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1. Introduction

The study of multiparticle production in high energy hadron 
collisions has proven to be a useful tool to explore the soft regime 
of the strong interaction dynamics [1,2]. In particular, particle cor-
relations are known to provide crucial information about the un-
derlying mechanism of the multiparticle production process to be 
ultimately interpreted in terms of QCD [1,3]. Moreover, the anal-
ysis of particle correlations has been shown to reveal signals of 
non-conventional physics [4,5].

In recent years big efforts have been devoted to the study 
of two-particle correlations in the search for collective phenom-
ena (see [6] for a review). Two-particle correlations are analyzed 
in a two-dimensional azimuthal �η-�φ phase space, where �φ

and �η denote the difference of the azimuthal angle φ and the 
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pseudorapidity η of the two selected particles, respectively.1 Two-
particle correlation function is defined as:

C(�η,�φ) = S(�η,�φ)

B(�η,�φ)
, (1)

where S and B denote particle pair distributions from the same 
event and from different events, representing the signal and back-
ground contributions, respectively [7].

Typically, a complex structure is observed for different energies 
and types of colliding objects. On the one hand, there is a nar-
row peak centered at (�y � 0, �φ � 0) due to high transverse 
momentum (pT ) clusters and jets, whereas a broader away-side 
Gaussian-type structure arises from the decay of lower pT clus-
ters, resonances and fragmentation, including Bose–Einstein cor-
relations. Besides, an enhancement of two-particle correlations is 
also found at �φ � π . Because of its extended shape as seen in the 
�η-�φ plot, it is usually referred to as the away-side ridge. This 

1 We consider a right-handed coordinate system with the z axis along the beams’ 
direction. Cylindrical coordinates are used in the transverse plane, φ being the 
azimuthal angle. The pseudorapidity is defined in terms of the polar angle θ as 
η = − ln tan (θ/2). The (longitudinal) rapidity is defined as y = 1

2 ln (
E+pL
E−pL

) and co-
incides with the pseudorapidity for massless particles. Here, pL is the longitudinal 
(along the beam axis) component of the measured particle moment.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

http://dx.doi.org/10.1016/j.physletb.2017.01.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:Miguel.Angel.Sanchis@ific.uv.es
mailto:sedward@cern.ch
http://dx.doi.org/10.1016/j.physletb.2017.01.001
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2017.01.001&domain=pdf


M.-A. Sanchis-Lozano, E. Sarkisyan-Grinbaum / Physics Letters B 766 (2017) 170–176 171
effect can be explained due to particle correlations coming from 
momentum conservation in back-to-back jets. Another interesting 
structure is observed, namely the long-range (|�η| ≤ 5) near-side 
(�φ � 0) correlations yielding a near-side ridge, whose study is the 
main objective of this work.

Long-range correlations are usually attributed to a collective hy-
drodynamical flow, and therefore the ridge structure is expected 
in nuclear collisions due to, e.g., an initial anisotropy that is im-
printed on the azimuthal-angle distributions of final-state particles 
through the collective expansion of the medium [6]. Another pos-
sible explanation is given by the color-glass condensate, where the 
two-gluon density is enhanced at small �φ, which still needs a 
collective flow boost to reproduce the observed ridge [8]. Both 
mechanisms have, however, some shortcomings such as a locally 
thermalized medium, which is required for the hydrodynamic flow 
in order to account for the near-side ridge phenomenon [9]. Fi-
nally, a third kind of explanation considers jet-medium interactions 
where semihard partons can induce local fluctuations by energy 
loss in high density soft-parton fields, yielding azimuthal asymme-
tries manifesting as a ridge structure [10].

Unexpectedly, a long-range ridge structure has also been ob-
served in proton-nucleus [11,12] and, particularly, in proton–
proton (pp) [13,12] collisions, still requiring a definitive expla-
nation. The similarities between the correlations found in small 
systems and heavy-ion collisions suggest a common origin. Mean-
while, if hydrodynamics is successfully applied in the case of heavy 
ions, the hydrodynamical explanation of the ridge effect in pp
collisions, even for high-multiplicity events where the effect has 
been actually observed, seems still unclear (however, see [14]). 
This quite unexpected phenomenon still requires a careful study to 
establish its physical origin.

Finally, it is worthwhile mentioning that the experimental anal-
yses of azimuthal anisotropy usually involve a Fourier series con-
taining harmonics [15] up to fifth order, 

∑5
n=0 an cos (n�φ), where 

the coefficients an have to be interpreted and estimated by theo-
retical models.

In this Letter, we study two-particle correlations by invoking 
a simple two-step scenario for multiparticle production: the re-
sulting multiplicity is given by the convolution of the distribution 
of particle emission sources (clusters/fireballs/semihard jets...) with 
the fragmentation/decay of the sources. A correlated-cluster model 
(CCM) is developed and applied throughout, where both the clus-
ters and the final-state particles are considered to be emitted ac-
cording to Gaussian distributions in rapidity and azimuth, encoding 
short-range and long-range correlations in both variables. Our ul-
timate goal is to provide a common (effective) framework for both 
proton and heavy-ion collisions to deal with the near-side ridge 
phenomenon. Compact expressions are provided for C(�η, �φ).

2. Definitions and notation

The general inclusive two-particle correlation function is de-
fined through the Lorentz invariant inclusive differential single and 
double cross sections σ−1

in Ed3σ/d3 p and σ−1
in E1 E2d6σ/d3 p1d3 p2, 

respectively. Here, σin denotes the inelastic cross section, E and p
denote the total energy and moment of particles, while the sub-
scripts 1 and 2 refer to the two considered particles. As usual in 
this kind of analysis [1], we will not distinguish between different 
species of particles, focusing only on charged particles.

In terms of the rapidity (y) and the azimuthal angle (φ), the 
one-particle density ρ̃ and the two-particle density ρ̃2 are defined 
through

ρ̃(y, �pT ) = 1

σ

d3σ

d3 p
= 1

σ

d3σ

dyd2 p
= 1

2σ

d3σ

dydφdp2
, (2)
in in T in T
ρ̃2(y1, �pT 1, y2, �pT 2) = 1

σin

d6σ

d3 p1d3 p2
= 1

σin

d6σ

dy1d2 pT 1dy2d2 pT 2

= 1

4σin

d6σ

dy1dφ1dp2
T 1dy2dφ2dp2

T 2

,

where pT (p2
T ) denotes the (square modulus of the) particle trans-

verse momentum.
From the above expressions, let us define the normalized two-

particle correlation function as

C(1,2) = ρ̃2(1,2)

ρ̃(1)ρ̃(2)
, (3)

where the indices 1 and 2 stand for the set of kinematic variables 
of the first and second particles of the pair, respectively.

On the other hand, it is customary integrating over p2
T on a 

suitable range denoted by 	T (determined by experimental cuts 
on events), and the single and two-particle densities become

ρ(y, φ) =
∫

	T

dp2
T ρ̃(y, �pT ),

ρ2(y1, φ1, y2, φ2) =
∫

	T

dp2
T 1dp2

T 2ρ̃2(y1, �pT 1, y2, �pT 2) . (4)

In order to match our theoretical approach to the definition of 
Eq. (1), where the (pseudo)rapidity and azimuthal differences are 
involved, we identify the two-particle distribution of the uncorre-
lated pairs by means of the two Dirac δ-functions, i.e.

b(�y,�φ) =
∫

dy1dy2dφ1dφ2ρ(y1, φ1)ρ(y2, φ2)

× δ(�y − y1 + y2)δ(�φ − φ1 + φ2) , (5)

such that �y = y1 − y2 and �φ = φ1 − φ2.
In its turn, the pair distribution of correlated pairs can be iden-

tified with

s(�y,�φ) =
∫

dy1dy2dφ1dφ2ρ2(y1, φ1, y2, φ2)

× δ(�y − y1 + y2)δ(�φ − φ1 + φ2) , (6)

where again the Dirac δ-functions are incorporated.
Then, the normalized correlation function is redefined in the 

following way,

C(�y,�φ) = s(�y,�φ)

b(�y,�φ)
, (7)

being suitable for a comparison with the experimental results ob-
stained using Eq. (1).

3. Two-particle correlations in a cluster model

It is usually accepted that particle production in soft hadronic 
interactions occurs via an intermediate step of decaying ances-
tors/clusters/fireballs yielding final-state particles [1,3]. It should 
be noted, however, that the “cluster” concept has to be understood 
in a broad sense, i.e. a group of particles with some correlated 
properties.

The Independent Cluster Model (clusters are produced in a non-
correlated way) has been widely applied to the study of hadron 
collisions (see [17,18] and references therein). In [19], the near-
side ridge formation is studied in the framework of the so-called 
Correlated Emission Model for heavy ion collisions. In this model, 
a semihard parton, emitted in the primary collision, scatters when 
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traversing the medium yielding a local energy flow. The correla-
tion between both (semihard parton and local flow) enhances the 
effect of soft emission, leading to the ridge formation. On the other 
hand, our approach, based on correlated cluster production, can be 
viewed as a rather model-independent approach to ridge forma-
tion, useful to deal with pp collisions too.

After integrating over the (square) cluster transverse momen-
tum along the whole kinematically-allowed range, the single and 
two-cluster densities read

ρ(c)(yc, φc) =
∫

dp2
T cρ̃

(c)(yc, �pT c),

ρ
(c)
2 (yc1, φc1, yc2, φc2)

=
∫

dp2
T c1dp2

T c2ρ̃
(c)
2 (yc1, �pc1, yc2, �pc2) . (8)

Now we define particle densities depending on rapidity and az-
imuthal variables, coming from the decay of a single cluster with 
rapidity yc and azimuthal angle φc leading to final-state particles:

ρ(1)(y, φ; yc, φc) =
∫

	T

dp2
T ρ̃(1)(y, �pT ; yc, φc) , (9)

ρ
(1)
2 (y1, φ1, y2, φ2; yc, φc)

=
∫

	T

dp2
T 1dp2

T 2ρ̃
(1)
2 (y1, �pT 1, y2, �pT 2; yc, φc) , (10)

where 	T again refers to the selected transverse momentum range 
of final-state particles.

Thus, the single particle density can be expressed as the convo-
lution of the cluster density and the particle density from a single 
cluster, i.e.

ρ(y, φ) =
∫

dycdφcρ
(c)(yc, φc)ρ

(1)(y, φ; yc, φc) . (11)

Notice that all the kinematic variables appearing in the above 
expressions (cluster and particle rapidities and azimuthal angles) 
are measured in the Laboratory Reference Frame (LRF) which co-
incides with the center-of-mass frame of the hadron–hadron colli-
sion.

To the extent that ρ(1)(y, φ; yc, φc) is flat in the central rapidity 
region and small transverse cluster momenta, we have ρ(y, φ) =
〈Nc〉ρ̄(1) , where ρ̄(1) stands for an average particle density for sin-
gle cluster decay. Hence the resulting single-particle density would 
be flat too and its height to be proportional to the mean number 
of clusters per collision.

However, this approximation is quite rough as we are extending 
our study to the (pseudo)rapidities |y| � 5 and possibly to large 
cluster transverse momenta. To this end, we introduce a function 
E1(y, φ), which keeps the expected dependence on the rapidity 
and azimuthal variables of the emitted particles, so that the single-
particle density becomes:

ρ(y, φ) = 〈Nc〉ρ̄(1)E1(y, φ) . (12)

The E1(y, φ) function is normalized in such way that∫
dy dφE1(y, φ) = 1 ,

where integration is taken over the full available kinematic range 
of both the variables.

Similarly, we introduce the product of the two single-particle 
distributions representing the mixed-event background, i.e.
ρmixed(y1, φ1, y2, φ2)

= ρ(y1, φ1)ρ(y2, φ2)

= 〈Nc〉2ρ̄(1)2 E1(y1, φ1)E1(y2, φ2) , (13)

which suggests to define

Eb(y1, φ1, y2, φ2) = E1(y1, φ1)E1(y2, φ2) . (14)

The two-particle density can also be written as

ρ2(y1, φ1, y2, φ2)

=
∫

dycφcρ
(c)(yc, φc)ρ

(1)
2 (y1, φ1, y2, φ2; yc, φc)

+
∫

dyc1dyc2dφc1dφc2ρ
(c)
2 (yc1, φc1, yc2, φc2)

× ρ(1)(y1, φ1; yc1, φc1)ρ
(1)(y2, φ2; yc2, φc2) . (15)

The first term on the r.h.s. corresponds to the emission of secon-
daries from a single cluster while the second term corresponds to 
the emission of the two particles from two distinct clusters.

Therefore, we conclude for the two-particle density:

ρ2(y1, φ1, y2, φ2)

= 〈Nc〉ρ̄(1)2 ESR
s (y1, φ1, y2, φ2)

+ 〈Nc(Nc − 1)〉ρ̄(1)2 ELR
s (y1, φ1, y2, φ2) , (16)

where ESR
s (y1, φ1, y2, φ2) stands for the short range (pseudo)rapid-

ity correlations and ELR
s (y1, φ1, y2, φ2) stands for the long range 

correlations stemming from the two integrals of Eq. (15), respec-
tively.

Needless to say, the above expression is mainly intended to 
describe the near-side effect using the CCM. Other kind of correla-
tions (like particles inside jets or the away-side ridge) fall off the 
above description and will not be considered in this Letter.

3.1. Factorization hypothesis

Taking into account that the rapidity y and the azimuthal vari-
able φ are orthogonal variables, we tentatively assume that both 
Eb(y1, φ1, y2, φ2) and Es(y1, φ1, y2, φ2) can be factorized as

Eb(y1, φ1, y2, φ2) = E L
b(y1, y2) · E T

b (φ1, φ2) ,

Es(y1, φ1, y2, φ2) = E L
s (y1, y2) · E T

s (φ1, φ2) , (17)

where the superscripts L and T denote the longitudinal and trans-
verse parts, respectively.

Moreover, as usual in cluster models, we shall adopt Gaussian 
distributions in rapidity and azimuthal spaces for both cluster den-
sity and particle density from clusters,2 as developed below.

On average, clusters should be isotropically produced in the 
transverse plane of the primary hadronic collision (even though 
anisotropy would be present in event-by-event fluctuations). Thus, 
only dependence on the rapidity variable remains in the single-
cluster density,

ρ(c)(yc, φc) ∼ exp

[
− y2

c

2δ2
cy

]
, (18)

2 For an isotropically decaying cluster with rapidity yc , the single (massless) par-
ticle density can be written as ρ(1)(y; yc) ∼ cosh −2(y − yc). As it is well known 
[16], it can be well approximated by a Gaussian of width δy � 0.9.
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where δcy denotes the rapidity correlation length for cluster pro-
duction. On account of the plateau structure of multiplicity distri-
bution in pseudorapidity phase space, one may assume that the 
dependence of ρ(c)(yc, φc) on yc is rather weak, i.e. δ2

cy 	 1. In-
deed, one can empirically expect that δcy is basically determined 
by the rapidity plateau length of the single-particle distribution 
(for all charged particles).

Now we turn to the single particle density ρ(1)(y, φ; yc, φc). 
Since clusters are produced with some non-null (transverse) mo-
mentum, the initial isotropic distribution will be transformed into 
an elliptic shape depending on the cluster and emitted particle 
transverse velocities. (We note again that φ stands throughout for 
a variable in the LRF, which coincides with the center-of mass of 
the pp colliding system.) Hence a dependence on the cluster az-
imuthal angle φc should remain in ρ(1)(y, φ; yc, φc).

As shown in the Appendix, such elliptic shape can be approxi-
mately expressed in terms of a Gaussian for highest boosted parti-
cles. Therefore one gets

ρ(1)(y, φ; yc, φc)

∼ exp

[
− (y − yc)

2

2δ2
y

]
exp

[
− (φ − φc)

2

2δ2
φ

]
. (19)

The parameter δy , usually referred to as the cluster decay 
“width”, characterizes the (pseudo)rapidity separation of particles 
emitted in a single cluster decay; it has been experimentally mea-
sured to be � 1 rapidity units [17]. Therefore, it turns out that 
δ2

cy 	 δ2
y , in accord with our previous discussion.

For small azimuthal angles with respect to the cluster direction 
in the transverse plane

δφ ∼ 1

v T γT
(20)

stands for the cluster decay “width” regarding the azimuthal an-
gle instead of the rapidity variable. Since the near-side ridge ef-
fect shows up for particles with transverse momentum of order of 
1 GeV, we will take δφ � 0.14 radians as a reference value (corre-
sponding to a pion with pT = 1 GeV emitted at rest in the cluster 
reference frame). At low pT , δφ becomes large and the angular dis-
tribution remains almost flat (thereby the ridge disappears). Con-
versely, at higher pT values δφ will decrease leading to a more 
pronounced peak at φ � φc. Note also that one expects δ2

cφ 	 δ2
φ

since the particles from the boosted clusters should be more col-
limated in azimuth than the clusters themselves (the latter being 
quite more massive).

On the other hand, we further assume that the clusters are 
emitted in a correlated manner both in rapidity and azimuth. Thus, 
the two-cluster density is given by

ρ
(c)
2 (yc1, φc1, yc2, φc2)

∼ exp

[
− (yc1 + yc2)

2

2δ2
cy

]
exp

[
− (φc1 − φc2)

2

2δ2
cφ

]
, (21)

where δcy and δcφ stand for the rapidity and azimuthal correlation 
lengths, respectively. Let us remark that Eq. (21) can be regarded 
as a parameterization especially suitable to determine the near-
ridge effect using the CCM. The physical origin of such azimuthal 
correlations among clusters has to be provided by specific models.

The underlying physical picture corresponds to cluster pairs 
emitted mostly with opposite rapidities but in the same hemi-
sphere defined by the cluster velocity in the transverse plane. The 
correlation strengths are determined by the δcy and δcφ parame-
ters (not to be confused with δy and δφ ) respectively.
Fig. 1. Illustrative picture of two clusters produced in a primary hadron collision 
at the origin of the transverse plane with azimuthal angles φc1 and φc2, decaying 
into final state particles. Elliptic shapes are due to Lorentz boosts, although they 
could become somewhat distorted since they correspond to the projection on the 
transverse plane of boosted distributions in a three-dimensional space.

The condition on the rapidity can be seen as a consequence 
of longitudinal momentum conservation. Away-side particles can 
carry the remaining momentum due to a non-exact momentum 
balance by the two clusters along the beams’ direction. The az-
imuthal condition is implemented in this version of the CCM by 
hand3 but should be attributed to a dynamical mechanism devel-
oped in a concrete model. As shown below, the requirement of 
azimuthal cluster correlations is definitely needed in order to ac-
count for the near-side ridge effect according to the CCM.

In Fig. 1 we illustrate the particle emission from two clusters 
produced in the same primary hadron collision leading to differ-
ent elliptic shapes due to different Lorentz boosts. Clusters are 
assumed to be correlated both in rapidity and azimuth according 
to Eq. (21).

Now we integrate over rapidities and azimuthal angles using 
the Dirac’s δ-functions. Lastly, we end up with a correlation func-
tion depending on e(�y, �φ) yielding a “residual” dependence on 
the rapidity and azimuthal variables:

s(�y,�φ) = 〈Nc〉ρ̄(1)2es(�y,�φ) , (22)

where es(�y, �φ) is defined as:

es(�y,�φ) =
∫

dy1dy2dφ1dφ2δ(�y − y1 + y2)

× δ(�φ − φ1 + φ2)Es(y1, φ1, y2, φ2) . (23)

Since one can reasonably expect that δ2
cy 	 δ2

y, δ2
cφ 	 δ2

φ (as it is 
argued just above), we write the short-range and long-range pieces 
of the two-particle density as (see Appendix for e-functions):

sSR(�y,�φ) = 〈Nc〉ρ̄(1)2eSR
s (�y,�φ) , (24)

where

eSR
s (�y,�φ) ∼ exp

[
− (�y)2

4δ2
y

]
exp

[
− (�φ)2

4δ2
φ

]
. (25)

On the other hand,

sLR(�y,�φ) = 〈Nc(Nc − 1)〉ρ̄(1)2eLR
s (�y,�φ) , (26)

where

3 On the other hand, the Gaussian function exp [−(φc1 − φc2 − π)2/2δ2
cφ ] would 

correspond to the back-to-back cluster emission in the transverse plane rather re-
lated to the away-side ridge effect.
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eLR
s (�y,�φ) ∼ exp

[
− (�φ)2

2(2δ2
φ + δ2

cφ)

]
. (27)

Let us observe that for a Poissonian distribution of clusters 
〈Nc(Nc − 1)〉 = 〈Nc〉2.

Regarding the uncorrelated pairs, one finds

b(�y,�φ) = 〈Nc〉2ρ̄(1)2eb(�y,�φ) . (28)

Upon integration over both rapidities, with �y fixed, one read-
ily gets

eb(�y,�φ) ∼ exp

[
− (�y)2

4(δ2
y + δ2

cy)

]
. (29)

Note that there is no azimuthal dependence in the above expres-
sion.

4. Interpretation of the near-side ridge effect according to CCM

In this section we show that the near-side effect emerges quite 
naturally from Eqs. (24) to (29) according to the CCM. To this end, 
we write

C(�y,�φ) = sSR(�y,�φ) + sLR(�y,�φ)

b(�y,�φ)

= 1 + hSR(�y,�φ)

〈Nc〉 + 〈Nc(Nc − 1)〉
〈Nc〉2

hLR(�φ) , (30)

where

hSR(�y,�φ) = eSR
s (�y,�φ)

eb(�y,�φ)

= exp

[
− δ2

cy

4δ2
y(δ

2
y + δ2

cy)
(�y)2

]

× exp

[
− (�φ)2

4δ2
φ

]
, (31)

and

hLR(�y,�φ) = eLR
s (�y,�φ)

eb(�y,�φ)

� exp

[
(�y)2

4(δ2
y + δ2

cy)

]

× exp

[
− (�φ)2

2(2δ2
φ + δ2

cφ)

]
, (32)

where the latter smoothly increases with the (pseudo)rapidity sep-
aration �y provided that δ2

cy 	 1, as discussed above.

For δ2
cy 	 δ2

y we find

hSR(�y,�φ) = exp

[
− (�y)2

4δ2
y

]
exp

[
− (�φ)2

4δ2
φ

]
(33)

and

hLR(�y,�φ) � exp

[
− (�φ)2

2(2δ2
φ + δ2

cφ)

]
(34)

since there is an almost complete cancellation of the rapidity de-
pendence; only the dependence on the azimuthal difference sur-
vives the ratio leading to the rise of a ridge at small �φ. The 
physical reason is that δcy is provided by the plateau length in the 
multiplicity pseudorapidity distribution (hence large), while δcφ is 
assumed to be quite smaller, as shown below.
Indeed, the angular dependence of the second-order Fourier 
harmonic contribution (cos(2�φ)) to the near-side correlation 
function can be approximated by the Gaussian of Eq. (34) for small 
�φ. By Taylor-expanding the exponential about �φ � 0, and re-

quiring cos(2 �φ) � exp
[
−(�φ)2/2(2δ2

φ + δ2
cφ)

]
, we get

2δ2
φ + δ2

cφ � 0.25. (35)

For high pT enough (therefore δ2
φ small) the above condition 

leads to

δcφ � 0.5 (radians),

in good agreement with findings from [19,20] and experimental 
measurements [21]. Let us stress that the long-range correlations 
in hLR are consequence of the azimuthal cluster correlations shown 
above, whereas the (pseudo)rapidity correlations play a minor role 
in the near-side ridge effect, as also pointed out in [20].

Finally, note that the weight of hLR relative to the other terms 
of Eq. (30) should increase as 〈Nc〉 increases. This can explain why 
the near-side ridge effect shows up at larger multiplicity (hence 
larger 〈Nc〉).

5. Summary

We have studied the near-side ridge effect observed in nuclear 
and hadronic collisions at RHIC and LHC. The study is carried out 
in the context of the correlated cluster model (CCM) using Gaus-
sian distributions in azimuth and rapidity both for clusters and 
final state hadrons, encoding short-range and long-range correla-
tions.

In order to reproduce the ridge phenomenon representing two-
particle correlations at small azimuthal difference �φ over a wide 
(pseudo)rapidity range, clusters have necessarilly to be emitted in 
a correlated way in azimuthal space, but not in rapidity space. Let 
us stress that correlations among particles in single-cluster decays 
are not enough to account for the near-side ridge effect. Moreover, 
a relation for the second-order Fourier harmonic (related to the 
elliptic flow in a hydrodynamical scenario) is obtained in agree-
ment with experimental results. Although the physical origin of 
cluster correlations could vary depending on the nature of the col-
liding bodies, the CCM provides a common framework to explain 
the ridge effect in proton–proton, proton-nucleus and heavy-ion 
collisions.
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Appendix A. Gaussian distributions and their convolutions

A.1. (Pseudo)rapidity dependence

We will assume throughout that both clusters and particles 
stemming from clusters obey Gaussian distributions in rapidity 
space, i.e.

ρ(c)(yc, φc) ∼ exp

[
− y2

c

2δ2
cy

]
,

ρ(1)(y, φ; yc, φc) ∼ exp

[
− (y − yc)

2

2δ2
y

]
, (A.1)

respectively.
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Upon integration over the cluster rapidity yc, the E L
1(y) func-

tion, introduced in Eq. (12), reads

E L
1(y) ∼

∫
dyc exp

[
− y2

c

2δ2
cy

]
exp

[
− (y − yc)

2

2δ2
y

]

∼ exp

[
− y2

2(δ2
y + δ2

cy)

]
. (A.2)

Hence, for two particles emitted from two different clusters one 
gets for the longitudinal part of the Eb function, introduced in 
Eq. (13),

E L
b(y1, y2) = E L

1(y1) · E L
1(y2) ∼ exp

[
− (y2

1 + y2
2)

2(δ2
y + δ2

cy)

]
. (A.3)

Upon integration on both rapidities keeping the rapidity interval 
�y = y1 − y2 fixed, one gets

eL
b(�y) ∼ exp

[
− (�y)2

4(δ2
y + δ2

cy)

]
. (A.4)

For two particles stemming from the same cluster with rapid-
ity yc

E L
s (y1, y2) ∼

∫
dyc exp

[
− y2

c

2δ2
cy

]
exp

[
− (y1 − yc)

2

2δ2
y

]

× exp

[
− (y2 − yc)

2

2δ2
y

]

∼ exp

[
− δ2

cy(y1 − y2)
2

2δ2
y(δ

2
y + 2δ2

cy)

]

× exp

[
− (y2

1 + y2
2)

2(δ2
y + 2δ2

cy)

]
. (A.5)

After integration using the Dirac’s δ-function, the above expres-
sion leads to

eSR
s (y1, y2) ∼ exp

[
− (�y)2

4δ2
y

]
. (A.6)

Notice that δcy drops off in the last expression so that it can be 
referred to as a short-range correlation (SRC) contribution, as indi-
cated in the superscript.

For two particles with rapidity y1 and y2 coming from two dif-
ferent (correlated) clusters with rapidities yc1 and yc2 respectively, 
we have (see Eq. (21))

E L
s (y1, y2) ∼

∫
dyc1dyc2 exp

[
− (yc1 + yc2)

2

2δ2
cy

]

× exp

[
− (y1 − yc1)

2

2δ2
y

]
exp

[
− (y2 − yc2)

2

2δ2
y

]

∼ exp

[
− (y1 + y2)

2

2(2δ2
y + δ2

cy)

]
. (A.7)

Using again the Dirac δ-function, one gets

eLR
s (�y) ∼ const. , (A.8)

which corresponds to a long-range correlation (LRC), as indicated 
in the superscript.

In sum, we get two pieces with different behaviours (SRC versus 
LRC) in rapidity space:

eSR
s (�y) ∼ exp

[
− (�y)2

4δ2

]
; eLR

s (�y) ∼ const. (A.9)

y

Had we used uncorrelated cluster production, i.e. ρ
(c)
2 ∼

exp
[−(y2

c1 + y2
c2)/2 δ2

cy

]
, our final results given by Eqs. (33) and 

(34) would remain the same.

A.2. Azimuthal dependence

Clusters are supposed to be produced isotropically in the trans-
verse plane of the hadron collision. Let φc be a particular value of 
the azimuthal variable for a cluster whose decay into particles is 
also assumed isotropic. Thus the azimuthal distribution w(φ∗) in 
the cluster rest frame should be a constant.

Under a Lorentz boost of velocity v T , the angular distribution 
in the LRF is given by [22]

w(φ − φc) = 1

γT [1 − v2
T cos2 (φ − φc)]

f (φ, g) . (A.10)

We recall here that φ is measured in the LRF, i.e. the angular dis-
tribution is boosted by a Lorentz factor γT = (1 − v2

T )−1/2 in the 
transverse plane. The f (φ, g) function stands for

f (φ, g) = g ± √
D

±√
D

, (A.11)

where D = 1 + γ 2
T (1 − g2) tan 2(φ − φc), with g = v T /v∗

T denoting 
the ratio of the cluster transverse velocity v T in the LRF and the 
particle transverse velocity v∗

T measured in the cluster rest frame, 
respectively.

For g ≥ 1 all particles are emitted along the forward hemi-
sphere (defined by the cluster velocity) in the transverse plane of 
the LRF. In fact, this should be the case for particles, emitted with 
transverse momentum in the range 1 ≤ pT ≤ 5 GeV measured in 
the LRF. Therefore, we will consider that g ≈ 1 and set f (φ, g)

approximately equal to a constant. Larger transverse momenta of 
particles would correspond rather to jet production instead of an 
intermediate-pT cluster production on which we are focusing in 
this work.

In order to get simpler expressions at the end, we approximate 
the azimuthal distribution by a Gaussian for small φ − φc angles, 
namely,

w(φ − φc) ≈ exp

[
− (φ − φc)

2

2δ2
φ

]
, δφ � 1

v T γT
. (A.12)

It becomes apparent that large cluster transverse velocity leads to 
small δφ and thereby a more pronounced peak at φ � φc, in accor-
dance with Eq. (A.10).

Admittedly, cluster emission boosted along the transverse plane 
has only been considered above, while the general situation should 
contemplate cluster and particle motions with velocity compo-
nents along the beam direction as well. However, the main con-
clusion of the above should remain valid.

In addition to the hypothesis of isotropically decaying clusters 
in their own rest frame, we will assume axial symmetry for cluster 
production in the transverse plane, i.e.

E T
b (φ1, φ2) ∼ const. → eT

b (�φ) ∼ const. (A.13)

Thus, the distribution for two particles, emitted from the same 
cluster with azimuthal angle φc should obey

∫
dφc exp

[
− (φ1 − φc)

2

2δ2
φ

]
exp

[
− (φ2 − φc)

2

2δ2
φ

]

∼ exp

[
− (φ1 − φ2)

2

4δ2

]
(A.14)
φ
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for small azimuthal angles. Therefore, regarding the azimuthal de-
pendence we can write

eSR
s (�φ) ∼ exp

[
− (�φ)2

4δ2
cφ

]
. (A.15)

On the other hand, we will assume that clusters are produced 
in a correlated way according to Eq. (21). Hence for two particles 
with azimuthal angles φ1 and φ2 coming from two different clus-
ters with azimuthal angles φc1 and φc2, we will write

E T
s (φ1, φ2) ∼

∫
dφc1dφc2 exp

[
− (φc1 − φc2)

2

2δ2
cφ

]

× exp

[
− (φ1 − φc1)

2

2δ2
φ

]
exp

[
− (φ2 − φc2)

2

2δ2
φ

]

∼ exp

[
− (φ1 − φ2)

2

2(2δ2
φ + δ2

cφ)

]
, (A.16)

that directly leads to

eLR
s (�φ) ∼ exp

[
− (�φ)2

2(2δ2
φ + δ2

cφ)

]
, (A.17)

which corresponds to a LRC, as indicated in the superscript.

A.3. Final expressions

In sum, we find that the SRC and the LRC pieces of the 
es(�y, �φ) function can be written as

eSR
s (�y,�φ) ∼ exp

[
− (�y)2

4δ2
y

]
exp

[
− (�φ)2

4δ2
φ

]

and

eLR
s (�y,�φ) ∼ exp

[
− (�φ)2

2(2δ2
φ + δ2

cφ)

]
.

Note that eb(�y, �φ) only retains dependence on the rapidity 
variable for isotropic cluster production in the transverse plane,

eb(�y,�φ) ∼ exp

[
− (�y)2

4(δ2
y + δ2

cy)

]
.
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