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Abstract: In type II string theory compactified on a d-dimensional torus T d down to

D = 10−d dimensions, the R4 and ∇4R4 four-graviton couplings are known exactly, for all

values of the moduli, in terms of certain Eisenstein series of the U-duality group Ed(Z). In

the limit where one circle in the torus becomes large, these couplings are expected to reduce

to their counterpart in dimension D+1, plus threshold effects and exponentially suppressed

corrections corresponding to BPS black holes in dimension D + 1 whose worldline winds

around the circle. By combining the weak coupling and large radius limits, we determine

these exponentially suppressed corrections exactly, and demonstrate that the contributions

of 1/4-BPS black holes to the ∇4R4 coupling are proportional to the appropriate helicity

supertrace. Mathematically, our results provide the complete Fourier expansion of the

next-to-minimal theta series of Ed+1(Z) with respect to the maximal parabolic subgroup

with Levi component Ed for d ≤ 6, and the complete Abelian part of the Fourier expansion

of the same for d = 7.
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1 Introduction

The lowest four-graviton couplings in the effective action of string vacua with maximal

supersymmetry have been under intense scrutiny since [1], as they provide one of the

few examples of non-trivial observables in string theory which are computable exactly,

beyond perturbation theory. Indeed, by combining invariance under U-duality, supersym-

metric Ward identities, and perturbative computations at low order, it was shown that

the R4 and ∇4R4 couplings in type II string theory compactified on a torus T d down to

D = 10 − d dimensions are given by specific automorphic functions of the moduli fields

known as maximal parabolic Eisenstein series [2–15]. More precisely, the R4 and ∇4R4

are proportional to the minimal and next-to-minimal theta series of the U-duality group

GD(Z) ≡ Ed+1(Z), which arise from the maximal parabolic Eisenstein series EGD
sΛ1

at spe-

cial values s = 3/2, 5/2 of the parameter s. Besides reproducing the known perturbative

contributions at weak string coupling, and predicting the vanishing of all higher order

perturbative contributions, these automorphic functions also display an infinite series of

instanton corrections from BPS branes wrapping supersymmetric cycles in T d, providing

invaluable probes into the non-perturbative regime of string theory. Mathematically, these

instanton corrections correspond to the Fourier coefficients of EGD
sΛ1

with respect to the
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maximal parabolic subgroup P1 with Levi subgroup R
+ × Spin(d, d). Despite being also

protected by supersymmetry, the ∇6R4 coupling is not a parabolic Eisenstein series (or

residue thereof) but a more complicated type of automorphic function [16–20], and its

instantonic corrections have yet to be fully analyzed .

At the same time, these protected couplings in dimension D can serve as useful book-

keeping device for precision counting of black hole micro-states in dimension D+1 [21, 22].

Indeed, in the limit where the radius R of one circle in T d becomes very large, effective

couplings in dimension D are expected to reduce to the same couplings in dimension D+1,

up to power-like threshold effects [8, 23] and, more importantly for us, exponentially sup-

pressed corrections from Euclideanized D+ 1-dimensional black holes winding around the

circle (in addition, when D = 3 there are also further exponentially suppressed contribu-

tions from Taub-NUT instantons). In particular, the R4, ∇4R4 and ∇6R4 couplings are

expected to receive contributions from 1/2-BPS, 1/4 and 1/8-BPS black holes in dimension

D + 1, respectively, weighted by the corresponding BPS indices. Indeed, general mathe-

matical results on the wave-front set of automorphic forms [24, 25] can be used to show

that the Fourier coefficients of the minimal and next-to-minimal theta series with respect

to the maximal parabolic subgroup Pd+1 with Levi R+×Ed(d) vanish unless the charge vec-

tor satisfies the corresponding 1/2-BPS or 1/4-BPS constraint [11, 13]. These constraints

also follow from the tensorial differential equations satisfied by these couplings, which in

turn are consequences of supersymmetry Ward identities [14, 15, 26]. In the case of the

∇6R4 coupling, the analysis of [20, 26] confirms that the wave-front set of E (D)

(0, 1) for D = 3

coincides with the nilpotent orbit supporting 1/8-BPS black holes [27], whereas it suggests

that this connection may be lost in D = 4. The relation between the summation measure

for instantons in dimension D = 3 and BPS index in dimension D + 1 = 4 is also well

established in the case of supersymmetric gauge theories [28–30], and was demonstrated

recently in the analogous case of F 4 and D2F 4 couplings in string vacua with half-maximal

supersymmetry [31]. Our main goal in this paper will be to show that this expectation is

also borne out for the ∇4R4 couplings in type II string theory compactified on T 10−D with

D = 3, 4, 5: namely, that the summation measure for 1/4-BPS instantons of charge Q in

dimension D reproduces the expected helicity supertrace Ω12(Q) which counts (with signs)

1/4-BPS black hole states in D + 1 dimensions. In the process, we shall also obtain the

complete Fourier expansion of the next-to-minimal theta series for Ed+1(d+1) with respect

to the parabolic subgroup Pd+1 for d ≤ 6, or its Abelian part in the case of d = 7.

The outline of this note is as follows. In Section 2, we review well known facts about

BPS states and helicity supertraces in toroidal compactifications of type II string theories,

In Section 3, we study the decompactification limit of the ∇4R4 coupling in dimension

D, by first considering the large radius limit of the known perturbative contributions, and

then covariantizing the result under U-duality. In Section 4, we provide an alternative

derivation of this result by representing the maximal parabolic Eisenstein series as an

Epstein-type sum over an Ed(Z) invariant lattice subject to certain quadratic constraints.

In particular for d = 8 we construct a lattice in the Lie algebra of E8(8) which is invariant

under the Chevalley group E8(Z) and has a single orbit of primitive rank-one elements.

We conclude with a brief discussion in Section 5. Appendix A contains computations of
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decompactification limits of certain modular integrals which appear in the perturbative

expansion of the ∇4R4 coupling, appendix B studies the tensorial differential equations

satisfied by the Fourier coefficients, and appendix C gives some details on the construction

of certain invariant lattices under the Chevalley groups Ed+1(d+1)(Z).

2 BPS degeneracies and helicity supertraces

Before studying the Fourier expansion of the minimal theta series, it is useful to review

some known results about type II string theory compactified on T 6. Recall it is described

at low energy by N = 8 supergravity, including 70 scalar fields valued in the coset space

E7(7)/SU(8), 28 Maxwell fields and their magnetic duals. Electromagnetic charges take

values in a 56-dimensional lattice, equipped with an integer symplectic pairing 〈Γ,Γ′〉
invariant under the action of E7(Z). Since the charge lattice transforms as a module with

highest weight Λ7 under E7(Z), where Λ7 is the fundamental weight associated to the 7-th

node in the Dynkin diagram of E7 using Bourbaki’s labeling, we shall denote this lattice

by ME7
Λ7

∼= Z
56 (see Appendix C for some details on the construction of ME7

Λ7
and other

lattices).

The supersymmetry algebra {Qi
α, Q

j
β} = εαβZ

ij includes a complex antisymmetric

8×8 matrix Zij = Zij known as the central charge matrix, which depends on the moduli in

E7(7)/SU(8). Generic supersymmetric multiplets constructed out of a spin j representation

have 215Dj bosonic states and as many fermionic states, with Dj = 2j+1. Half-BPS states

occur when all skew-eigenvalues of Zij are equal in absolute value and the sum of their

phases vanish, and have 27Dj bosonic states and mass

M1/2(Γ) = |Z(Γ)|2 = Zij(Γ)Z
ij(Γ) . (2.1)

1/4-BPS states occur when the absolute values of the skew-eigenvalues of Zij are equal in

pairs and the sum of their phases vanish, and have 211Dj bosonic states and mass

M1/4(Γ) =

√

|Z(Γ)|2 + 2
√

∆(Γ) , (2.2)

where

∆(Γ) = 2Zij(Γ)Z
jk(Γ)Zkl(Γ)Z

li(Γ)− 1

4
(Zij(Γ)Z

ij(Γ))2 . (2.3)

1/8-BPS states occur when at least one skew-eigenvalue of Zij does not vanish and have

213Dj bosonic states. Their mass formula will not be needed in this paper.

It was shown in [32] that the 1/2-BPS condition on the central charge matrix Zij(Γ)

for black hole solutions is equivalent to the condition

1/2-BPS : Γ× Γ = 0 , (2.4)

on the charge vector Γ ∈ Z
56, where Γ× Γ denotes the projection of the symmetric tensor

product 56⊗s 56 on the adjoint representation 133 of E7(7). The condition (2.4) defines a

28-dimensional cone C1/2 inside R
56, isomorphic to the homogeneous space E7(7)/(E6(6) ⋉

R
27), where the denominator is the stabilizer of a non-zero 1/2-BPS charge vector [33]. We
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shall refer to vectors Γ such that Γ× Γ = 0 as ‘rank-one’ vectors. Similarly, the 1/4-BPS

condition on Zij(Γ) is equivalent to the condition

1/4-BPS : I ′4(Γ) = 0 , Γ× Γ 6= 0 (2.5)

on the charge vector, where I ′4(Γ) is the projection of 56 ⊗s 56 on the 56 representation

of E7(7). Equivalently, I
′
4(Γ) is the gradient of the quartic polynomial

I4(Γ) = 16Zij(Γ)Z
jk(Γ)Zkl(Γ)Z

li(Γ)− 4(Zij(Γ)Z
ij(Γ))2 (2.6)

+
1

6
εijklmnpqZ

ij(Γ)Zkl(Γ)Zmn(Γ)Zpq(Γ) +
1

6
εijklmnpqZij(Γ)Zkl(Γ)Zmn(Γ)Zpq(Γ) ,

which is invariant under the action of E7(7) on R
56 and independent of the moduli. The

conditions (2.5) define a 45-dimensional cone C1/4 in R
56, isomorphic to the homogenous

space E7(7)/[Spin(6, 5)⋉R
32+1], where the denominator is the stabilizer of a non-zero 1/4-

BPS charge vector [33]. We shall refer to vectors Γ satisfying (2.5) as ‘rank-two’ vectors.

It is worth noting that the condition Γ × Γ = 0 implies I ′4(Γ) = 0, which itself implies

I4(Γ) = 0. In contrast, generic 1/8-BPS states have I4(Γ) 6= 0.

In general, to count BPS states preserving a certain fraction of supersymmetries, it is

useful to consider the helicity supertrace [34, 35]1

Ωn(Γ) =
(−1)n/2

n!
Tr′Γ(−1)2J3(2J3)

n , (2.7)

where Tr′Γ denotes the trace in the superselection sector with electromagnetic charge Γ ∈
Z
56, after factoring out the bosonic center of mass degrees of freedom, and the helicity J3

is the generator of rotations around a fixed axis. The traces Ωn are most easily obtained

from the ‘helicity generating function, or ‘refined index’ Ω(Γ, y),

Ωn(Γ) =
(−1)n/2

n!
(y∂y)

n Ω(Γ, y)|y=1 , Ω(Γ, y) = TrΓ(−1)2J3y2J3 . (2.8)

By parity, Ωn vanishes unless n is even. For N = 8 supersymmetry inD = 4, Ωn≤6 vanishes

on all supersymmetry multiplets, while Ω8, Ω10, Ω12, Ω14 vanish on all multiplets except

on those preserving 1/2, 1/4 or 1/8 of the supersymmetry of the vacuum, respectively.

In this paper we shall restrict attention to states which preserve at least 1/4 of the

N = 8 supersymmetries, so it suffices to consider the traces Ω8, Ω10, Ω12. A 1/2-BPS spin

j multiplet contributes

Ω8 = (−1)2jDj , Ω10 =
1

6
(−1)2j+1Dj(D

2
j +1) , Ω12 =

1

360
(−1)2jDj(3D

4
j +10D2

j +6) ,

(2.9)

while a 1/4-BPS spin j contributes

Ω8 = Ω10 = 0, Ω12 = (−1)2j+1Dj . (2.10)

In the perturbative spectrum of type II string compactified on T 6, all states are neutral

under the Ramond-Ramond (RR) gauge fields and carry no magnetic charge under the

1In this section we closely follow Appendices E and G in [35], except for a change of normalization.
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Neveu–Schwarz gauge fields, so the electromagnetic charge vector Γ = (Q, 0, 0) has support

only on the first term in the decomposition of the charge lattice Z
56 = Z

6,6 ⊕ Z
32 ⊕ Z

6,6

under the T-duality group Spin(6, 6) ⊂ E7(7). The vector Q = (mi, w
i) ∈ Z

6,6 encodes the

momenta mi and winding numbers wi of the string along T 6. For such lattice vectors, the

quantities |Z(Γ)|2 and ∆(Γ) entering the mass formulae (2.1) and (2.2) become

|Z(Γ)|2 = g
4

d−8

D [p2L(Q) + p2R(Q)] , ∆(Γ) =
1

4
g

8
8−d

D

(

p2L(Q)− p2R(Q)
)2

(2.11)

where pL(Q) and pR(Q) are the projections of the electric charge vector Q ∈ Z
6,6 on

the spacelike 6-plane and its orthogonal complement inside R
12 labelled by the Narain

moduli O(6, 6)/[O(6) × O(6)], such that the norm on the even self-dual Narain lattice is

(Q,Q) = p2L(Q)−p2R(Q) = 2miw
i; and gD is the string coupling constant in D dimensions.

A straightforward light-cone quantization of the type II string leads to [35]

Ω(ρ2, y) ≡
∑

Q∈Z6,6

Ω(Q, y) e−πρ2(p2L(Q)+p2R(Q)) =

∫ 1

0
dρ1 Γ6,6(ρ)

∣

∣

∣

∣

2η3(ρ) sinπv

θ1(ρ, v)

θ41(ρ, v/2)

η12(ρ)

∣

∣

∣

∣

2

,

(2.12)

where q = e2πiρ, y = e2πiv, η(ρ) and θ1(ρ, v) are the Dedekind and Jacobi theta functions,

and Γ6,6 = ρ32
∑

Q∈Z6,6 q
1
2
p2L(Q)q̄

1
2
p2R(Q) is the Siegel–Narain theta series. Taking derivatives

with respect to v and setting v = 0, one readily finds

Ω8(ρ2) =

∫

dρ1Γ6,6 , Ω10(ρ2) = −1

3

∫

dρ1Γ6,6 ,

Ω12(ρ2) =

∫

dρ1

(

19

360
+

E4 + Ē4 − 2

240

)

Γ6,6 , (2.13)

where E4 = 1 + 240
∑∞

N=1 σ3(N)qN is the holomorphic Eisenstein series of weight 4, and

σs(N) =
∑

d|N ds is the standard divisor function.

The result for Ω8(ρ2) shows that unpaired 1/2-BPS states exist only in the left and

right-moving ground state of the string, such that miw
i = 0, and that

∑

j(−1)2jDj =

1 for these states. In fact, one can show that there are no cancellations in this sum,

and that there exists a single 1/2-BPS multiplet with spin j = 0 and mass M(Q) =√
2|pL(Q)| =

√
2|pR(Q)| for any vector Q ∈ Z

6,6
∗ ≡ Z

6,6\{0} such that (Q,Q) = 0. Indeed

the contribution of this multiplet is apparent in Ω10 and in the first term of Ω12. The result

for Ω12(ρ2) on the other hand shows that there are unpaired 1/4-BPS states when the string

is either in the left or in the right-moving ground state, with mass M(Q) =
√
2|pL(Q)|

or
√
2|pR(Q)|, respectively, and that

∑

j(−1)2jDj = σ3[
1
2(Q,Q)]. In contrast with the

1/2-BPS case, there are in fact huge cancellations in this sum, since the number of bosonic

states with excitation level N on left-moving side and in the ground state on the right-

moving side (or vice-versa) is given by the N -th Fourier coefficient of θ42/η
12, which grows

exponentially with N [36]. In contrast, the divisor function σ3(N) grows like N3, which

indicates that most perturbative 1/4-BPS states can pair up and decay when the string

coupling becomes non-zero. The computation of Ω14(ρ2) shows that there are no unpaired

1/8-BPS states in the perturbative spectrum, in fact all states with non-zero excitation
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level on both the left and right-hand sides lie in long multiplets which only contribute to

Ωn with n ≥ 16 [35].

At the non-perturbative level, it is now well-known that there exists many 1/8-BPS

states with arbitrary electromagnetic charge Γ ∈ Z
56, corresponding to bound states of per-

turbative strings, D-branes, NS5-branes and Kaluza–Klein monopoles wrapped on T 6. The

helicity supertrace Ω14(Γ) associated to these 1/8-BPS states was determined for arbitrary

Γ in [37–40], and grows exponentially as eπ
√

I4(Γ) as I4(Γ) becomes large and positive, in

agreement with the Bekenstein–Hawking entropy of 1/8-BPS black holes in N = 8 super-

gravity [41]. This helicity supertrace would be relevant for analyzing the decompactification

limit of D6R4 couplings, but it will not be needed in this work. In contrast, 1/4-BPS and

1/2-BPS states necessarily have I4(Γ) = 0, and do not correspond to any regular, classical

black hole (the Riemann tensor in the spherically symmetric BPS solution with charge Γ

is not bounded outside the point-like horizon, although this problem may get resolved for

1/4-BPS black holes when taking into account higher-derivative corrections [42, 43]). It

is natural to expect (and will be vindicated by our analysis) that the only 1/2-BPS and

1/4-BPS states are those which lie in the same duality orbit as the perturbative BPS states

in type II string theory. Thus, we assume that for a primitive charge Γ (with unit greatest

common divisor, gcd(Γ) = 1),

Ω8(Γ) =

{

1 (Γ× Γ = 0)

0 (Γ× Γ 6= 0)
(2.14)

Ω12(Γ) =















19
360 (Γ× Γ = 0)

σ3[gcd(Γ× Γ)] (I ′4(Γ) = 0,Γ× Γ 6= 0)

0 (I ′4(Γ) 6= 0)

(2.15)

When Γ is non-primitive, i.e. Γ = nΓ0 with Γ0 ∈ Z
56, it is expected that there exist a single

threshold bound state for any n when Γ× Γ = 0 (in line with the fact that D0-branes are

Kaluza–Klein modes of the eleven-dimensional graviton), while the existence of threshold

bound states in the 1/4-BPS or 1/8-BPS cases is as far as we know an open problem.

In this section, we have focussed on BPS states and helicity supertraces in type II string

compactified on T 6, however a similar classification exists in type II string on R
1,D−1× T d

down to D > 4: the charge lattice M
Ed+1

Λd+1
is a Z-module of Ed+1(Z) with highest weight

Λd+1 in Bourbaki’s labelling of the fundamental weights; 1/2-BPS states exist for any

D ≥ 4, and are such that the projection of Γ ⊗s Γ on the module with highest weight

Λ1 vanishes (a condition which we continue to write as Γ × Γ = 0); 1/4-BPS states exist

for 8 ≥ D ≥ 4, have generic charge vectors for 8 ≥ D ≥ 6 and satisfy a cubic condition

I3(Γ) = 0 for D = 5, which by abuse of notation we continue to write as I ′4(Γ) = 0.

Analogues of the helicity supertraces Ω8 and Ω12 can be defined, for which the results

(2.14) and (2.15) continue to hold.
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3 Decompactification limit of ∇4R4 couplings

As mentioned in the introduction, the coefficients of the R4 and ∇4R4 couplings in the

low energy effective action of type II strings on R
1,D−1 × T d with D = 10 − d, which we

denote by E (D)

(0, 0) and E (D)

(1, 0) following [10], are given by maximal parabolic Eisenstein series of

the U-duality group Ed+1(Z) at special values of the parameter s. More precisely,2

E(D)
(0,0) = 2ζ(3) EEd+1

3
2
Λ1

(g) = 4π ξ(d− 2) EEd+1
d−2
2

Λd+1
(g) (D < 8) (3.1)

E(D)
(1,0) = ζ(5) EEd+1

5
2
Λ1

(g) = 8π ξ(4) ξ(d + 2) EEd+1
d+2
2

Λd+1
(g) (D < 6) (3.2)

where we denote by EG
λ (g) the maximal parabolic Eisenstein series with infinitesimal char-

acter 2λ−ρG evaluated at g ∈ G/K, ρG being the Weyl vector, and ξ(s) = π−s/2Γ(s/2)ζ(s)

is the completed Riemann zeta function, invariant under s 7→ 1− s. In writing the second

equality in (3.1) and (3.2), we used the functional equation for Langlands–Eisenstein series

(see e.g. [44] for an extensive introduction to Eisenstein series, or [19, §A] for a telegraphic

account). As mentioned in the introduction, the Eisenstein series EEd+1

sΛ1
and EEd+1

sΛd+1
for the

special values of the parameter s appearing in (3.1) and (3.2) are singled out physically by

supersymmetric Ward identities, and mathematically by the fact that they are attached to

the minimal and next-to-minimal nilpotent orbits of Ed+1(d+1), respectively. Accordingly,

we refer to them as the minimal and next-to-minimal theta series, respectively. Let us

introduce a few important mathematical concepts to explain what this means.

In general, automorphic forms under G(Z) can be viewed as vectors in certain auto-

morphic representations of G(R). The automorphic representation characterizes the set of

differential equations that the automorphic form satisfies, in terms of a certain ideal in the

enveloping algebra of g. The variety associated to this ideal can be shown to be the closure

of a unique special nilpotent adjoint orbit O in g. The Gelfand–Kirillov dimension of an au-

tomorphic representation is half the dimension of the nilpotent orbit O. For any parabolic

subgroup P ∼= LU of G, with unipotent radical U and Levi subgroup L, the dimension

of the maximal Abelian subgroup of U for which the Fourier coefficients are non-zero is

bounded from above by the Gelfand–Kirillov dimension. The values of the parameter s

appearing in (3.1) and (3.2) are special in that the orbits associated to the corresponding

automorphic representations are the smallest nilpotent orbit Omin in the case of E (D)

(0, 0) [11],

and the next-to-smallest orbit Ontm in the case of E (D)

(1, 0) [10, 13]. The Gelfand–Kirillov

dimensions of the minimal and next-to-minimal orbits for the groups Ed+1(d+1) are tab-

ulated in Table 1. Although this was already conjectured before by Ginzburg, a recent

theorem [45] shows that there is no cuspidal representation attached to the minimal and

the next-to-minimal nilpotent orbits for E7 and E6, strengthening the result of [25] and

proving that the functions (3.1) and (3.2) are indeed uniquely determined by U-duality

and supersymmetry Ward identities.

2For D = 8, the U-duality group is no longer simple and E
(8)
(0,0) involve a sum of regularized Eisenstein

series for SL(2,Z) and SL(3,Z) [3], while E
(8)

(1,0)
involves products of Eisenstein series for SL(2,Z) and

SL(3,Z) [9]. For D = 6, 7, E (D)

(1, 0) involves sums of the regularized Eisenstein series Ê
Ed+1
5
2
Λ1

and Ê
Ed+1
d+2
2

Λd+1
[10].
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D Ed+1(d+1)
1
2 dimOmin

1
2 dimOntm dimM

Ed+1

Λd+1
dim C1/2 dimC1/4

3 E8(8) 29 46 248 58 92

4 E7(7) 17 26 56 28 45

5 E6(6) 11 16 27 17 26

6 Spin(5, 5) 7 10 16 11 16

Table 1. U-duality group in type II string theory on R
1,D−1 × T 10−D, Gelfand–Kirillov dimension

of the minimal and next-to-minimal unipotent representations, dimension of the charge lattice and

of the homogeneous cones C1/2 and C1/4 of 1/2-BPS and 1/4-BPS charges.

Nilpotent orbits also appear in the classification of spherically symmetric black holes

[21, 27]. For example, 1/2-BPS black holes in D = 4 dimensions with charge Γ ∈ C1/2 (and

vanishing NUT charge) are parametrised by a Lagrangian submanifold of the minimal

E8(8) nilpotent orbit defined by its intersection with the complement of so∗(16) in e8(8).

Similarly, 1/4-BPS black hole solutions with charge in Γ ∈ C1/4 are parametrised by a

Lagrangian of the next-to-minimal E8(8) nilpotent orbit [27]. This fact generalises to higher

dimensions, and implies that the Gelfand–Kirillov dimension of the minimal representation

of Ed+2(d+2) coincides with dimC1/2 for D > 4 and with dim C1/2 +1 for D = 4 (where the

extra 1 originates from the NUT charge); similarly, the Gelfand–Kirillov dimension of the

next-to-minimal representation of Ed+2(d+2) coincides with dim C1/4 for D > 4 and with

dim C1/4 + 1 for D = 4 (see Table 1). Moreover, the stabilizer of a 1/2-BPS charge vector

in dimension D is by construction the parabolic subgroup Pd+1 of Ed+1(d+1) associated to

the weight Λd+1 whose Levi subgroup (modulo the center) happens to coincide with the

U-duality group Ed(d) in dimension D + 1. These observations will play an important role

in the following.

Our goal in the remainder of this section is to determine the behavior of the ∇4R4

coupling E (D)

(1, 0) in the limit where one circle inside T d becomes very large, keeping track of

exponentially suppressed corrections. In mathematical terms, we shall compute the Fourier

coefficients of E (D)

(1, 0) with respect to the parabolic subgroup Pd+1. Our main interest will

be in the D = 3 case, but our method is general and we shall keep d arbitrary for the

most part. In order to compute the Fourier expansion of E (D)

(1, 0), our strategy will be to

simultaneously take the decompactification and weak coupling limits, as in [19, §2.2.1],
and recover the generic Fourier coefficients with respect to Pd+1 by covariantizing the

large radius limit of the Fourier expansion of the perturbative contributions. Recall that

in the weak coupling limit, the ∇4R4 coupling admits tree-level, one-loop and two-loop

corrections, up to exponentially suppressed instanton corrections:

E(D),pert
(1,0) = g

2d+4
d−8

D

(

ζ(5)

g2D
+ E(d,1)

(1,0) + g2D E(d,2)
(1,0)

)

(3.3)
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where

E(d,1)
(1,0)

= 4πξ(4)

∫

F1

dµ1(ρ) Γd,d,1(ρ) E(2, ρ) , (3.4)

E(d,2)
(1,0) = 4π

∫

F2

dµ2(Ω)Γd,d,2(Ω) . (3.5)

Here, E(s, ρ) = 1
2

∑

(c,d)=1
ρs2

|cρ+d|2s the non-holomorphic Eisenstein series of SL(2,Z), dµh(Ω)

is the invariant measure on the Siegel upper-half plane of degree h, normalized as in [46],3

Γd,d,h(Ω) is the genus-h Siegel–Narain partition function,

Γd,d,h(Ω) = |Ω2|
d
2

∑

Q∈(Zd,d)⊗h

eiπΩijpL(Qi)pL(Qj)−iπΩ̄ijpR(Qi)pR(Qj) . (3.6)

We do not display the dependence of Γd,d,h(Ω) on the torus moduli, which enters through

the projections pL(Q) and pR(Q), see below (2.11). The decompactification limit of these

modular integrals is computed in Appendix A using the orbit method. For the one-loop

amplitude, we find (see (A.6))

E(d,1)
(1,0) = Rs E(d−1,1)

(1,0) + 4ζ(3)ξ(d − 4)Rd−4
s + 8πξ(4)ξ(d + 2)Rd+2

s (3.7)

+16πξ(4)R
d+3
2

s

∑

Q∈Zd−1,d−1
∗

(Q,Q)=0

σd+1(Q)
K d+1

2

(

2πRs

√

p2L + p2R

)

|p2L + p2R|
d+1
4

e2πi(Q,a)

+16πξ(3)R
d−3
2

s

∑

Q∈Zd−1,d−1
∗

(Q,Q)=0

σd−5(Q)
K d−5

2

(

2πRs

√

p2L + p2R

)

|p2L + p2R|
d−5
4

e2πi(Q,a)

+16πRd−1
s

∑

Q∈Zd−1,d−1
∗

N=
1
2(Q,Q)6=0

∑

n|Q
nd+1σ3(

|N |
n2 )

B d−2
2

, 3
2

(

R2
s(p

2
L + p2R), R

2
s |N |

)

|N |3/2 e2πi(Q,a)

where we denoted by pL ≡ pL(Q), pR ≡ pR(Q) the projections of Q on the positive and

negative d − 1-dimensional planes in R
d−1,d−1 defining the moduli of T d−1, by a ∈ R

2n−2

the off-diagonal components of the metric and B-field on S1 × T d−1, σs(Q) = σs(gcdQ)

the divisor function, and Bs,ν the integral

Bs,ν(x, y) =

∫ ∞

0

dt

t1+s
e−πt−πx/tKν(2πy/t) , x, y > 0

=

∞
∑

k=0

Γ(ν + k + 1
2)Ks−k− 1

2

(

2π
√
x+ 2y

)

k! Γ(ν − k + 1
2) (4π)

k yk+
1
2 (x+ 2y)

2s−2k−1
4

.

(3.8)

It is worth noting that for ν ∈ 1
2 + Z, Bs,ν(x, y) collapses to a finite linear combination of

ordinary modified Bessel functions, in particular for ν = 3
2 , the value relevant here,

Bs, 3
2
(x, y) = (x+2y)

1−2s
4 y−

1
2 Ks− 1

2

(

2π
√

x+ 2y
)

+
1

2π
(x+2y)

3−2s
4 y−

3
2 Ks− 3

2

(

2π
√

x+ 2y
)

.

(3.9)

3This differs by a factor 2−h(h+1)/2 from the normalization used in [19].
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For conciseness however we shall express the result in terms of Bs, 3
2
(x, y).

For the two-loop contribution, we get instead (see (A.11))

E(d,2)
(1,0) = R2

s E(d−1,2)
(1,0) + 2ξ(d− 4)Rd−3

s E(d−1,1)
(1,0) (3.10)

+16π R
d−1
2

s

∑

Q∈Zd−1,d−1
∗

(Q,Q)=0

σd−5(Q)

(gcd Q)−1
EDd−2

Λd−2
(vQ)

K d−5
2

(

2πRs

√

p2L + p2R

)

|p2L + p2R|
d−3
4

e2πi(Q,a)

where vQ is the component of v in O(d − 2, d − 2), the Levi part of the stabilizer of the

null vector Q inside O(d − 1, d − 1). It is worth noting that the one-loop term contains

both Fourier coefficients supported on null vectors (originating from the constant terms in

E(2, ρ)) and Fourier coefficients supported on generic vectors (originating from the non-zero

Fourier coefficients in E(2, ρ)). In contrast, the Fourier coefficients of the two-loop term

are supported on null vectors only.

We now substitute the large radius expansions (3.7) and (3.10) in the weak coupling

expansion (3.3), and express the radius Rs of the circle in string units in terms of the radius

R in Planck units in dimension D + 1, and the string coupling gD in dimension D by its

counterpart in dimension D + 1 using

R = g
2

d−9

D+1 , gD+1 = (gD
√
R)

9−d
8−d . (3.11)

In addition, we rewrite p2L(Q) and p2R(Q) in terms of the invariants |Z(Γ)|2 and ∆(Γ)

specialized to Γ = (Q, 0, 0) ∈ Z
6,6 ⊕ Z

32 ⊕ Z
6,6),

|Z(Γ)|2 = g
4

9−d

D+1

(

p2L(Q) + p2R(Q)
)

, ∆(Γ) =
1

4
g

8
9−d

D+1

(

p2L(Q)− p2R(Q)
)2

. (3.12)

Moreover, we observe that the constraint (Q,Q) = 0 is the specialization of the 1/2-BPS

constraint Γ× Γ = 0 for such Γ. Finally, in the terms multiplying K d−5
2

(

2πRs

√

p2L + p2R

)

in (3.7) and (3.10), we express gD+1 in terms of a charge-dependent coupling

gD+2,Γ = g
d−10
d−9

D+1

(

gcd(Γ)

|Z(Γ)|

)1/2

, (3.13)

which has the property of being invariant under O(d− 2, d− 2) transformations stabilizing
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the vector Γ = (Q, 0, 0). The result of this procedure produces

E(D),pert
(1,0) = 8πR

10
8−d

(

g
2d+2
d−9

D+1

[

ξ(2)ξ(5)

g2D+1

+ ξ(4)ξ(d + 1) EDd−1
d+1
2

Λ1
+ ξ(2)ξ(4)g 2

D+1 E
Dd−1

2Λd−1

]

+ ξ(d− 4)Rd−5g
2d−6
d−9

D+1

[

ξ(3)

g2D+1

+ ξ(2) EDd−1

Λd−1

]

+ ξ(4)ξ(d + 2)Rd+1

+ 2ξ(4)R
d+1
2

∑

Γ∈Zd−1,d−1
∗

Γ×Γ=0

σd+1(Γ)
K d+1

2
(2πR|Z(Γ)|)

|Z(Γ)| d+1
2

e2πi〈Γ,a〉

+ 2R
d−5
2

∑

Γ∈Zd−1,d−1
∗

Γ×Γ=0

σd−5(Γ)

(gcd Γ)
6

d−10







ξ(3)g −2
D+2,Γ + ξ(2) EDd−2

Λd−2
(vΓ)

g
2d−8
10−d

D+2,Γ







K d−5
2
(2πR|Z(Γ)|)

|Z(Γ)|
d−5
2

+ 6
10−d

e2πi〈Γ,a〉

+ 2Rd−2
∑

Γ∈Zd−1,d−1
∗

Γ×Γ6=0

∑

n|Γ
nd+1σ3(

Γ×Γ
n2 )

B d−2
2

, 3
2
(R2|Z(Γ)|2, R2

√

∆(Γ))

∆(Γ)
3
4

e2πi〈Γ,a〉
)

(3.14)

The terms on the first two lines are recognized as the weak coupling expansion of the ∇4R4

coupling in dimension D+1 and of the expected massless threshold effects, proportional to

Rd−5 andRd+1, respectively [10, 19]. The third and fourth lines correspond to contributions

from perturbative 1/2-BPS states winding around the circle, while the last line corresponds

to contributions from perturbative 1/4-BPS states. While these contributions are invariant

under the T-duality group O(d−1, d−1) in dimensionD+1, they are not invariant under the

full U-duality group Ed(Z). However, invariance under Ed(Z) can be restored by promoting

the sum over Γ ∈ Z
d−1,d−1
∗ to a sum over vectors in the full charge lattice MEd

Λd
= Z

dim(Λd)

in dimension D + 1, subject to the 1/4-BPS constraint I ′4(Γ) = 0, and by replacing the

term in braces on the fourth line by the Eisenstein series EEd−1
3
2Λ1

(gΓ) for the stabilizer group

Ed -1(d -1) of a 1/2-BPS charge vector – which matches the said term at weak coupling. Thus,

we conclude that the large radius expansion of the exact ∇4R4 coupling in D dimensions
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is given by

E(D)
(1,0) = R

10
8−d

(

E(D+1)
(1,0) + 2ξ(d− 4)Rd−5 E(D+1)

(0,0) + 8πξ(4) ξ(d + 2)Rd+1 (3.15)

+ 16πξ(4)R
d+1
2

∑

Γ∈MEd
Λd∗

Γ×Γ=0

σd+1(Γ)
K d+1

2
(2πR|Z(Γ)|)

|Z(Γ)| d+1
2

e2πi〈Γ,a〉

+ 16πξ(3)R
d−5
2

∑

Γ∈MEd
Λd∗

Γ×Γ=0

σd−5(Γ) EEd−1
3
2
Λ1

(gΓ)

(gcd Γ)
6

d−10

K d−5
2
(2πR|Z(Γ)|)

|Z(Γ)| d−5
2

+ 6
10−d

e2πi〈Γ,a〉

+ 16πRd−2
∑

Γ∈MEd
Λd∗

I′4(Γ)=0,Γ×Γ6=0

∑

n|Γ
nd+1σ3(

Γ×Γ
n2 )

B d−2
2

, 3
2
(R2|Z(Γ)|2, R2

√

∆(Γ))

∆(Γ)
3
4

e2πi〈Γ,a〉
)

+ . . .

where a ∈ MEd
Λd

⊗R now includes the holonomies of all electromagnetic fields in dimension

D + 1, and the dots denotes potential additional terms that are by construction expo-

nentially suppressed in both the radius and the weak coupling expansion. We shall argue

below that such terms are absent for D > 3, and only contribute to non-Abelian Fourier

coefficients for D = 3. Eq. (3.15) is the main technical result of this paper.

Granting this claim for the moment, we see from the first line in (3.15) that in the limit

R → ∞, the ∇4R4 coupling in dimension D receives the expected power-like contributions

in the radius, one proportional to the ∇4R4 coupling in dimension D + 1, the two others

being the first terms in an infinite series of powerlike contributions which sum up to the

massless threshold contributions in dimension D + 1. The second and third line in (3.15)

correspond to contributions from 1/2-BPS states with charge Γ and mass M1/2 = |Z(Γ)|,
while the last line in (3.15) corresponds to contributions from 1/4-BPS states. Using the

fact that

Bs,ν(x, y) ∼
e−2π

√
x+2y

2y1/2(x+ 2y)s/2
(3.16)

for large values of x, y, we see that a 1/4-BPS black hole with primitive charge Γ contributes

for large R as
Rd−3 σ3(Γ× Γ)

∆(Γ) [M1/4(Γ)]
d−2
2

e−2πRM1/4(Γ)+2πi〈Γ,a〉 , (3.17)

in particular, it is exponentially suppressed as e−RM1/4(Γ), and proportional to the helicity

supertrace Ω12(Γ) in (2.15), as announced.4 The fact that the only exponential corrections

come from 1/2-BPS and 1/4-BPS terms is in accordance with the expectation that the

∇4R4 coupling is 1/4-BPS saturated.

4Here, it may be worth noting that the divisor sum σ3 in (2.15) originates from the Fourier coefficients

of E4 in the helicity generating function (2.13), while σ3 in (3.17) originates from the Fourier coefficients

of E(2, ρ) in the one-loop amplitude (3.4). Indeed, the two are related by E4 ∝ D2 D0 E(2, ρ) where

Dw = i
π
(∂ρ − iw

2ρ2
) is the Maass raising operator.
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For comparison, we state the large radius expansion of the exact R4 coupling in D

dimensions (up to the non-Abelian Fourier coefficients in D = 3), which can be extracted

by exactly the same techniques (cf. [20]):

E(D)
(0,0) = R

6
8−d

(

E(D+1)
(0,0) + 4π ξ(d− 2)Rd−3

+ 4πR
d−3
2

∑

Γ∈MEd
Λd∗

Γ×Γ=0

σd−3(Γ)
K d−3

2
(2πR|Z(Γ)|)

|Z(Γ)| d−3
2

e2πi〈Γ,a〉
)

(3.18)

Here, we see that beyond the expected power-like threshold effects [10], the only exponen-

tially suppressed corrections come from 1/2-BPS states, in accordance with the expectation

that the R4 coupling is 1/2-BPS saturated [11, 13].

Let us now make some comments about the above results. First, the fact that the

(Abelian) Fourier coefficients of the R4 and ∇4R4 couplings with respect to the maximal

parabolic subgroup Pd relevant for the circle decompactification limit have support on 1/2-

BPS and 1/4-BPS charges, respectively, is a characteristic property of the automorphic

forms attached to the minimal and next-to-minimal nilpotent orbits, respectively [13].

This is also in agreement with the observation made at the beginning of Section 3, that

the Gelfand–Kirillov dimension of these automorphic forms is equal to the dimension of

the homogeneous cones C1/2 and C1/4 inside the charge lattice Λ (plus one in D = 3, due

to the occurrence of Taub-NUT instantons).

Second, in the case of the∇4R4 coupling, 1/2-BPS states contribute two types of terms,

corresponding to the second and third line of (3.15). The first type is the product of a

Bessel function of order d+1
2 times a divisor function of Γ, similar to the one seen in (3.18)

for the R4 coupling. The second type involves the product of a Bessel function of order d−5
2

times an automorphic form under Ed -1(d -1), which is the Levi part of the stabilizer of a 1/2-

BPS charge vector such that Γ×Γ = 0. From the weak coupling expansion, it appears that

this automorphic form is the minimal theta series EEd−1
3
2Λ1

, but one may wonder if a different

automorphic form E ′ under Ed -1(d -1) could appear, which may not be distinguishable from

the minimal theta series at weak coupling. A basic constraint comes from requiring that

the sum of the Gelfand–Kirillov dimension of E ′ and of the dimension of the cone C1/2 of

charges Γ must not exceed the Gelfand–Kirillov dimension of E (D)

(1, 0). One checks from Table

1 that the only possibility is to have an automorphic form in the same representation as the

Eisenstein series EEd−1

sΛ1
, but an arbitrary value of the parameter s is in principle allowed by

dimension counting. However, s 6= 3
2 is excluded by the tensorial differential equations that

E (D)

(1, 0) must satisfy [14, 15], as we show in Appendix B for D = 3. More generally, one would

expect E ′ to be an automorphic form for the full parabolic subgroup Pd ⊂ Ed(d) stabilizing

Γ, not only under its Levi subgroup Ed -1(d -1). The same argument relying on the Gelfand–

Kirillov dimension implies that the sum of the dimensions of the Fourier support of E ′ on
the unipotent radical Ud of Pd and the dimension of the cone C1/2 should not exceed the

Gelfand–Kirillov dimension of the next-to-minimal representation. The minimal dimension

for this Fourier support is the dimension of the cone C1/2 in D + 2 dimension. For D > 3,
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it is easily checked again from Table 1 that the Fourier coefficient cannot depend on Ud,

whereas for D = 3 this is in principle allowed by dimension counting: 17+18 = 45 < 46. In

D = 3 one could therefore have an additional contribution to E ′ which Fourier coefficients

associated to 1/2-BPS charges q on the unipotent radical U7 would be a function F of

the E6(6) invariant mass |v(q)|, |Z(Γ)| and R. We prove in Appendix B that there is no

solution of this type to the third order differential equation implied by supersymmetry [14].

Moreover, we check that the Abelian Fourier coefficients for a 1/2-BPS charge Γ that we

obtain in this section are the unique solutions to this third order differential equation with

the required asymptotic behaviour at large radius.

We conclude therefore that the constraints coming from the next-to-minimal Ed+1

representation imply that the weak coupling expansion is sufficient to determine unam-

biguously the complete Fourier expansion of the function E (D)

(1, 0) for D > 3, and its Abelian

component for D = 3, so that the dots in (3.15) only include the non-Abelian Fourier

coefficients in D = 3 and vanish for D > 3.

4 Fourier expansion from constrained lattice sum

In this section, we shall verify the large radius expansion (3.15) of the next-to-minimal theta

series by a direct analysis of the maximal parabolic Eisenstein series EEd+1

sΛd+1
represented as

a constrained Epstein series [7]

EEd+1

sΛd+1
=

1

2ζ(2s)

∑

Q∈MEd+1
Λd+1∗

Q×Q=0

|V(Q)|−2s , (4.1)

where M
Ed+1

Λd+1
denotes a suitable Z-module of Ed+1(Z) with highest weight Λd+1, |V(Q)|2

is the Ed+1-invariant norm on this module, and Q×Q = 0 is a quadratic constraint which

ensures that all symmetric powers Q⊗sk have support on the Z-module with highest weight

kΛd+1. The identity (4.1) depends on the fact that the non-zero primitive vectors Q such

that Q×Q = 0 lie in a single orbit of Ed+1(Z) with stabilizer Pd+1 ∩Ed+1(Z), where Pd+1

is the parabolic subgroup associated to the simple root αd+1. This was proved in [47] for

E7 and E6 and we shall prove it for E8 in this section. The large radius expansion of the

sum (4.1) can be analyzed by standard Poisson resummation techniques, at least for classes

of vectors Q which have support on the three highest grade eigenspaces with respect to

Pd+1 (for d ≤ 5, all vectors with Q × Q = 0 are in that class since the representation

decomposes in three components). As we shall see, the contribution from these classes of

vectors at s = d−2
2 and s = d+2

2 reproduces (3.18) and (3.15), respectively, suggesting that

the contributions of the remaining vectors for d ≥ 6 vanish at the special values of s above,

or (for d = 7) contribute only to non-Abelian Fourier coefficients. We directly attack the

most involved case d = 7, and then comment on simplifications which take place for d = 6

and d = 5.
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4.1 E8 lattice sum

For d = 7, the highest weight Λd+1 corresponds to the adjoint representation 248 of E8.

As explained in Appendix C, the Lie algebra e8(8) contains a lattice ME8
Λ8

which is invariant

under the Chevalley group E8(Z). Its structure is most easily described using the 5-grading

e8(8)
∼= 1(−2) ⊕ 56(−1) ⊕

(

gl1 ⊕ e7(7)
)(0) ⊕ 56(1) ⊕ 1(2) . (4.2)

Decomposing Q = (n,Υ, ℓ+Q,Γ,m) along (4.2), the vectors Q ∈ ME8
Λ8

are those for which

n,m are integers, Υ, Γ are elements of Z56 and Q in e7(7), ℓ ∈ Z/2 such that Q+ ℓ acts on

Z
56 by multiplication with an integral matrix. The invariant norm is given by

|V(Q)|2 = R−4
(

m+ 〈a,Γ + bΥ〉+ 2bℓ+ b2n+ 1
2〈a,Q · a〉+ 1

4〈Υ, I ′4(a)〉 + 1
4nI4(a)

)2

+R−2
∣

∣Z
(

Γ +Q · a+ ℓa+ 1
8I

′
4(a, a,Υ) + 1

2a〈a,Υ〉+ 1
4nI

′
4(a) + b(Υ + an)

)∣

∣

2

+
∣

∣V
(

Q+ 2a×Υ+ a× an
)∣

∣

2
+
(

ℓ+ 1
2〈a,Υ〉 + bn

)2

+R2
∣

∣Z(Υ + an)
∣

∣

2
+R4n2 , (4.3)

whereR ∈ R
+, a ∈ R

56, b ∈ R parametrize the directions gl(0)1 ⊕56(1)⊕1(2) inE8(8)/Spin(16),

and |V (Q)| and |Z(Γ)|, |Z(Υ)| are the E7-invariant norms on e7(7) and Z
56, respectively.

The condition Q × Q = 0, corresponding to the vanishing of the projection of the tensor

product 248 ⊗s 248 = 1⊕ 3875 ⊕ 27000 on the 3875 component, automatically implies

that 248⊗sk has support on the highest-weight module kΛ8 for all k ≥ 1. Decomposing

the tensor product 248⊗s 248 as in (4.2),5

3875 ∼= 133(−2) ⊕ (912 ⊕ 56)(−1) ⊕
(

1539⊕ 133⊕ 1
)(0) ⊕ (912 ⊕ 56)(1) ⊕ 133(2) , (4.4)

we find that Q×Q = 0 amounts to the following conditions, corresponding to the compo-

nents of grade −2 through 2 in (4.4),

i) Υ×Υ = nQ ,

ii) 1
3Q ·Υ = nΓ− ℓΥ , 2Υ× (Q · J) + 2

3J × (Q ·Υ) = 〈J,Υ〉Q ,

iii) Q2 · J = (3ℓ2 − 3mn+ 1
2〈Υ,Γ〉)J + 2Υ〈Γ, J〉 − 2Γ〈Υ, J〉 , Υ× Γ = ℓQ ,

iv) 1
3Q · Γ = ℓΓ−mΥ , 2Γ× (Q · J) + 2

3J × (Q · Γ) = 〈J,Γ〉Q ,

v) Γ× Γ = mQ . (4.5)

Here, J is an arbitrary element in Z
56, which we use to enforce the vanishing of the compo-

nents 912(±1) and (1⊕ 1539)(0). The equality (4.1) was argued in [20] by comparing the

infinitesimal character and checking the normalisation by comparison with the Langlands

constant term formula. Here we shall prove directly that all the elements Q ∈ ME8
Λ8∗ such

that Q×Q = 0 lie in the same orbit as Q = (0, 0, 0+0, 0,m) for a suitable integer m ∈ Z∗,
hence proving (4.1),

∑

Q∈ME8
Λ8∗

Q×Q=0

|V(Q)|−2s =
∑

m∈Z∗

∑

γ∈P8\E8(Z)

|m|−2sR4s|γ = 2ζ(2s)EE8
sΛ8

. (4.6)

5Recall that 133⊗s 133 = 1⊕ 1539 ⊕ 7371, 133 ⊗ 56 = 56⊕ 912⊕ 6480, 56⊗s 56 = 133⊕ 1463,

56
⊗3 = 56⊕ 6480⊕ 24320.

– 15 –



For this purpose, we shall analyze the various branches a)-f) of solutions to (4.5).

• The generic branch a) corresponds to n 6= 0. It follows from i) and the first equation

in ii) that Q and Γ are given by

Q =
1

n
Υ×Υ , Γ =

1

4n2
I ′4(Υ) +

ℓ

n
Υ . (4.7)

Because the symmetric product 56⊗s3 does not include the 912, the second equation

in ii) is automatically satisfied. Using iii) and the algebraic identities (C.5) one

deduces the value of m,

m =
I4(Υ)

4n3
+

ℓ2

n
. (4.8)

One then checks that the remaining constraints are automatically satisfied by this

solution. Ignoring quantization conditions, we see that the cone Q × Q = 0 inside

e8(8) is parametrized by the 58 variables Υ, ℓ, n, in agreement with the dimension of

the minimal nilpotent adjoint orbit of E8(8). The elements for which n divides both Υ

and ℓ are simply generated from the special solution Q = (n, 0, 0, 0, 0) by acting with

an element of the unipotent subgroup (C.10). One can prove that all the solutions

are also in the E8(Z) orbit of Q = (n, 0, 0, 0, 0) using the same strategy as in [47].

Any charge vector Υ can be brought by a suitable E7(Z) transformation into the

canonical form Υ = (q0,diag(qi), 0, p
0) [47]. Using elements of the form (C.10)

Υ → Υ+ na (4.9)

one can obtain a new representative of the orbit for which all entries q0, qi, p
0 lie in

[0, n−1]. Using then (C.11) with a rank one ā such that the only non-vanishing com-

ponent is the one conjugate to the smallest of q0, qi, p
0 with respect to the symplectic

form (i.e. such that 〈ā, (q0, q, 0, p0)〉 = cmin{q0, qi, p0}), one can modify n to

n → n+ cmin{q0, qi, p0} (4.10)

and therefore get a new representative such that n belongs to [1,min{q0, qi, p0}].
Iterating these two steps, the values q0, qi, p

0 decrease by a non-zero amount in each

step, and therefore vanish after a finite number of steps. We have therefore proved

that any solution with a non-vanishing n is in the same E8(Z) orbit as a representative

for which Υ = 0 and n 6= 0. In this case (4.5) simplifies drastically and one finds that

Q = Γ = 0 while

ℓ2 = mn . (4.11)

It remains to prove that a null vector of SO(2, 1) can be rotated through the action

of SL(2,Z) ⊂ E8(Z) to a canonical representative for which only n is non-zero. Let

us decompose n and m into products of primes, n =
∏

p p
np ,m =

∏

p p
mp Because

nm is a square, if np is odd then mp is odd as well such that the corresponding

prime p divides both n and m, and one can always write the solution to (4.11) as

m = ry2, ℓ = rxy, n = rx2 where (x, y) transforms with respect to SL(2,Z) as a
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doublet. One can therefore use SL(2,Z) to set y = 0 and one obtains the desired

property.

For the generic solution with n 6= 0, the invariant norm (4.3) simplifies to

|V(Q)|2 = R−4
(

1
4n3 I4(Υ + na) + 1

n(ℓ+
1
2 〈a,Υ〉+ bn)2

)2
(4.12)

+R−2
∣

∣Z
(

1
4n2 I

′
4(Υ + na) + 1

n(ℓ+
1
2〈a,Υ〉+ bn)(Υ + an)

)∣

∣

2

+
∣

∣V
(

1
n(Υ + an)× (Υ + an)

)∣

∣

2
+
(

ℓ+ 1
2〈a,Υ〉+ bn

)2

+R2
∣

∣Z(Υ + an)
∣

∣

2
+R4n2 ,

which is manifestly invariant under the action of the unipotent discrete group (C.10),

a → a+ u , b → b+ 1
2 〈a, u〉+ k ,

Υ → Υ− nu , ℓ → ℓ− nk − 1
2〈u,Υ〉 . (4.13)

Note that the discrete shift preserves the property that m,Γ, Q+ ℓ are integer valued

for u ∈ Z
56 and k ∈ Z/2 such that 1

4I4(u)+ k2 ∈ Z, according to the definition of the

E8(Z) unipotent subgroup (see Appendix C).

• The second branch b) corresponds to n = 0 but Υ 6= 0, ℓ 6= 0. In this case the

constraint i) in (4.5) implies that Υ is rank one, namely Υ×Υ = 0. It is convenient

to decompose the constraints according to the E6(6) ⋉ R
27 subgroup of E7(7) that

stabilizes Υ, using

e7(7)
∼= 27(−2) ⊕

(

gl1 ⊕ e6(6)
)(0) ⊕ 27

(2)
,

56 ∼= 1(−3) ⊕ 27
(−1) ⊕ 27(1) ⊕ 1(3) ,

912 ∼= 78(−3) ⊕
(

351 ⊕ 27
)(−1) ⊕

(

351⊕ 27
)(1) ⊕ 78(3) . (4.14)

The eigenvalue equation

Q ·Υ = −3ℓΥ (4.15)

implies that Q ∈ (gl1⊕e6(6))
(0)⊕27

(2)
, and that its component along gl

(0)

1 is −ℓ where

ℓ ∈ Z/2. Moreover, since 912 contains 78(3), the component of Q along e
(0)

6(6) must

vanish. Using iv) in (4.5) one finds that Υ and Q are given by

Υ = (0, 0, 0, r), Q = (0,−ℓ+ 0, q) , (4.16)

while Γ is the sum of two rank-one vectors,

Γ = Γ0 +
m

2ℓ
Υ , Γ0 = −1

r

(

4ℓ2, 2ℓq, q × q,− 1
2ℓ det q

)

, (4.17)

such that

Q = 1
ℓΥ× Γ0 , 〈Υ,Γ0〉 = 4ℓ2 . (4.18)

One can check that all equations in (4.5) are satisfied. In order for each entry in Γ

to be an integer, we must require that

r|4ℓ2 , r|2ℓq , r|q × q , 2ℓ|(mr + det q
r ) . (4.19)
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This solution is clearly in the same E8(Z) orbit as the generic branch solution since

the action of (C.11) with ā = 0 gives n = −2b̄ℓ + b̄2m which does not vanish for a

generic b̄ since ℓ 6= 0.

• We now consider the branch c) n = ℓ = 0 and Υ 6= 0, for which we obtain

Υ = (0, 0, 0, r) , Q = (0, 0 + 0, q) , Γ =
(

0, 0, 1r q × q, s
)

, m =
det q

r2
. (4.20)

Using the action of (C.11) with b̄ = 0 and ā = (1, 0, 0, 0) one obtains n = r such that

this solution is in the same E8(Z) orbit as the generic branch solution.

• We now turn to the case d) n = Υ = 0, Q 6= 0. Then

∀J ,Q2 · J = 3ℓ2J , ℓQ = 0 (4.21)

implies that ℓ = 0 and Q2 = 0. Since Q belongs to the minimal adjoint orbit of E7(7),

one can use a continuous E7(7) transformation to it into the grade-two component of

the so(6, 6) decomposition

e7(7)
∼= 1(−2) ⊕ 32(−1)

+ ⊕
(

gl1 ⊕ so(6, 6)
)(0) ⊕ 32(1)

+ ⊕ 1(2) ,

56 ∼= 12(−1) ⊕ 32(0)

− ⊕ 12(1) ,

912 ∼= 32(−2)

− ⊕ (220 ⊕ 12)(−1) ⊕ 352(0)

+ ⊕ (220⊕ 12)(1) ⊕ 32(2)

− . (4.22)

The constraint Q · Γ = 0 in the 912 then implies that Γ must lie in 12(1). The

constraint v) in (4.5) implies that

Q = (0, 0, 0, 0, r) , Γ = (0, 0, v) , (v, v) = 2rm . (4.23)

If we assume that there is a non-trivial solution of this form such that Γ ∈ Z
56, then

Q = 1
mΓ×Γ and one can use E7(Z) to set Γ in the canonical E6(6) form Γ = (0, q, 0, p0)

where q is a diagonal matrix diag(q1, 0, 0) such that p0|q1 [47]. Then Q = (0, 0, p
0q
m ),

which is a canonical form with a Spin(6, 6,Z) ⋉ Z
32+1 stabilizer. 〈a,Q · a〉 defines

indeed an even selfdual metric over Z6,6

(a(−1), a(−1)) ≡ 1

gcdQ
〈a,Q · a〉 = 2

(

− u1v1 + u2v2 − αα∗) , (4.24)

on the elements of the form (where α is an integral split octonion and ui, vi are

integers)

a =






u1,







v1 × ×
× × ×
× × ×






,







× × ×
× u2 α

× α∗ v2






,×






. (4.25)

One can indeed prove in general that any element Q of the minimal nilpotent orbit

of E7 over the integers can be rotated to a canonical form (4.23), such that there

indeed always exist a non-trivial solution such that Γ ∈ Z
56, but we shall come back

to this at the end of this discussion.
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The invariant norm (4.3) evaluates to

|V(Q)|2 = R−4
(

m+ 〈a,Γ〉+ 1
2〈a,Q · a〉

)2
+R−2

∣

∣Z
(

Γ +Q · a
)∣

∣

2
+
∣

∣V
(

Q
)∣

∣

2

= R−4
(

m+ (a, v) + r
2 (a, a)

)2
+R−2eφ g(v + an, v + an) + e2φr2 , (4.26)

where in the second line, we denoted a(−1) = a and introduced the notations

|V (Q)|2 = e2φr2 , |Z(Γ)|2 = eφg(v, v) , (4.27)

so that eφ and g(v, v) parametrize the moduli in R
+ × SO(6, 6)/(SO(6) × SO(6)) ⊂

E7(7)/SU(8). It is worth noting that unlike branches a), b), c), the norm (4.26) does

not depend on the NUT axion b.

Using the action of (C.11) with b̄ = 0 and ā a vector of grade −2 of norm 2 one

obtains n = r such that this solution is in the same E8(Z) orbit as the generic branch

solution.

• We now turn to the branch e) n = Υ = ℓ = Q = 0,Γ 6= 0. In this case Γ has rank

one (Γ× Γ = 0) and the invariant bilinear form (4.3) reduces

|V(Q)|2 = R−4
(

m+ 〈a,Γ〉
)2

+R−2|Z(Γ)|2 . (4.28)

Using the action of (C.11) with b̄ = 0 and ā an element satisfying to I4(ā) = 0 and

〈Γ, I ′4(ā)〉 6= 0 one obtains n = −〈Γ, I ′4(ā)〉 such that this solution is in the same

E8(Z) orbit as the generic branch solution. To prove that such an element exists it

is enough to consider the case Γ = (r, 0, 0, 0) since all rank-one charge vectors Γ are

in the same E7(Z) orbit, and then choosing ā = (0, 0, p, 0) one obtains n = r det p.

• Finally, the last branch f) is when n = Υ = ℓ = Q = Γ = 0,m 6= 0, in which case

|V(Q)|2 = R−4m2. Using the action of (C.11) with b̄ = 1 and ā = 0 one obtains

n = m such that this solution is in the same E8(Z) orbit as the generic branch

solution.

To complete the proof that all elements of the minimal nilpotent orbit of E8 in ME8
Λ8

are in the E8(Z) orbit of a canonical element of the form (0, 0, 0, 0,m) it remains to prove

that all elements of the minimal nilpotent orbit of E7 in the corresponding ME7
Λ1

are in the

E7(Z) orbit of a canonical element of the form (0, 0, 0, 0,m) according to (4.23). To do this

we note that the construction of the lattice ME8
Λ8

in Appendix C and the chain of arguments

developed in this section are valid for any group constructed in the same way starting from

different split Jordan algebras as E7(7), E6(6) and SO(4+n, 4+n) [47]. Applying the same

construction to the adjoint lattice of E7 one obtains that it remains to prove the equivalent

result for SO(6, 6), and recursively for SO(4, 4) and finally SL(2) for which it it true as we

have proved below equation (4.11).6

6Recall that

so(6, 6) ∼= 1
(−2) ⊕ (2⊗ 8)(−1) ⊕

(
gl1 ⊕ sl2 ⊕ so(4, 4)

)(0)
⊕ (2⊗ 8)(1) ⊕ 1

(2)

so(4, 4) ∼= 1
(−2) ⊕ (2⊗ 2⊗ 2)(−1) ⊕

(
gl1 ⊕ sl2 ⊕ sl2 ⊕ sl2

)(0)
⊕ (2⊗ 2⊗ 2)(1) ⊕ 1

(2)
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We now decompose the Epstein series (4.6) according to the six branches of solutions

just described. The sum over elements supported on branch f) trivially gives

EE8(f)

sΛ8
= R4s . (4.29)

The sum over elements on branch e) can be carried out by Poisson resummation over m,

and gives

EE8(e)

sΛ8
=

R2

2ξ(2s)

∫ ∞

0

dt

ts+
1
2

∑

m̃∈Z

∑

Γ∈Z56
∗

Γ×Γ=0

e−πR4m̃2t− π
R2t

|Z(Γ)|2+2πim̃〈Γ,a〉 (4.30)

=
Γ(s− 1

2 )R
2s+1

2ξ(2s)πs− 1
2

∑

Γ∈Z56
∗

Γ×Γ=0

|Z(Γ)|−(2s−1) +
2R

6s+1
2

ξ(2s)

∑

Γ∈Z56
∗

Γ×Γ=0

σ2s−1(Γ)
Ks− 1

2
(2πR|Z(Γ)|)

|Z(Γ)|s− 1
2

e2iπ〈Γ,a〉 .

The first term, originating from m̃ = 0, is recognized as a maximal parabolic Poincaré

series for P7\E7(Z), leading to [20]

EE8(e)

sΛ8
=

ξ(2s − 1)

ξ(2s)
R2s+1EE7

(s− 1
2
)Λ7

+
2R

6s+1
2

ξ(2s)

∑

Γ∈Z56
∗

Γ×Γ=0

σ2s−1(Γ)
Ks− 1

2
(2πR|Z(Γ)|)

|Z(Γ)|s− 1
2

e2iπ〈Γ,a〉 .

(4.31)

We now turn to the contribution of the elements Q = (0, 0, Q + ℓ,Γ,m) supported

on branch d). According to the discussion around (4.23), any solution on this branch is

obtained from (4.23) by an E7(Z) element, and the stabilizer of (4.23) is the parabolic

subgroup P1 with Levi subgroup R
+ × SO(6, 6). Changing (v, r) to (q, n) for convenience,

the contribution of branch d) can be written as a Poincaré sum

EE8(d)

sΛ8
=

1

ξ(2s)

∑

γ∈P1\E7(Z)

γ

[ ∫ ∞

0

dt

t1+s

∑

n>0

∑

q∈Z6,6

∑

m∈Z

∫ 1
2

− 1
2

dρ1e
iπρ1(2mn−(q,q))

×e−
π
t

(

R−4(m+(q,a)+
(a,a)

2
n)2+R−2eφg(q+an,q+an)+e2φn2

)

]

(4.32)

where we introduced a Lagrange multiplier ρ1 for the constraint (q, q) = 2mn. After

substituting t = eφ

R2ρ2
one can rewrite this as an integral over the Poincaré upper half-plane

strip,

EE8(d)

sΛ8
=

R2s

ξ(2s)

∑

γ∈P1\E7(Z)

γ

[

e−sφ

∫

H/Z

d2ρ

ρ 2
2

ρ
s− 5

2
2

∑

n>0

∑

q∈Z6,6

∑

m∈Z

×ρ
7
2
2 e−πρ2

(

R−2e−φ(m+(q,a)+
(a,a)

2
n)2+g(q+an,q+an)+R2eφn2

)

+iπρ1(2mn−(q,q))

]

(4.33)

and that the element of a minimal nilpotent orbit inside a semi-simple Levi component is the sum of

elements of the minimal nilpotent orbits of the simple groups defining the Levi. In this case the nilpotency

of the element of so(6, 6) in the 32± and the 12 implies separately the element in sl2 to be nilpotent in the

fundamental and the element in so(4, 4) to be nilpotent in the thee 8-dimensional representations related

by triality.
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It is now convenient to rewrite the sum over strictly positive n to one half the sum over all

integral n minus the case n = 0, such that the sum over n ∈ Z is recognised as a standard

Siegel–Narain theta series for a lattice of signature (7, 7), while the second can be computed

explicitly,

EE8(d)

sΛ8
=

R2s

2ξ(2s)

∑

γ∈P1\E7(Z)

γ

[

e−sφ

∫

H/Z

d2ρ

ρ 2
2

ρ
s− 5

2
2

×ρ
7
2
2

∑

q∈Z6,6

∑

m,n∈Z
e−πρ2

(

R−2e−φ(m+(q,a)+ (a,a)
2

n)2+g(q+an,q+an)+R2eφn2
)

+iπρ1(2mn−(q,q))

−e−sφ

∫

H/Z

d2ρ

ρ 2
2

ρ
s− 5

2
2

∑

q∈Z6,6

∑

m∈Z
ρ

7
2
2 e−πρ2

(

R−2e−φ(m+(q,a))2+g(q,q)
)

−iπρ1(q,q)

]

. (4.34)

Now the first term in the square bracket can be folded into an integral of the real analytic

Eisenstein series of weight s − 5
2 times the same Narain lattice sum over the standard

fundamental domain F1 of SL(2,Z):

∫

F1

d2ρ

ρ 2
2

E(s− 5
2 , ρ)

∑

q∈Z6,6

m,n∈Z

ρ
7
2
2 e

−πρ2
(

(m+(q,a)+
(a,a)

2 n)2

R2eφ
+g(q+an,q+an)+R2eφn2

)

+iπρ1(2mn−(q,q))

−
∫

H/Z

d2ρ

ρ 2
2

ρ
s− 5

2
2

∑

q∈Z6,6

∑

m∈Z
ρ

7
2
2 e−πρ2

(

R−2e−φ(m+(q,a))2+g(q,q)
)

−iπρ1(q,q)

= e
1
2
φR

∫

F1

d2ρ

ρ 2
2

E(s− 5
2 , ρ)

∑

q∈Z6,6

m,n∈Z

ρ 3
2 e

−πρ2g(q+an,q+an)−πR2eφ |m̃+ρn|2

ρ2
+iπm̃(2(q,a)+(a,a)n)−iπρ1(q,q)

−e
1
2
φR

∫

H/Z

d2ρ

ρ 2
2

ρ
s− 5

2
2

∑

q∈Z6,6

∑

m̃∈Z
ρ 3
2 e

−πρ2g(q,q)−πR2eφ m̃2

ρ2
+2iπm̃(q,a)−iπρ1(q,q) (4.35)

where in the second equality we performed a Poisson resummation over m. Since (m̃, n)

transforms as a doublet under SL(2,Z), the integral over F1 can be computed by applying

the orbit method on (m̃, n). For the trivial orbit (m̃, n) = (0, 0), the integral over F1 can

be again unfolded onto the strip by replacing the Eisenstein series by its seed, and the

result cancels precisely the m̃ = 0 term in the second sum. For the non-trivial orbit one

unfolds the modular domain back to the strip by restricting to n = 0, obtaining in this way

EE8(d)

sΛ8
=

R2s+1

ξ(2s)

∑

γ∈P1\E7(Z)

γ

[

e−(s− 1
2
)φ

∫

H/Z

d2ρ

ρ 2
2

(

E(s− 5
2 , ρ)− ρ

s− 5
2

2

)

×
∑

q∈Z6,6

∑

m̃>0

ρ 3
2 e

− π
ρ2

R2eφm̃2−πρ2g(q,q)−iπρ1(q,q)+2iπ(m̃q,a)
]

. (4.36)

One can then insert the Fourier expansion of E(s− 5
2 , ρ) (A.5),

ξ(2s−5)
(

E(s− 5
2 , ρ)− ρ

s− 5
2

2

)

= ξ(2s−6)ρ
7
2
−s

2 +2
∑

N∈Z∗

σ2s−6(|N |)
|N |s−3

√
ρ2Ks−3(2π|N |ρ2)e2iπNρ1

(4.37)
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to obtain

ξ(2s)ξ(2s − 5)EE8(d)

sΛ8
= ξ(2s − 6)ξ(2s − 11)R12

∑

γ∈P1\E7(Z)

γ
[

e−2(s−3)φ
]

(4.38)

+2ξ(2s − 6)Rs+ 13
2

∑

γ∈P1\E7(Z)

γ

[

e−2(s−3)φ
∑

q∈Z6,6
∗

(q,q)=0

∑

m|q

(

√

eφg(q, q)

m2

)s− 11
2
Ks− 11

2
(2πR

√

eφg(q, q)) e2iπ(q,a)

]

+2R2s+6
∑

γ∈P1\E7(Z)

γ

[

e−(s−3)φ
∑

q∈Z6,6
∗

(q,q)6=0

∑

m|q
m2s−1

∣

∣

∣

∣

(q, q)

2

∣

∣

∣

∣

3−s

σ2s−6(| (q,q)2m2 |)

×
∫ ∞

0

dt

t1+
5
2

e−πt−π
t
R2eφg(q,q)Ks−3

(

2π
t R

2eφ| (q,q)2 |
)

e2iπ(q,a)

]

where the fist term is the contribution of q = 0, while for the last term we used the change

of variable ρ2 =
R2eφm2

t before reabsorbing the factor of m in q everywhere. We shall now

interpret the various contributions in terms of Langlands–Eisenstein series.

The first line is immediately recognized as EE7

(s−3)Λ1
. The second line can be rewritten

by noting that the sum over γ ∈ P1\E7(Z) together with the sum over null vectors q ∈ Z
6,6
∗

can be reinterpreted as a sum over primitive Q ∈ Z
133 and (non-necessarily primitive)

Γ ∈ Z
56 subject to the conditions

Q2 = 0 , Γ× Γ = 0 , QΓ|912⊕56 = 0 . (4.39)

Indeed, these are the conditions iv) and v) of (4.5) in the special case m = 0, which were

solved in terms of the null vector v ≡ q and r ≡ n in (4.23), up to a element in γ ∈ E7(Z).

Now, we can solve the same conditions by instead using the decomposition (4.14), where

E6 is the Levi subgroup of the stabilizer of the rank one vector Γ. This means that,

up to an element γ ∈ E7(Z), the vector Γ can be chosen as Γ = (0, 0, 0,±gcdΓ). The

constraint QΓ|912 = 0 requires that Q = (0, ℓ + 0, p), where p ∈ Z
27, while the constraint

Q2 = 0 requires p × p = 0 and ℓ = 0. Further decomposing E6 into SO(5, 5), such a

p ∈ 10(−2) ⊕ 16(1) ⊕ 1(4) can be further rotated into the highest component 1(4), invariant

under the parabolic subgroup P6 of E6(Z), and the condition that Q is primitive implies

that this component is equal to 1. Therefore, the sum over Q,Γ subject to (4.39) can be

recast into a sum over rank-one charge vectors Γ and a Poincaré sum over γ ∈ P6\E6(Z).

Using the change of variable 7

eφg(q, q) = |Z(Γ)|2 , e2φ = e2υ
( |Z(Γ)|

gcdΓ

) 4
3
, (4.40)

7According to the decomposition (4.14) |Z(Γ)|2 = e6φ7(gcdΓ)2 and |V (Q)|2 = e4φ7 |v-1t(p)|2 = e4φ7e2υ |γ .
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where e2υ is the character of the parabolic subgroup P1 such that |v-1t(p)|2 = e2υ |γ , and
we can rewrite the second line of (4.38) as

∑

γ∈P1\E7(Z)

γ

[

e−2(s−3)φ
∑

q∈Z6,6
∗

(q,q)=0

∑

m|q

(

√

eφg(q, q)

m2

)s− 11
2
Ks− 11

2
(2πR

√

eφg(q, q))e2iπ(q,a)

]

=
∑

Γ∈Z56
∗

Γ×Γ=0

(gcdΓ)
4
3
(s−3)σ11−2s(Γ) EE6

(s−3)Λ1
(gΓ)

Ks− 11
2
(2πR|Z(Γ)|)

|Z(Γ)| 2s+9
6

e2iπ〈Γ,a〉 . (4.41)

As for the third line in (4.38), we note that the sum over γ ∈ P1\E7(Z) and generic

vectors q in Z
6,6
∗ can be recast as a sum over all rank 2 vectors Γ ∈ Z

56
∗ . Indeed, for any

such vector, Γ × Γ belongs to the minimal nilpotent adjoint orbit of E7(7), and as such

can be rotated through an element of E7(Z) to an integer representative of weight 2 in the

decomposition (4.22). The vector Γ then belongs to the component 12(1) in (4.22). Hence

all 1/4-BPS charges are in the E7(Z) orbit of a generic vector.

Putting these observations together and adding in (4.29), (4.31), we conclude that the

complete sum over elements in branches def) gives

ξ(2s) ξ(2s − 5) EE8(def)

sΛ8
= ξ(2s) ξ(2s − 5)R4s + ξ(2s− 1) ξ(2s − 5)R2s+1EE7

(s− 1
2
)Λ7

+ξ(2s− 6) ξ(2s − 11)R12 EE7

(s−3)Λ1

+2ξ(2s − 1) ξ(2s − 5)R
6s+1

2

∑

Γ∈Z56
∗

Γ×Γ=0

σ2s−1(Γ)
Ks− 1

2
(2πR|Z(Γ)|)

|Z(Γ)|s− 1
2

e2iπ〈Γ,a〉

+2ξ(2s− 6)Rs+ 13
2

∑

Γ∈Z56
∗

Γ×Γ=0

(gcdΓ)
4
3
(s−3)σ11−2s(Γ) EE6

(s−3)Λ1
(gΓ)

Ks− 11
2
(2πR|Z(Γ)|)

|Z(Γ)| 2s+9
6

e2iπ〈Γ,a〉

+2R2s+6
∑

Γ∈Z56
∗

Γ×Γ6=0, I′4(Γ)=0

∑

m|Γ
m2s−1σ2s−6(

Γ×Γ
m2 )

B 5
2
,s−3(R

2|Z(Γ)|2, R2
√

∆(Γ))

∆(Γ)
s−3
2

e2iπ〈Γ,a〉 . (4.42)

Setting d = 7, s = 5
2 , (4.42) reproduces (3.18), taking into account the normalization factor

from (3.1). Similarly, for d = 7, s = 9
2 , (4.42) reproduces (3.15), taking into account the

normalization factor from (3.2). It is worth noting that the branches abc), despite carrying

explicit dependence on the NUT scalar b, do contribute to the Abelian Fourier coefficients

as well for generic s. Indeed, we know that the completed Eisenstein series

E⋆E8
sΛ8

= ξ(2s) ξ(2s − 5) ξ(2s − 9) ξ(4s − 28) EE8
sΛ8

, (4.43)

is invariant under s 7→ 29
2 − s, as required by the Langlands functional identity, so the

contributions of abc) must include the images of the terms present in (4.42) under this

symmetry, possibly along with other terms which are by themselves invariant under s 7→
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29
2 − s.8 The representation associated to this function for generic values of s implies that

it must admit non-zero generic Abelian Fourier coefficients (with I4(Γ) 6= 0) [20]. The fact

that the contributions of branches def) already reproduce the results (3.18) and (3.15)

shows that the Abelian contributions of branches abc) vanish for the values s = 5
2 and

s = 9
2 relevant for the minimal and next-to-minimal theta series.

To explain how this can be the case, let us now compare the contributions of the

branches def) with the known constant terms from Langlands’ formula (see e.g. [19,

A.69]):

∫

d56adb EE8
sΛ8

= R4s +
ξ(2s − 1)

ξ(2s)
R2s+1EE7

(s−1
2)Λ7

+
ξ(2s− 6)ξ(2s − 11)

ξ(2s)ξ(2s − 5)
R12EE7

(s−3)Λ1

ξ(2s − 18)ξ(2s − 14)ξ(2s − 10)ξ(4s − 29)

ξ(2s)ξ(2s − 5)ξ(2s − 9)ξ(4s − 28)
R30−2sEE7

(s−5)Λ7

+
ξ(2s − 19)ξ(2s − 23)ξ(2s − 28)ξ(4s − 29)

ξ(2s)ξ(2s − 5)ξ(2s − 9)ξ(4s − 28)
R58−4s . (4.44)

The first three terms agree with the constant terms arising from the branches f), e) and

d), respectively. In all but the first term, the denominator contains a factor of ξ(2s) which

ensures that all contributions vanish at s = 0, in agreement with the fact that EE8
0Λ8

= 1.

Similarly, the factor of ξ(2s − 5) in the denominator of all but the first two terms ensures

that only the first two contributions remain when s = 5
2 (the value relevant for the minimal

theta series). It is worth noting that this factor appears in the full contribution of branch e),

not only its constant term. The fact that a factor of ξ(2s−9) appears in all constant terms

but for the first three suggests that the branches abc) would similarly carry a similar factor

in the denominator, at least for the part which contributes to Abelian Fourier coefficients,

and would explain why they appear not contribute to the minimal and next-to-minimal

theta series. It would be nice to demonstrate that our formula reproduces completely the

Abelian Fourier coefficients for s = 9
2 by an explicit computation of the branches abc),

though this is beyond the scope of the present work.

4.2 Analogous computation for E7

We now apply a similar analysis to the maximal parabolic Eisenstein series EE7
sΛ7

, represented

as a constrained Epstein series

EE7
sΛ7

=
1

2ζ(2s)

∑

Γ∈Z56
∗

Γ×Γ=0

|Z(Γ)|−2s . (4.45)

Here, the identity (4.45) is a consequence of the known fact that the set of primitive rank

one vectors in Z
56 has a single orbit under E7(Z) [47]. The Fourier expansion of (4.45)

can be computed similarly as in the previous section, using the same decomposition of

8It can be seen that additional contributions to the Abelian Fourier coefficients satisfying to I ′4(Γ) = 0

do in fact occur for generic values of s, by applying the same argument as in Section 3 to E⋆E8
sΛ8

, using its

known weak coupling expansion [19, A.70].
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Γ = (q0, q, p, p
0) with

|Z(Γ)|2 = R−3
(

q0 + tr aq + tr a× ap− det ap0
)2

+R−1|v(q + 2a× p− a× ap0)|2

+R|v-1t(p − ap0)|2 +R3(p0)2 , (4.46)

The constraint Γ× Γ = 0 decomposes as

q0p = q × q , 4q × (p× y) = ptr qy − q0p
0y , 3q0p

0 = −tr qp , p× p = −p0q , (4.47)

where y in an arbitrary element of the Jordan algebra. As in the previous section we shall

solve this equation in various branches. The generic branch a) : p0 6= 0 gives

q = −p× p

p0
, q0 =

det p

(p0)2
. (4.48)

for any p0 and p such that q and q0 are integers. The invariant bilinear form then reduces

to

|Z(Γ)|2 = R−3
(det(p− ap0)

(p0)2

)2
+R−1|v

( (p−ap0)×(q−ap0)
p0

)

|2 +R|v-1t(p− ap0)|2 +R3(p0)2 ,

(4.49)

The second branch b) corresponds to p0 = 0, p 6= 0. Because p× p = 0 one can always

find an element of E6(Z) to bring p to a canonical diagonal form in which only the first

entry is non-zero [47]. The complete solution is then

p =







p1 0 0

0 0 0

0 0 0






, q =







0 0 0

0 q2 χ1

0 χ∗
1 q3






, q0p

1 = q2q3 − χ1χ
∗
1 , (4.50)

where p1, q2, q3, q0 are integers and χ1 is an integral split octonion. Up to a Poincaré sum

over P6(Z)\E6(Z) the sum over these charges therefore reduce to a theta lift as in the last

section, where the SO(5, 5) even self-dual norm is defined as

(q, q) = 2(q2q3 − χ1χ
∗
1) . (4.51)

The branch c) corresponds to p0 = p = 0, q 6= 0 with q × q = 0, and the last branch d)

to p0 = p = q = 0, q0 6= 0. The same method as in the previous section can be applied to
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evaluate the contributions of branches bcd), leading to

ξ(2s)EE7
sΛ7

= ξ(2s)R3s + ξ(2s − 1)Rs+1EE6

(s− 1
2
)Λ6

+
ξ(2s− 5)ξ(2s − 9)

ξ(2s− 4)
R10−sEE6

(s− 5
2
)Λ1

(4.52)

+2R2s+ 1
2

∑

q∈Z27
∗

q×q=0

σ2s−1(q)
Ks− 1

2
(2πR|v(q)|)

|v(q)|s− 1
2

e2iπtrqa

+2
ξ(2s− 5)

ξ(2s− 4)
R

11
2

∑

q∈Z27
∗

q×q=0

σ2s−9(q)

gcdqs−
13
2

ED5

(s− 5
2
)Λ1

(υq)
Ks− 9

2
(2πR|v(q)|)
|v(q)|2 e2iπtrqa

+2
Rs+5

ξ(2s − 4)

∑

q∈Z27

q×q 6=0, detq=0

∑

m|q
m2s−1σ2s−5(

q×q
m2 )

B2,s− 5
2
(R2|v(q)|2, R2|v-1t(q × q)|)
|v-1t(q × q)|s− 5

2

e2iπtrqa

+
∑

n>0

∫ ∞

0

dt

t1+s

∑

p∈Z27

p×p
n

∈Z27, det p
n2 ∈Z

e−
π
t

(

R−3
(

det(p+an)

n2

)2
+R−1|v( (p+an)×(p+an)

n
)|2+R|v-1t(p+an)|2+R3n2

)

,

where the last line corresponds to the generic branch a), which we do not know how to

compute. For d = 6, s = 2, the first four lines in (4.52) reproduce (3.18), taking into

account the normalization factor from (3.1). Similarly, for d = 6, s = 4, the first four lines

in (4.52) reproduce (3.15), taking into account the normalization factor from (3.2). The

comparison with Langlands constant term formula [19, A.66]

ξ(2s) EE7
sΛ7

= ξ(2s)R3s + ξ(2s − 1)Rs+1 EE6

(s− 1
2
)Λ6

+
ξ(2s − 5) ξ(2s − 9)

ξ(2s − 4)
R10−s EE6

(s− 5
2
)Λ1

+
ξ(2s − 9) ξ(2s − 13) ξ(2s − 17)

ξ(2s− 4) ξ(2s − 8)
R27−3s +O(e−2πR) , (4.53)

suggests that the contribution of branch a) should carry a factor of ξ(2s − 4)ξ(2s − 8) in

the denominator, which would explain why it does not contribute for the values s = 2, 4

associated to the minimal and the next-to-minimal representation of E7. In fact, an analysis

of the weak coupling limit of EE7
sΛ7

for generic values of s using [19, A.67] suggests that

the contribution of branch a) to the Fourier coefficients supported on non-generic charges

with det q = 0 is determined from (4.52) by demanding the invariance of the completed

Eisenstein series E⋆,E7

sΛ7
= ξ(2s) ξ(2s − 4) ξ(2s − 8) EE7

sΛ7
under s 7→ 9 − s, while additional

Fourier coefficients supported on generic charges with det q 6= 0 appear for generic values

of s.

4.3 Analogous computation for Ed+1

More generally, the complete Fourier expansion of the constrained lattice sum for Ed+1(Z)

can be computed similarly as in the previous sections for 2 ≤ d ≤ 5, by splitting Q ∈ M
Ed+1

Λd+1
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according to the graded decomposition relevant for the decompactification limit [20, (4.26)],

ed+1(d+1)
∼= R(d−8)

Λd
⊕
(

gl1 ⊕ ed(d)
)(0) ⊕R

(8−d)

Λd
,

RΛd+1
∼= R(d−7)

Λ1
⊕R(1)

Λd
⊕ 1(9−d) ,

RΛ1
∼= δ(−4)

d,5 ⊕R(d−6)

Λ2
⊕R(2)

Λ1
, (4.54)

where δ(−4)

d,5 denotes a singlet which appears only for d = 5. Decomposing Q = (Q,Γ,m)

with Q ∈ (MEd
Λ1

)(d−7),Γ ∈ (MEd
Λd

)(1) and m ∈ 1(9−d), The constrained Epstein series (4.1)

can then be written as

2ξ(2s)EEd+1

sΛd+1
(4.55)

=

′
∑

Q∈MEd
Λ1

,Γ∈MEd
Λd

,m∈Z,
Q2=Q2|R2Λ1

,QΓ|RΛ2
=0,

Γ×Γ=mQ

∫ ∞

0

dt

t1+s
e−

π
t

(

R
2 d−9
8−d (m+〈a,Γ〉+ 1

2
〈a,Qa〉)2+R

2
d−8 |Z(Γ+Qa)|2+R

2 7−d
8−d |V (Q)|2

)

.

Here we use Bourbaki label’s for the weights Λi of Ed (even when Ed is a classical group),

and Λd for E3 is Λ2 + Λ3 (we refer to [20] where this notation was introduced for more

details). The sum over (0,Γ,m) can be carried out by Poisson resummation over m and

the sum over elements including a non-zero Q can be computed similarly as in the previous

sections. A non-zero Q (which is a null vector of SO(5, 5) for d = 5 and a generic element

of MEd
Λ1

otherwise) is in the Ed(Z) orbit of a canonical element of degree 4 (Q = (0, 0, n))

in the decomposition

ed(d)
∼= S(d−9)

+ ⊕
(

gl1 ⊕ so(d− 1, d− 1)
)(0) ⊕ S

(9−d)

+ ,

RΛd
∼= S(d−7)

− ⊕V(2) ,

RΛ1
∼= δ(−4)

d,5 ⊕ S(d−5)

+ ⊕ 1(4) . (4.56)

The representation R(d−6)

Λ2
includes S(d−3)

− as its highest grade component, so that the con-

straint QΓ|RΛ2
= 0 implies that Γ = (0, q) with respect to this decomposition. The

constraint in the component R(2)

Λ1
eventually implies that 2mn = (q, q).

Using the definitions

|V (Q)|2 = e2φn2 , |Z(Γ)|2 = eφg(q, q) , t =
eφ

R
2

8−dρ2
, (4.57)

the sum can be recognized as the Poincaré sum over P1\Ed(Z) of the integral over the strip

H/Z of the Siegel–Narain theta series of signature SO(d, d), multiplied by E(s− d−2
2 , ρ)−

ρ
s− d−2

2
2 . The Fourier coefficient for which q is a null vector corresponds to the sum over

primitive Q and Γ satisfying to Γ × Γ = 0 and QΓ|RΛ2
= 0. Therefore the Poincaré sum

over P1\Ed(Z) and null vectors q can be rewritten as a Poincaré sum over Pd\Ed and the

primitive rank 1 charges Q ∈ R(2)

Λ1
in the corresponding decomposition under Ed−1. Using

the change of variable

e2φ = e2υ
( |Z(Γ)|

gcdΓ

) 4
10−d

, (4.58)
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where e2υ is the character of P1 ⊂ Ed−1, one obtains after some work

ξ(2s) EEd+1

sΛd+1
= ξ(2s)R2 9−d

8−d
s + ξ(2s − 1)R

2
8−d

s+1EEd

(s− 1
2
)Λd

(4.59)

+
ξ(2s − d+ 1)ξ(2s − 2d+ 3)

ξ(2s− d+ 2)
R−2 7−d

8−d
s+2(d−1)EEd

(s− d−1
2

)Λ1

+2R
10−d
8−d

s+ 1
2

∑

Γ∈MEd
Λd∗

Γ×Γ=0

σ2s−1(Γ)
Ks− 1

2
(2πR|Z(Γ)|)

|Z(Γ)|s− 1
2

e2πi〈Γ,a〉

+2
ξ(2s − d+ 1)

ξ(2s − d+ 2)
R− 6−d

8−d
s+d− 1

2

∑

Γ∈MEd
Λd∗

Γ×Γ=0

σ2d−3−2s(Γ)

(gcd Γ)
2(2s−d+1)

d−10

EEd−1

(s-d−1
2 )Λ1

(gΓ)
Ks−d+ 3

2
(2πR|Z(Γ)|)

|Z(Γ)|
(d− 6)(s − d+ 3

2) + 2(d− 2)
10−d

e2iπ〈Γ,a〉

+
2R

2s
8−d

+d−1

ξ(2s− d+ 2)

∑

Γ∈MEd
Λd∗

Γ×Γ6=0

∑

m|Γ
m2s−1σ2s−d+1(

Γ×Γ
m2 )

B d−2
2

,s− d−1
2

(

R2|Z(Γ)|2, R2
√

∆(Γ)
)

∆(Γ)
2s−d+1

4

e2iπ〈Γ,a〉 .

For d = 6 and d = 7, (4.59) reduces to the results (4.52) and (4.42), up to the contributions

of branches abc) and a), respectively, while for d ≤ 5, (4.59) provides the complete Fourier

expansion of EEd+1

sΛd+1
. For s = d−2

2 and s = d+2
2 , taking into account the normalization

factors from (3.1), (4.59) reproduces (3.18) and (3.15), respectively. Unlike the cases d = 6

and d = 7 discussed previously, the Fourier expansion (4.59) is complete for arbitrary

values of s away from the poles.

5 Discussion

In this note, we have analyzed the asymptotics of the exact ∇4R4 coupling E (D)

(1, 0) in type

II string theory on R
1,D−1 × T 10−D, in the limit where the radius R of one circle in-

side the internal torus becomes very large. Beyond the known power-like terms, this

expansion exposes an infinite series of exponentially suppressed contributions of order

e−2πRM(Γ)+2πi〈Γ,a〉, where Γ runs over the charge lattice, M(Γ) is the mass of a BPS

state of charge Γ and a are the holonomies of the D+1-dimensional Maxwell fields around

the circle, along with O(e−2πR2
) corrections from Taub-NUT instantons when D = 3.

Using the property that only 1/4-BPS and 1/2-BPS charge vectors Γ contribute to the

sum [10, 13] and the tensorial differential equations implied by supersymmetry [14, 15], we

have shown that the complete large radius expansion of E (D)

(1, 0) (up to non-Abelian Fourier

coefficients when D = 3) is determined unambiguously from its perturbative expansion

in the string coupling constant. Remarkably, we find that the contribution of 1/4-BPS

charge vectors is proportional to the helicity supertrace Ω12(Γ), which counts (with signs)

1/4-BPS states in dimension D+1. This result supports the general philosophy that BPS-

saturated couplings in dimension D can provide a useful bookkeeping device for precision

counting of BPS black hole microstates in dimension D + 1. In the present case however,

the power-like growth of the BPS index Ω12(Γ) at large |Γ| prevents any direct comparison

with the entropy of macroscopic black holes.

– 28 –



Clearly, it would be important to investigate the next coupling in the low-energy

expansion, namely the ∇6R4 coupling in D = 3, which is expected to count 1/8-BPS black

holes in dimension 4. A tantalizing hint that 1/8-BPS instanton contributions will turn

out to be proportional to the BPS index Ω14 is the observation that the same weight −2,

index 1 Jacobi form which determines Ω14 [48] also determines the Fourier expansion of

the Kawazumi–Zhang invariant [49], which enters in the ∇6R4 coupling [50]. Moreover,

the differential equation satisfied by the ∇6R4 coupling in D = 3 is associated to the same

nilpotent orbit [20, 26] which describes 1/8-BPS black holes in D = 4 [27]. In more physical

terms this means that the only instantons that contribute to this coupling according to the

supersymmetry constraint are precisely the ones that can be interpreted as 1/8 BPS black

holes in four dimensions, or more generally 1/8 BPS Taub-NUT black holes. It would be

very interesting to see if this connection can be explicited within existing proposals for the

exact ∇6R4 coupling [16–20].

As for the 1/2 and 1/4-BPS couplings studied in this work, it would be highly desirable

to compute the contributions of 1/2- and 1/4-BPS black holes from first principles, and

reproduce the detailed dependence on the radius R and central charges Z(Γ),∆(Γ) found

in (3.15) and (3.18), including the ‘multi-covering’ effects which appear when Γ is not a

primitive vector. In particular, it would be very interesting to interpret the Eisenstein

series EEd−1
3
2Λ1

(gΓ) under the Levi subgroup of the stabilizer of Γ, possibly in terms of higher-

derivative corrections around the instanton saddle point. It would also be interesting

to extract the non-Abelian Fourier coefficients from gravitational Taub-NUT instantons.

Finally, from the mathematical point of view it would be very interesting to see the Fourier

expansion (3.15) emerge from a general adelic approach, and understand how it generalizes

to Fourier expansion with respect to other choices of maximal parabolic subgroups.
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A Decompactification limits of certain modular integrals

In this section we compute the decompactification limits of the modular integrals appearing

in (3.4) and (3.5), using the unfolding method. Since these modular integrals can be

expressed in terms of maximal parabolic Eisenstein series of O(d, d), this provides the

complete Fourier expansion of these Eisenstein series with respect to the maximal parabolic

subgroup P1.

A.1 Genus one modular integral

The genus one regularized modular integral

Id,1(s) = R.N.

∫

F1

dµ1 E⋆(s, ρ) Γd,d,1(ρ) , (A.1)
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where E⋆(s, ρ) = ξ(2s)E(s, ρ) is the completed non-holomorphic Eisenstein series of SL(2,Z)

and R.N. denotes the regularization prescription of [51]. It is proportional to the parabolic

Eisenstein series attached to the vector representation of O(d, d), [10, 52]:

Id,1(s) = 2ξ(2s) ξ(2s + d− 2) EDd

(s+ d−2
2

)Λ1
. (A.2)

To compute its limit when the radius Rs of one circle inside T d becomes large in string

units, we perform a Poisson resummation on the corresponding momentum, and write

Γd,d,1(ρ) = Rs ρ
d−1
2

2

∑

m,n∈Z
e
−πR2

s |m−nρ|2

ρ2

∑

Q∈Zd−1,d−1

q
1
2
p2L(Q−na)q̄

1
2
p2R(Q−na)+2πim(Q,a)−iπmn(a,a) ,

(A.3)

where a ∈ R
d−1,d−1 parametrize the nilpotent radical in the parabolic subgroup P1 with

Levi R+ × O(d − 1, d − 1), while Rs parametrizes the center of P1. The doublet (m,n)

transforms linearly under SL(2,Z). The contribution from (m,n) = 0 produces RsId−1(s),

while the sum over (m,n) 6= (0, 0) can be restricted to the orbit representatives (m, 0) with

m 6= 0, at the cost of extending the integration domain9 from F1 to the strip H/Z:

Id,1(s) = RsId−1(s) +Rs

∑

m6=0

∫

H/Z
dµ1 E⋆(s, ρ)

∑

m6=0

Q∈Zd−1,d−1

e
−πm2R2

s
ρ2

+2πim(Q,a)
q

1
2
p2L(Q)q̄

1
2
p2R(Q) .

(A.4)

We now substitute the Chowla–Selberg formula for E(s, ρ),

E(s, ρ) = ξ(2s) ρs2 + ξ(2s− 1) ρ1−s
2 + 2

∑

N 6=0

|N |s− 1
2 σ1−2s(|N |)√ρ2Ks− 1

2
(2π|N |ρ2) e2πiNρ1 .

(A.5)

For Q = 0, only the first terms contribute to the integral over ρ1, leading to constant terms

proportional to R2s+2−2
s and Rd−2

s . For Q 6= 0, the integral over ρ1 picks up the term with

2N = p2L(Q)−p2R(Q), and the integral over ρ2 is of Bessel type. After rescaling Q → Q/m,

we obtain

Id,1(s) =Rs Id−1(s) + 2ξ(2s) ξ(2s + d− 2)R2s+d−2
s + 2ξ(2s − 1) ξ(2s − d+ 1)Rd−2s

s

+4 ξ(2s)R
s+ d−1

2
s

∑

Q∈Z
d−1,d−1
∗

p2
L
−p2

R
=0

σ2s+d−3(Q)

(p2L + p2R)
2s+d−3

4

Ks+ d−3
2

(

2πRs

√

p2L + p2R

)

e2πi(Q,a)

+4 ξ(2s− 1)R
d+1
2

−s
s

∑

Q∈Z
d−1,d−1
∗

p2
L
−p2

R
=0

σd−1−2s(Q)

(p2L + p2R)
d−1−2s

4

,Ks− d−1
2

(

2πRs

√

p2L + p2R

)

e2πi(Q,a)

+ 4Rd−1
s

∑

Q∈Z
d−1,d−1
∗

p2
L
−p2

R
≡2N 6=0

∑

m∈N∗
m|Q

|N |s− 1
2

m2s+1−d
σ1−2s

( |N |
m2

)

B d−2
2

,s− 1
2

(

R2
s(p

2
L + p2R), |N |R2

s

)

e2πi(Q,a)

(A.6)

9Here we work formally, ignoring the regularization which is necessary to make sense of the integral

(A.1). This issue only affects the constant terms, which were dealt more rigorously in [52, §3.3].
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where pL ≡ pL(Q), pR ≡ pR(Q), and Bs,ν(x, y) is the integral defined in (3.8). Setting

s = 2 produces (3.7).

A.2 Genus h modular integral

We now consider the modular integral

Id,h = R.N.

∫

Fh

dµh Γd,d,h (A.7)

over a fundamental domain Fh of the degree h Siegel upper half-plane Hh. The case of

interest in this work is h = 2, but our treatment will work for any h ≥ 1. As in (A.1),

the integral diverges if d ≥ h + 1, and must be regularized. A regularization scheme

was described in detail for 1 ≤ h ≤ 3 in [46], and is easily generalized to arbitrary h. The

regularized integral can then be expressed as a residue at s = d−3
2 of the maximal parabolic

Eisenstein series EDd
sΛh

attached to the rank h antisymmetric representation [46, 53], or as

a residue at s = h of the maximal parabolic Eisenstein series attached to the spinor

representations [7].

Regardless of its connection to Eisenstein series, its limit as the radius Rs of one circle

in T d goes to infinity can be computed as in the previous subsection using the orbit method.

After Poisson resummation over the momenta, one finds

Id,h =

∫

Fh

dµh |Ω2|
d−1
2 Rh

s

∑

Qi∈(Zd−1,d−1)⊗h

(mi,n
i)∈Z2h

eiπΩij pL(Q
i−ani)pL(Q

j−anj)−iπΩ̄ij pR(Qi−ani)pR(Qj−anj)

×e−πR2
sΩ

−1ij
2 (mi+Ωikn

k)(mj+Ω̄jln
l)+2iπ(miQi,a)−iπmini(a,a) .

The zero orbit (mi, n
i) = 0 leads to Rh

s Id−1,h, while the other orbits can be reduced to

the representatives (mi, n
i) = (δhi m, 0) with m ∈ N

∗, at the expense of extending Fh to a

fundamental domain of the stabilizer Sp(2h− 2,Z) ⋉ (Z2(h−1)+1) ⊂ Sp(2h,Z) [53, §4.5.2].
For notational simplicity we shall keep the same notations for the smaller symplectic group,

so i is ranging now from 1 to h− 1 and Ω in Id,h decomposes as

Ω =

(

Ωij vj +Ωjku
k

vi +Ωiku
k Ωklu

kul + it+ σ

)

. (A.8)

where Ωij on the r.h.s. belongs to Hh−1. Since the measure on Hh decomposes as

dµh = dµh−1
dt

th+1
dh−1udh−1v dσ , (A.9)

one gets

Id,h = Rh
s Id−1,h +Rh

s

∫

Fh−1

dµh−1 |Ω2|
d−1
2

∫ ∞

0

dt

t1+h− d−1
2

∫

[0,1]2h−1

dh−1udh−1v dσ

×
∑

Qi,Q∈Zd−1,d−1

eiπΩij pL(Q
i+uiQ)pL(Q

j+ujQ)−iπΩ̄ij pR(Qi+uiQ)pR(Qj+ujQ)

×
∑

m∈N∗

e−
πR2

sm
2

t
−πt|Z(Q)|2−2πivi(Qi,Q)−πiσ(Q,Q)+2πim(Q,a) , (A.10)
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where Q ≡ Qh. For Q = 0, the integral over ui, vi, σ is trivial and one recovers Id−1,h−1.

For Q 6= 0 the integrals over vi and σ imply (Q,Q) = 0 and (Q,Qi) = 0. The vector Qi can

then be decomposed into Qi = Qi
⊥ + ri Q

gcdQ , with ri ∈ Z
h−1 and Qi

⊥ ∈ (Zd−2,d−2)⊗(h−1)

runs over vectors orthogonal to Q, modulo translations by Q. The integral over ui can be

unfolded to R
h−1 at the expense of restricting the sum over ri to Z

h−1 modulo gcdQ. The

dependence of the integrand on ri drops out after the Gaussian integration of the ui over

R, so the sum over ri simply produces a factor of (gcdQ)h−1. The remaining integral over

Ω ∈ Fh−1 gives a modular integral of the form Id−2,h−1(vQ), for the lattice of signature

(d− 2, d− 2) orthogonal to Q (more precisely, the quotient of the orthogonal complement

of Q in Z
d−1,d−1 modulo Q). Altogether, one finds

Id,h = Rh
s Id−1,h + ξ(d− 2h)Rd−h−1

s Id−1,h−1

+ 2Rh
s

∫ ∞

0

dt

t1+h− d−1
2

∑

Q∈Zd−1,d−1
∗

(Q,Q)=0

∑

m∈N∗

(gcdQ)h−1

|Z(Q)|h−1
Id−2,h−1(vQ) e

−πR2
s
m2

t
−πt|Z(Q)|2+2πi(mQ,a)

= Rh
s Id−1,h + ξ(d− 2h)Rd−h−1

s Id−1,h−1 (A.11)

+ 2R
d−1
2

s

∑

Q∈Zd−1,d−1
∗

(Q,Q)=0

σd−1−2h(Q) (gcdQ)h−1 Id−2,h−1(vQ)
K 2h+1−d

2
(2πRs|Z(Q)|)

|Z(Q)| d−3
2

e2πi(Q,a) ,

where it is understood that Id,h = 2 when h = 0. The modular integral Id−2,h−1 can be

rewritten as a parabolic Eisenstein series for the Levi subgroup of the stabilizer of Q if so

desired. Setting h = 2 produces the result stated in (3.10).

B Differential equation of the 1/4-BPS coupling

Supersymmetry Ward identities imply that the function E (3)

(1, 0) satisfies the tensorial differ-

ential equation [14]

ΓklABDBDCΓijkl
CDDD E(3)

(1,0) = −168Γij
ABDB E(3)

(1,0) , (B.1)

which implies, by integrability, [12]

∆E(3)
(1,0) = −180 E(3)

(1,0) , (B.2)

where DA is the covariant derivative in the Weyl spinor representation of Spin(16) and

Γij = 1
2 [Γ

i,Γj] are the associated 16 gamma matrices in the Weyl representation. We refer

to [14] for further details on the conventions used in this section. Equation (B.1) implies

that D3E (3)

(1, 0) vanishes in the irreducible representation associated to the highest weight

Λ2 + Λ8 of Spin(16). Decomposing this equation with respect to U(8), one obtains a 28

at U(1) weight 3 and 720⊕63 at U(1) weight 2. Considering this equation for an Abelian

Fourier coefficient FΓ(R, t)e2πi〈a,Γ〉 where t parametrises the Levi subgroup E7(7)/SU(8)

one obtains the 1/4-BPS constraint at weight 3

(πR)3Z(I ′4(Γ))ij FΓ(R, t) = 0 , (B.3)
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along with

(

DijpqD
klpq(R ∂

∂R − 10) − (πR)2Zij(Γ)Z
kl(Γ)(R ∂

∂R − 6)

+2(πR)2(Zij(Γ)Zpq(Γ)D
klpq + Zkl(Γ)Zpq(Γ)Dijpq)

−8(πR)2(Zip(Γ)Zjq(Γ)D
klpq + Zkp(Γ)Z lq(Γ)Dijpq)

)

FΓ(R, t)

= 1
28δ

kl
ij

(

DpqrsD
pqrs(R ∂

∂R − 10) − (πR)2Zpq(Γ)Z
pq(Γ)(R ∂

∂R − 6)

+10(πR)2(Zpq(Γ)Zrs(Γ)D
pqrs + Zpq(Γ)Zrs(Γ)Dpqrs)

)

FΓ(R, t) (B.4)

at weight 2, where Dijkl is the complex self-dual covariant derivative on E7(7)/SU(8). This

equation can be derived using the decomposition of (B.1), but to obtain it we simply

wrote the most general ansatz for a third order differential operator in the representation

720⊕63 and determined the coefficients such that the Fourier coefficients of E (3)

(0, 0) and E (3)

(1, 0)

for vanishing and 1/2-BPS charges Γ are indeed solutions.

For a 1/2-BPS charge Γ, one can always assume that Zij(Γ) =
1

2
√
2
Ωije

3φn for an integer

n and a symplectic form Ωij (with ΩikΩ
jk = δji ) defining the embedding of E6(6) ⊂ E7(7)

such that

Dijkl = −1
8Ω[ijΩkl]∂φ + 3i√

2
e−2φΩ[ijVkl]

I∂I +Dijkl , (B.5)

where Vij
I = V (y)ij

I is the coset representative of E6(6)/Sp(4), Dijkl is the covariant

derivative on the same space, and ∂I is the derivative with respect to the 27 axions αI .

Decomposing (B.4) accordingly one obtains

e−2φ
(

1
2V

pq I∂IDpq
kl + V kl I∂I

(

2 + 1
6∂φ
)

− 2(πRe3φn)2Vij
I∂I

)

(R ∂
∂R − 10)FΓ(R, t) = 0 ,

1
4e

−4φV -1
I
ijtIJK∂J∂K (R ∂

∂R − 10)FΓ(R, t) = 0 ,
√
2e−2φ

(

V p[i IDp
j]kl − V p[k IDp

l]ij
)

∂I(R
∂
∂R − 10)FΓ(R, t) = 0 , (B.6)

and

(

−
(

1
18∂

2
φ + 2

3∂φ + 1
4e

−4φVpq
IV pqJ∂I∂J

)

δklij +DijpqDklpq +Dij
kl
(

1 + 1
6∂φ
)

+e−4φ
(

δ
[k
[i Vj]p

IV l]p J + V[i
[k IVj]

l]J
)

∂I∂J

)

(R ∂
∂R − 10)FΓ(R, t)

= (πRe3φn)2(2Dij
kl −R ∂

∂R + 6− 1
6∂φ)FΓ(R, t) . (B.7)

Our conventions for Sp(4) are such that all the antisymmetric indices are understood to be

in symplectic traceless representations even if we do not write explicitly the projectors for

brevity [14]. The second equation in (B.6) implies that the Fourier expansion of FΓ(R, t)

with respect to the axions α has support on charges q such that q × q = 0, and the last

equation in (B.6) implies that a Fourier coefficient with q 6= 0 can only depend on the

– 33 –



E6(6)/Sp(4) moduli through the invariant mass |V (q)| (as was argued on the basis of the

Gelfand–Kirillov dimension)10:

FΓ(R, t) = FΓ,0(R,φ, y) +
∑

q∈Z27∗
q×q=0

FΓ,q(R,φ, |V (q)|2)e2πitr q α . (B.8)

For the constant term in this expansion, (B.6) is automatically satisfied and (B.7) implies

that FΓ,0(R,φ, y) must be proportional to the minimal E6 theta series EE6
3
2Λ1

(y) or do not

depend on y, in agreement with the result found in (3.15). We shall now prove that the

Fourier coefficients FΓ,q with q 6= 0 necessarily vanish. For this purpose one computes, for

ζ = |V (q)|2,

Dij
klF (ζ) =

(

2V (q)ijV (q)kl − 4V (q)[i
[kV (q)j]

l] − 1

6
δklij ζ

)

F ′(ζ)

DijpqDklpqF (ζ) =
2

3

(

V (q)ijV (q)kl + V (q)[i
[kV (q)j]

l] +
2

9
δklij ζ

)

×
(

2|V (q)|2F ′′(ζ) + 5F ′(ζ)
)

+
4

3
δklij ζ F

′(ζ) . (B.9)

The function (B.8) solves the two first equations of (B.6) for a 1/2-BPS charge q, and the

third gives
(

4ζ ∂
∂ζ + 12 + ∂φ

)

(

R ∂
∂R − 10

)

FΓ,q(R,φ, ζ) = 3(2πRe3φn)2 ∂
∂ζFΓ,q(R,φ, ζ) . (B.10)

Equation (B.7) decomposes into three equations associated to the three distinct tensor

structures in (B.9)

(

4ζ ∂
∂ζ + 16 + ∂φ

)

(

R ∂
∂R − 10

)∂FΓ,q(R,φ, ζ)

∂ζ
= 3(2πRe3φn)2

∂FΓ,q(R,φ, ζ)

∂ζ
(

(

−2ζ ∂
∂ζ + 1 + ∂φ

)

∂
∂ζ + 3(2π)2e−4φ

)

(

R ∂
∂R − 10

)

FΓ,q(R,φ, ζ)=6(2πRe3φn)2
∂FΓ,q(R,φ, ζ)

∂ζ

(B.11)

and

(

10ζ2 ∂2

∂ζ2
+ 67ζ ∂

∂ζ − ζ ∂
∂ζ ∂φ − 24∂φ − 2∂ 2

φ + 18π2e−4φζ
)

(

R ∂
∂R − 10

)

FΓ,q(R,φ, ζ)

= −3(2πRe3φn)2
(

3R ∂
∂R + ζ ∂

∂ζ − 18 + ∂φ
)

FΓ,q(R,φ, ζ) . (B.12)

Note that the first equation in (B.11) is the derivative of (B.10), but the three remaining

equations are independent. Moreover the Laplace equation (B.2) decomposes as

(

1
4R

2 ∂2

∂R2 − 57
4 R

∂
∂R + 1

12∂
2
φ + 9

2∂φ + 8
3ζ

2 ∂2

∂ζ2
+ 56

3 ζ
∂
∂ζ

)

FΓ,q(R,φ, ζ)

=
(

(2πe−2φ)2ζ + (2πRe3φne3φ)2 − 180
)

FΓ,q(R,φ, ζ) . (B.13)

10While the three equations in (B.6) admit a solution of the form FΓ(R, t) = R10FΓ(t), this solution is not

exponentially suppressed at large R whereas Fourier coefficients are, and it does not extend to a solution

of (B.7).
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As a Fourier coefficient, FΓ,q(R,φ, ζ) must behave as e−2πRe3φn as R goes to infinity. Solving

(B.10) and (B.11) perturbatively in the 1
R expansion one obtains the continuous family of

solutions

FΓ,q(R,φ, ζ) =
e−9φ

ζ
3
4

K 3
2
(2πe−2φ

√

ζ)

∫

ds µ(s)R10+s e−3sφ Ks(2πRe3φn) . (B.14)

However, there are no choice of µ(s) which would satisfy either (B.12) or the Laplace

equation. One arrives at the same conclusion assuming that FΓ,q(R,φ, ζ) behaves as a

power of R as R → 0 and solving (B.10) and (B.11) perturbatively in the R expansion.

Therefore we conclude that although this type of Fourier coefficient is naively allowed on the

basis of the Gelfand–Kirillov dimension, it is in fact ruled out by the tensorial differential

equation associated to the next-to-minimal representation of E8.

C Invariant lattices for exceptional Chevalley groups

In this section we construct a G(Z)-invariant lattice Mg in the Lie algebra of any split

real simple group G(R) obtained from a Jordan algebra of degree 3 via Freudenthal’s triple

system construction. Such a construction exists for all split exceptional groups and for the

split orthogonal groups of rank higher than 4 and SO(4, 3) (see e.g. table 1 of [47]). For

definiteness, we consider the case G = E8, which is based on the Jordan algebra of 3 by

3 Hermitian matrices over the integral split octonions, but the cases E7 and E6 can be

obtained by replacing the split octonions by split quaternions and split complex numbers,

respectively. In the following we use the alternative notation ME8
Λ8

≡ Me8 , M
E7
Λ1

≡ Me7 ,

ME6
Λ2

≡ Me6 , where in each case Λi is the fundamental weight corresponding to the adjoint

representation of G. We also recall the definition of other lattices which enter in the

construction of Mg.

We start with the 27-dimensional latticeME6
Λ1

of integral elements of the 27-dimensional

exceptional Jordan algebra J of 3 by 3 Hermitian matrices over the integral split octonions.

The algebra J has automorphism group F4(4). ME6
Λ1

admits a integer valued cubic form

I3(q) = det q and a symmetric cross product q 7→ q × q valued in its dual ME6
Λ6

≡ (ME6
Λ1

)∗,
normalized such that tr [q × q q] = 3det q. The continuous group E6(6) acts on ME6

Λ1

and ME6
Λ6

in the representations 27 and 27 with highest weight Λ1 and Λ6, respectively.

The Chevalley group E6(Z) is defined as the subgroup of E6(6) which preserves ME6
Λ1

, or

equivalently ME6
Λ6

.

Next, we consider the 56-dimensional lattice ME7
Λ7

= Z⊕ (ME6
Λ1

)∗⊕ME6
Λ1

⊕Z, equipped

with the integer symplectic pairing

〈Γ,Γ′〉 = q0p
′0 + tr qp′ − tr q′p− q′0p

0 ∈ Z , (C.1)

where Γ = (q0, q, p, p
0), Γ′ = (q′0, q

′, p′, p′0), and the integer valued quartic invariant

I4(Γ) = −4q0 det p+ 4p0 det q + 4tr [p× p q × q]− (p0q0 + tr pq)2 . (C.2)
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Using Freudenthal’s construction [54], one obtains the action of E7(7) on ME7
Λ7

⊗ R in the

representation 56 with highest weight Λ7, which preserves both the symplectic pairing

(C.1) and the quartic invariant I4(Γ). The Chevalley group E7(Z) is the subgroup of E7(7)

which preserves the lattice ME7
Λ7

[55]. For Γ ∈ ME7
Λ7

, the polynomial I4(Γ) is either a

multiple of 4, in which case we will say that Γ is even, or I4(Γ) = −1 mod 4 in which case

we will say that Γ is odd. The gradient of the quartic invariant I4(Γ) defines a trilinear

map I ′4(Γ),
4I4(Γ) = 〈Γ, I ′4(Γ)〉 , (C.3)

such that

I ′4(Γ,Γ,Γ) = 6I ′4(Γ) , I ′4(Γ,Γ, I
′
4(Γ)) = −8I4(Γ)Γ . (C.4)

For Γ even, I ′4(Γ) is a multiple of 8, while it is a multiple of 4 for Γ odd. These identities

imply a few others that will be used in the following : [56]

I ′4(I
′
4(Γ)) = −16[I4(Γ)]

2 Γ , I ′4(Γ, I
′
4(Γ), I

′
4(Γ)) = 8I4(Γ)I

′
4(Γ) ,

I ′4(Γ,Γ, I
′
4(Γ,Γ,Υ)) = −16I4(Γ)Υ − 8〈Γ,Υ〉 I ′4(Γ) + 8〈I ′4(Γ),Υ〉Γ . (C.5)

The cross product of two charges Γ1 × Γ2 = Γ2 × Γ1 is valued in the e7(7) algebra and is

determined by its action on a vector Γ,

2(Γ1 × Γ2) · Γ =
1

4
I ′4(Γ1,Γ2,Γ)− 1

2〈Γ1,Γ〉Γ2 − 1
2〈Γ2,Γ〉Γ1 (C.6)

It satisfies the algebra [54]

[Γ1 × Γ2,Γ3 × Γ4] = ((Γ1 × Γ2) · Γ3)× Γ4 + Γ3 × ((Γ1 × Γ2) · Γ4) , (C.7)

and the following identities

I ′4(Γ)× I ′4(Γ) = 4I4(Γ) Γ× Γ , Γ× I ′4(Γ) = 0 . (C.8)

The cross product Γ× Γ is an integer if Γ is even, and a half integer if it is odd.

Finally, with a view towards the 5-graded decomposition (4.2), we consider the 248-

dimensional lattice

Me8 = Z⊕ME7
Λ7

⊕ME7
0 ⊕ME7

Λ7
⊕ Z , (C.9)

where M0 is the 134-dimensional lattice of elements (Q ∈ e7(7), ℓ ∈ Z/2) such that Q + ℓ

preserves ME7
Λ7

. ME7
0 is a reducible E7(Z)-module that decomposes as M0

∼= (ME7
Λ1

,Z) ⊕
(ME7

Λ1
+h(Λ7),Z+ 1

2) where M
E7
Λ1

is the lattice of elements in e7 that preserve ME7
Λ7

, which

is Me7 defined by applying the same construction to the Jordan algebra of 3× 3 Hermitian

matrices over the integral split quaternions,11 and h(Λ7) is the element of a chosen Cartan

subalgebra of e7(7) associated to the weight Λ7.
12

11This construction gives Me7 = Z⊕M
D6
Λ6

⊕M
D6
0 ⊕M

D6
Λ6

⊕Z with M
D6
0 = (MD6

Λ2
,Z)⊕ (MD6

Λ2
+h(Λ6),Z+

1
2
), and M

D6
Λ2

is the lattice in so(6, 6) which preserves the three lattices M
D6
Λ6

, M
D6
Λ1

, M
D6
Λ5

. Using the

decomposition in SL(6,Z) modules, MD6
Λ6

∼= Z
(−3) ⊕ (Z15)(−1) ⊕ (Z15)(1) ⊕ Z

(3), MD6
Λ1

∼= (Z6)(−1) ⊕ (Z6)(1)

and M
D6
Λ5

∼= (Z6)(−2) ⊕ (Z20)(0) ⊕ (Z6)(2), it follows that the elements of Me7 are precisely the ones that

preserve M
E7
Λ7

= M
D6
Λ1

⊕M
D6
Λ5

⊕M
D6
Λ1

since h(Λ6)±
1
2
preserves MD6

Λ1
and h(Λ6) preserves M

D6
Λ5

.
12One could just as well choose the Cartan generators h(Λ2), h(Λ5), or any element of the form Γ×Γ for

any odd vector Γ, since all these elements are equivalent modulo M
E7
Λ1

.
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We denote elements of ME8
Λ8

≡ Me8 by Q = (n,Υ, Q+ ℓ,Γ,m), where n,m are integers,

Υ, Γ elements of Z
56 and (Q, ℓ) ∈ M0. An element a ⊕ b in the nilpotent subalgebra

56(1) ⊕ 1(2), defines the action of the ‘spectral flow’ unipotent subgroup on Q,

m → m+ 〈a,Γ + bΥ〉+ 2bℓ+ b2n+ 1
2〈a,Q · a〉+ 1

4〈Υ, I ′4(a)〉 + 1
4nI4(a) ,

Γ → Γ +Q · a+ ℓa+ 1
8I

′
4(a, a,Υ) + 1

2a〈a,Υ〉+ 1
4nI

′
4(a) + b(Υ + an) ,

Q → Q+ 2a×Υ+ a× an , ℓ → ℓ+ 1
2〈a,Υ〉+ bn ,

Υ → Υ+ an ,

n → n , (C.10)

while an element ā⊕ b̄ in the opposite nilpotent subalgebra 1(−2) ⊕ 56(−1) acts via

m → m ,

Γ → Γ− ām ,

Q → Q− 2ā× Γ + ā× ām , ℓ → ℓ+ 1
2〈ā,Γ〉 − b̄m ,

Υ → Υ+Q · ā− ℓā− 1
8I

′
4(ā, ā,Γ) +

1
2〈Γ, ā〉ā+ 1

4mI ′4(ā)− b̄(Γ− ām) ,

n → n+ 〈ā,Υ− b̄Γ〉 − 2b̄ℓ+ b̄2m+ 1
2〈ā, Q · ā〉 − 1

4〈Γ, I ′4(ā)〉+ 1
4mI4(ā) . (C.11)

The Chevalley group E8(Z) is generated by the Chevalley group E7(Z) and the unipotent

generator defined above with b ∈ Z and a ∈ Z
56 such that a × a = 0. More generally all

the elements (C.10) such that a is even and b ∈ Z, or such that a is odd and b ∈ Z+ 1
2 are

in E8(Z), and similarly for (C.11).
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