic differential w on X is of the second kind if there is an
open set X° where no coordinate vanishes and w is holomorphic. The cohomology class on
X° determined by w lies in the image of the restriction H{(X) — H(X°®). Then in analogy
to the curve, the differentiation of cohomology will give rise to Picard-Fuchs equations for
the subspace of H(X°) spanned by the differential of the second kind.

With these initial remarks completed we can proceed to give a general description of the
program of Dwork and Katz. We will first introduce the various spaces and mappings in
order to give an overview, and will proceed to define them in the next section.

Start with a projective hypersurface X in CP™, defined over a field K of characteristic
zero. Let X° be the open subset where no coordinate vanishes. H™ 1(X) and H"~1(AX°) are
the (n — 1) dimensional cohomology groups. As described above, H*"(X) and H™~(X°)
are modules over the algebra of derivations of K. In general the hypersurface can be defined
by a polynomial f(X, ) of degree d with coeflicients in K (1) and where X stands for the
coordinates of the embedding space. Associated to this polynomial Dwork and Katz develop
a series of polynomial spaces and establish an isomorphism © of one of this spaces W¥,
(described later), with the image of H*~*(X) in H"~!(X°). Furthermore, for any derivation
D of the definition polynomial f, the equations of deformation of Dwork, given by the action

of a certain operator Gp on W¥, are identified with the Picard-Fuchs equations on the image
of A" 1(X) in H™1(X°).



The mapping from polynomial to cohomology spaces
First let us define a set of symbols that will be useful for the purpose of indexing.
I={w=(wo,ws,..., Wnp1)lw € Z}? dwo=w; +... w41}
A={ueclo<wu;<di=1,...,n+1}

A={ue A<y, <d,i=1,...,n+1}

Let Ly be the space of polynomials of the type ¥, c; B, X", with B,, € K(¢)) and the
monomials X* = Xg* ... X7+, Some of the relevant subspaces are:

LO,wOZI; LY, w; > 0; L+°=L°ﬂL+; Ls,w,-ZI

For a given polynomial form f(X,%) and f; = X; 3 X , the following operators can be
defined on L.

0
Do = -DXD Xoa—X.D +X0f
0 :
Di=DX.'=Xiﬁ+X0fi (z=1,...,n-|—1) (6)

For each derivation D of the field K we have a derivation, Gp = D + X f7, of L, where
D acts only on the coefficients and fP is the result of applying D to the coefficients of f.

The essence of the program is to construct a generic mapping from L° to H™ 1(XP°).
It is found that corresponding to each element XoX*'; (w' = (wy,...,wny1)) there is a
differential form regular on X° given in local coordinates z; = Xfll as:

X¥dz A ... ANdz,_,
X —a-%i'] NN |

(7)

Focusing on the spaces that we intend to analyze, the form f will be given by

n+l n+1

FX. ) =3 X+ h(X,¢) = Y XP +¥h(X) (8)

i=1 =1

For the f given above , G, = % + Xoh({X), so that L° considered as a module for the
derivations of K is spanned by the elemenis of X, degree. Based on this fact a surjection is
established such that

0 : L°/(DoL + ZD;LO) — H"1(x%) (9)
With W5 given by
n+1
WS = L5 /(L°((DoLt + 3 D:iL™) (10)
i=1



© then establishes the isomorphism of W5 with the image of H*"1(X) in H"1(X°).
Choice of basis and explicit calculations

Up to this point we have given very general statements about the mappings between
the space of polynomials and the cohomology spaces. In order to actually construct the
differential equations described earlier, we must enter deeper into the polynomial spaces.

Let L,(;") be the space of all elements £ of Ly, whose X, degree is not greater than m. Let

U be a subspace of L™, For a given set of ¢ € K it is possible to write

n+41
JAL NS 5§ + Z D,"%L("_l)

=1

When the defining polynomial f{X,) has the additional 1) dependence, the last expres-
sion becomes

n+41l 1
L) = Uy + Y. Diy LGV (11)
i=1

where Uy is the vector space over K(3).
It is possible to choose a basis of elements {{¢.}.ca} for €, € K[X, 1] such that

n+41
L0 = Y e K(¥)+ 3 Dig LG, (12)
HEA =1

Let us define Ay to be the dual space to Ly/ >4 D;yLy. Given u € A there exists
:l.,'.b € 4411; such that

< Lo &0 >= buo. (13)

For the given f(X,%) let R(¢) be the resolution of the (fi,..., fut1). Let 1o € K be
such that R(to) # 0. For a given v and if ¢ is close enough to to, such that | — 1] < 1,
there exists an isomorphism between Ay and Ay which can be described explicitly. Let

h(to, %, X) = —h(¥,10.X) = f(X, %) — f(X,%0). Construct

G(¢0: TP:X) = €xp (Xﬁh(ltboa ¢1 X)) (14)
With X4 if <0
uy %o U =
7-(X¥) = 0 otherwise

Dwork defines an operator Tyoy = v— 0 G(t0, %, X)™! which provides an isomorphism
from Ayo to Ay.

Defining Aﬁ to be the annihilator of L® in A, the factor space Ay /Aﬁ is the dual space
of L5/(L5 N DiyL). 1t is possible then to also obtain an isomorphism between Ayq/ A3,
and Ay/ Ag given by the generator Tyoy, provided R # 0 for both ¢ and .

5



Since it can be shown [14, 15] that a basis for Ay /A3 is given by {£ }uear it is natural
to calculate the matrix C' = C(4o, ) for the operator T. Explicitly,

Cuu(¢0: 'ﬂb) =< T'tbﬂ.'l.b 6:,11;0,‘51) > (15)
for u,v € A'.
Differentiating the last equation with respect to ¥ one can obtain
ac
3 = CB®) (16)
with '
. of
Buv("nb) =< Eu,;b?XD@Ev > (17)

As will be shown, in the basis introduced above, one can find that the matrix equation
(18) is precisely the Picard-Fuchs equation for the period matrix P(¢), where actually the
matrix C is the transpose of the standard P matrix.

The Torus and the Quintic

The case of the torus was originally constructed by Dwork [15]. Here we report his result
and then proceed to give our calculation of the mirror space to Py(5). Below D; = D; , and
we take ¢ = 0 giving |4} < 1.

For the torus the defining polynomial is given as

F(X, ) = ix? ~ 3P X1 X X5 (18)

=1

Here A(X) = 55 = —3X1 X, X3, and A’ = {(1,1,1,1),(2,2,2,2)}, giving & = XoX1 X5 Xa;
52 = XngX:ang-

Xoh(X)§1 = -3
Xoh(z)t, = -3X3X3X3X3
By applying the expansions of (12) to the last term above, one obtains the B matrix

such that v
0~y
a_c =C ( 3(1{;'&' ) ) (19)

o) -3 E

The matrix equation can be further analyzed, showing that the matrix C can be given as

wd

i Y
c=1{“ "3
Lk

W 3

[



where the two periods w satisfy the second-order differential equation
(1 — 9w =3¢’ —gw =10 (20)

In this model, taking the ratio of the two periods, one gets the very same differential equation
for the a(y) function related to the ratio of two three-point functions of the associated
TSCFT. This equation was derived by other methods in [10, 17], using (1), together with
the associativity of fusion rule coefficients and the conservation of the U(1) charge.

For the case of the quintic we have the defining polynomial given by

[
f(X,0) =Y X} — 5 X Xo X3 X4 X5 (21)

=1

Here h(X) = —5X;X;X3X4 X5 and the basis is given by £ = XoX; XXX, X5; & =
(51)2; €3 = (51)3; s = (51)4-

Xofl = “‘552
Xo2 = —553
Xofs = —554

Xobs = —5X05X15X25X§X45X§

Again one must expand the last expression into the lower dimensional basis. The calcu-
lation is straightforward and just slightly longer than for the torus example. We get

0 0 O _1255,}5——'#5)
oC -5 0 0 2
3 - 0o =5 o S (22)

(11;:1’5)

0 0 -3 10(17,;)

As in the case of the last example one can find relations between the entries of the matrix
C. We obtain that for each row, the coefficients that are identified with the periods obey
the fourth-order differential equation

(1 — 'V — 109%™ — 25¢°w — 159w’ — Y =10 (23)
If one performs the change of variables z = ¢»° the last equation becomes

(=2 i S W e s Y T g

The solutions of the differential equation (24) can be given by the generalized hypergeometric
function

w=10. (24)

(25)

(k1) Ekﬁi.k+1 k+2 k+3 k+4_
20 B\ 5 5 0 5 7 5

7



with k£ = 1,2,3,4. In the second set of parameters that parameter which is unity must be

omitted. Equation (25) is precisely equation (3.13) of [8], obtained, essentially, from the
direct calculation of the periods for the parameter region [i| < 1.

Relation with special geometry

It is clear that the very same method displayed here can in principle be generalized to
other spaces and to the case of multidimensional varieties (hz; > 1). In that case one will
generalize to partial differential equations for the periods giving rise to 3 linearly independent
solutions *. The interesting point is that these equations together with their monodromy
will also determine the quantumn duality group of the moduli space, which is a subgroup of
Sp(ba; Z) and has a linear action on the periods [18]. For the torus this group trivializes to
S1(2, Z) and for the mirror P,(5) it was recently obtained in [8, 9]. In the case of the c = 9,
the periods along the B cycles can be obtained from the periods along the A [7] cycles, in
terms of derivatives of a “prepotential” 2

F,,:z'jﬁﬂz%, L“=jAQ (26)

with the properties F,L* = 2F, F = (L°)*F.

Equations (1) and (4) can be rewritten in a general coordinate basis as®

G,"; - a{LABEEBGAE (2,5 =1... hZ,I:A,B =1... hz,] + 1)
GAB = —BAagIog(LAFA + I;AFA)

C,'jk = B;LABjLBa,,LGFABC
where iFyp = 10,05 F is the period matrix Q45. The determinant of the imaginary part of

this matrix satisfies the property

3:0; log det Im§Y = —Cy,, C55,GPPG exp 2K

Ipq

namely it can be expressed as a “norm” of the fusion rule coeflicients C;;;, of the SCFT [19].
Remarkably this quantity determines a target space non-holomorphic modular anomaly [20]

1The two cohomology spaces H*' and H'' are related to each other by the mirror symmetry [22] of
N =2 SCFT. So it is generally sufficient to study the H%! cohomology.

21t should be noted that the prepotential F ie defined up to an Sp(bs, Z) rotation of the periods. This
corresponds to a coordinate transformation which preserves the special geometry.

3The tensors C;;; are holomorphic sections in L x I where L is a certain line bundle over the moduli
gpace, ((1,1) and (2,1) deformations). The two tensors C' with their conjugates correspond to fusion rule
coefficients of the four chiral rings of TSCF1’s. To get the Zamolodchikov metrics one has to fuse the two
chiral rings of (chiral-chiral and chiral-antichiral) primary fields with their Hermitian conjugates.

8



in complete analogy with a similar quantity for genus ¢ Riemann surfaces [21]. This anomaly
has important physical implications in that it determines threshold effects in GUT’s due to
the infinitely many massive states of the string spectrum.
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