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Abstract

A study of the near-side ridge phenomenon in hadron-hadron collisions based on a cluster picture of
multiparticle production is presented. The near-side ridge effect is shown to have a natural explanation
in this context provided that clusters are produced in a correlated manner in the collision transverse
plane.
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1. Introduction

The study of multiparticle production in high energy hadron collisions has proven to be a useful tool
to explore the soft regime of the strong interaction dynamics [1, 2]. In particular, particle correlations are
known to provide crucial information about the underlying mechanism of the multiparticle production
process to be ultimately interpreted in terms of QCD [1, 3]. Moreover, the analysis of particle correlations
has been shown to reveal signals of non-conventional physics [4, 5].

In recent years big efforts have been devoted to the study of two-particle correlations in the search for
collective phenomena (see [6] for a review). Two-particle correlations are analyzed in a two-dimensional
azimuthal ∆η-∆φ phase space, where ∆φ and ∆η denote the difference of the azimuthal angle φ and the
pseudorapidity η of the two selected particles, respectively 1. Two-particle correlation function is defined
as:

C(∆η,∆φ) =
S(∆η,∆φ)

B(∆η,∆φ)
, (1)

where S and B denote particle pair distributions from the same event and from different events, repre-
senting the signal and background contributions, respectively [7].

Typically, a complex structure is observed for different energies and types of colliding objects. On the
one hand, there is a narrow peak centered at (∆y ≃ 0, ∆φ ≃ 0) due to high transverse momentum (pT )
clusters and jets, whereas a broader away-side Gaussian-type structure arises from the decay of lower pT
clusters, resonances and fragmentation, including Bose-Einstein correlations. Besides, an enhancement
of two-particle correlations is also found at ∆φ ≃ π. Because of its extended shape as seen in the ∆η-
∆φ plot, it is usually referred to as the away-side ridge. This effect can be explained due to particle
correlations coming from momentum conservation in back-to-back jets. Another interesting structure is
observed, namely the long-range (|∆η| ≤ 5) near-side (∆φ ≃ 0) correlations yielding a near-side ridge,
whose study is the main objective of this work.

∗Corresponding author
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1We consider a right-handed coordinate system with the z axis along the beams’ direction. Cylindrical coordinates are

used in the transverse plane, φ being the azimuthal angle. The pseudorapidity is defined in terms of the polar angle θ as

η = − ln tan (θ/2). The (longitudinal) rapidity is defined as y = 1
2
ln (E+pL

E−pL
) and coincides with the pseudorapidity for

massless particles. Here, pL is the longitudinal (along the beam axis) component of the measured particle moment.
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Long-range correlations are usually attributed to a collective hydrodynamical flow, and therefore the
ridge structure is expected in nuclear collisions due to, e.g., an initial anisotropy that is imprinted on
the azimuthal-angle distributions of final-state particles through the collective expansion of the medium
[6]. Another possible explanation is given by the color-glass condensate, where the two-gluon density
is enhanced at small ∆φ, which still needs a collective flow boost to reproduce the observed ridge [8].
Both mechanisms have, however, some shortcomings such as a locally thermalized medium, which is
required for the hydrodynamic flow in order to account for the near-side ridge phenomenon [9]. Finally,
a third kind of explanation considers jet-medium interactions where semihard partons can induce local
fluctuations by energy loss in high density soft-parton fields, yielding azimuthal asymmetries manifesting
as a ridge structure [10].

Unexpectedly, a long-range ridge structure has also been observed in proton-nucleus [11, 12] and, par-
ticularly, in proton-proton (pp) [13, 12] collisions, still requiring a definitive explanation. The similarities
between the correlations found in small systems and heavy-ion collisions suggest a common origin. Mean-
while, if hydrodynamics is successfully applied in the case of heavy ions, the hydrodynamical explanation
of the ridge effect in pp collisions, even for high-multiplicity events where the effect has been actually ob-
served, seems still unclear (however, see [14]). This quite unexpected phenomenon still requires a careful
study to establish its physical origin.

Finally, it is worthwhile mentioning that the experimental analyses of azimuthal anisotropy usually
involve a Fourier series containing harmonics [15] up to fifth order,

∑5
n=0 an cos (n∆φ), where the coeffi-

cients an have to be interpreted and estimated by theoretical models.
In this Letter, we study two-particle correlations by invoking a simple two-step scenario for multi-

particle production: the resulting multiplicity is given by the convolution of the distribution of particle
emission sources (clusters/fireballs/semihard jets...) with the fragmentation/decay of the sources. A
correlated-cluster model (CCM) is developed and applied throughout, where both the clusters and the
final-state particles are considered to be emitted according to Gaussian distributions in rapidity and az-
imuth, encoding short-range and long-range correlations in both variables. Our ultimate goal is to provide
a common (effective) framework for both proton and heavy-ion collisions to deal with the near-side ridge
phenomenon. Compact expressions are provided for C(∆η,∆φ).

2. Definitions and notation

The general inclusive two-particle correlation function is defined through the Lorentz invariant inclu-
sive differential single and double cross sections σ−1

in Ed3σ/d3p and σ−1
in E1E2d

6σ/d3p1d
3p2, respectively.

Here, σin denotes the inelastic cross section, E and p denote the total energy and moment of particles,
while the subscripts 1 and 2 refer to the two considered particles. As usual in this kind of analysis [1],
we will not distinguish between different species of particles, focusing only on charged particles.

In terms of the rapidity (y) and the azimuthal angle (φ), the one-particle density ρ̃ and the two-particle
density ρ̃2 are defined through

ρ̃(y, ~pT ) =
1

σin

d3σ

d3p
=

1

σin

d3σ

dyd2pT
=

1

2σin

d3σ

dydφdp2T
, (2)

ρ̃2(y1, ~pT1, y2, ~pT2) =
1

σin

d6σ

d3p1d3p2
=

1

σin

d6σ

dy1d2pT1dy2d2pT2
=

1

4σin

d6σ

dy1dφ1dp2T1dy2dφ2dp2T2

,

where pT (p2T ) denotes the (square modulus of the) particle transverse momentum.
From the above expressions, let us define the normalized two-particle correlation function as

C(1, 2) =
ρ̃2(1, 2)

ρ̃(1)ρ̃(2)
, (3)

where the indices 1 and 2 stand for the set of kinematic variables of the first and second particles of the
pair, respectively.

On the other hand, it is customary integrating over p2T on a suitable range denoted by ΩT (determined
by experimental cuts on events), and the single and two-particle densities become

ρ(y, φ) =

∫

ΩT

dp2T ρ̃(y, ~pT ) , ρ2(y1, φ1, y2, φ2) =

∫

ΩT

dp2T1dp
2
T2 ρ̃2(y1, ~pT1, y2, ~pT2) . (4)
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In order to match our theoretical approach to the definition of Eq.(1), where the (pseudo)rapidity
and azimuthal differences are involved, we identify the two-particle distribution of the uncorrelated pairs
by means of the two Dirac δ-functions, i.e.

b(∆y,∆φ) =

∫

dy1dy2dφ1dφ2 ρ(y1, φ1) ρ(y2, φ2) δ(∆y − y1 + y2) δ(∆φ − φ1 + φ2) , (5)

such that ∆y = y1 − y2 and ∆φ = φ1 − φ2.
In its turn, the pair distribution of correlated pairs can be identified with

s(∆y,∆φ) =

∫

dy1dy2dφ1dφ2 ρ2(y1, φ1, y2, φ2) δ(∆y − y1 + y2) δ(∆φ − φ1 + φ2) , (6)

where again the Dirac δ-functions are incorporated.
Then, the normalized correlation function is redefined in the following way,

C(∆y,∆φ) =
s(∆y,∆φ)

b(∆y,∆φ)
, (7)

being suitable for a comparison with the experimental results obstained using Eq.(1).

3. Two-particle correlations in a cluster model

It is usually accepted that particle production in soft hadronic interactions occurs via an intermedi-
ate step of decaying ancestors/clusters/fireballs yielding final-state particles [1, 3]. It should be noted,
however, that the “cluster” concept has to be understood in a broad sense, i.e. a group of particles with
some correlated properties.

The Independent Cluster Model (clusters are produced in a non-correlated way) has been widely
applied to the study of hadron collisions (see [17, 18] and references therein). In [19], the near-side ridge
formation is studied in the framework of the so-called Correlated Emission Model for heavy ion collisions.
In this model, a semihard parton, emitted in the primary collision, scatters when traversing the medium
yielding a local energy flow. The correlation between both (semihard parton and local flow) enhances
the effect of soft emission, leading to the ridge formation. On the other hand, our approach, based on
correlated cluster production, can be viewed as a rather model-independent approach to ridge formation,
useful to deal with pp collisions too.

After integrating over the (square) cluster transverse momentum along the whole kinematically-
allowed range, the single and two-cluster densities read

ρ(c)(yc, φc) =

∫

dp2Tc ρ̃(c)(yc, ~pTc) , ρ
(c)
2 (yc1, φc1, yc2, φc2) =

∫

dp2Tc1dp
2
Tc2 ρ̃

(c)
2 (yc1, ~pc1, yc2, ~pc2) . (8)

Now we define particle densities depending on rapidity and azimuthal variables, coming from the
decay of a single cluster with rapidity yc and azimuthal angle φc leading to final-state particles:

ρ(1)(y, φ; yc, φc) =

∫

ΩT

dp2T ρ̃(1)(y, ~pT ; yc, φc) , (9)

ρ
(1)
2 (y1, φ1, y2, φ2; yc, φc) =

∫

ΩT

dp2T1dp
2
T2 ρ̃

(1)
2 (y1, ~pT1, y2, ~pT2; yc, φc) , (10)

where ΩT again refers to the selected transverse momentum range of final-state particles.
Thus, the single particle density can be expressed as the convolution of the cluster density and the

particle density from a single cluster, i.e.

ρ(y, φ) =

∫

dycdφc ρ(c)(yc, φc) ρ
(1)(y, φ; yc, φc) . (11)

Notice that all the kinematic variables appearing in the above expressions (cluster and particle ra-
pidities and azimuthal angles) are measured in the Laboratory Reference Frame (LRF) which coincides
with the center-of-mass frame of the hadron-hadron collision.
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To the extent that ρ(1)(y, φ; yc, φc) is flat in the central rapidity region and small transverse cluster
momenta, we have ρ(y, φ) = 〈Nc〉 ρ̄(1), where ρ̄(1) stands for an average particle density for single cluster
decay. Hence the resulting single-particle density would be flat too and its height to be proportional to
the mean number of clusters per collision.

However, this approximation is quite rough as we are extending our study to the (pseudo)rapidities
|y| . 5 and possibly to large cluster transverse momenta. To this end, we introduce a function E1(y, φ),
which keeps the expected dependence on the rapidity and azimuthal variables of the emitted particles,
so that the single-particle density becomes:

ρ(y, φ) = 〈Nc〉 ρ̄(1) E1(y, φ) . (12)

The E1(y, φ) function is normalized in such way that

∫

dy dφ E1(y, φ) = 1 ,

where integration is taken over the full available kinematic range of both the variables.
Similarly, we introduce the product of the two single-particle distributions representing the mixed-

event background, i.e.

ρmixed(y1, φ1, y2, φ2) = ρ(y1, φ1)ρ(y2, φ) = 〈Nc〉2 ρ̄(1)2E1(y1, φ1)E1(y2, φ2) , (13)

which suggests to define
Eb(y1, φ1, y2, φ2) = E1(y1, φ1)E1(y2, φ2) . (14)

The two-particle density can also be written as

ρ2(y1, φ1, y2, φ2) =

∫

dycφc ρ(c)(yc, φc) ρ
(1)
2 (y1, φ1, y2, φ2; yc, φc) + (15)

∫

dyc1dyc2dφc1dφc2 ρ
(c)
2 (yc1, φc1, yc2, φc2) ρ

(1)(y1, φ1; yc1, φc1) ρ
(1)(y2, φ2; yc2, φc2) .

The first term on the r.h.s. corresponds to the emission of secondaries from a single cluster while the
second term corresponds to the emission of the two particles from two distinct clusters.

Therefore, we conclude for the two-particle density:

ρ2(y1, φ1, y2, φ2) = 〈Nc〉 ρ̄(1)2 ESR
s (y1, φ1, y2, φ2) + 〈Nc(Nc − 1)〉 ρ̄(1)2ELR

s (y1, φ1, y2, φ2) , (16)

where ESR
s (y1, φ1, y2, φ2) stands for the short range (pseudo)rapidity correlations and ELR

s (y1, φ1, y2, φ2)
stands for the long range correlations stemming from the two integrals of Eq. (15), respectively.

Needless to say, the above expression is mainly intended to describe the near-side effect using the
CCM. Other kind of correlations (like particles inside jets or the away-side ridge) fall off the above
description and will not be considered in this Letter.

3.1. Factorization hypothesis

Taking into account that the rapidity y and the azimuthal variable φ are orthogonal variables, we
tentatively assume that both Eb(y1, φ1, y2, φ2) and Es(y1, φ1, y2, φ2) can be factorized as

Eb(y1, φ1, y2, φ2) = EL
b (y1, y2) · ET

b (φ1, φ2) ,

Es(y1, φ1, y2, φ2) = EL
s (y1, y2) · ET

s (φ1, φ2) , (17)

where the superscripts L and T denote the longitudinal and transverse parts, respectively.
Moreover, as usual in cluster models, we shall adopt Gaussian distributions in rapidity and azimuthal

spaces for both cluster density and particle density from clusters 2, as developed below.

2For a isotropically decaying cluster with rapidity yc, the single (massless) particle density can be written as ρ(1)(y; yc) ∼

cosh−2(y − yc). As it is well known [16], it can be well approximated by a Gaussian of width δy . 0.9.
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Figure 1: Illustrative picture of two clusters produced in a primary hadron collision at the origin of the transverse plane with
azimuthal angles φc1 and φc2, decaying into final state particles. Elliptic shapes are due to Lorentz boosts, although they
could become somewhat distorted since they correspond to the projection on the transverse plane of boosted distributions
in a three-dimensional space.

On average, clusters should be isotropically produced in the transverse plane of the primary hadronic
collision (even though anisotropy would be present in event-by-event fluctuations). Thus, only dependence
on the rapidity variable remains in the single-cluster density,

ρ(c)(yc, φc) ∼ exp

[

− y2c
2δ2cy

]

, (18)

where δcy denotes the rapidity correlation length for cluster production. On account of the plateau
structure of multiplicity distribution in pseudorapidity phase space, one may assume that the dependence
of ρ(c)(yc, φc) on yc is rather weak, i.e. δ2cy ≫ 1. Indeed, one can empirically expect that δcy is basically
determined by the rapidity plateau length of the single-particle distribution (for all charged particles).

Now we turn to the single particle density ρ(1)(y, φ; yc, φc). Since clusters are produced with some
non-null (transverse) momentum, the initial isotropic distribution will be transformed into an elliptic
shape depending on the cluster and emitted particle transverse velocities. (We note again that φ stands
throughout for a variable in the LRF, which coincides with the center-of mass of the pp colliding system.)
Hence a dependence on the cluster azimuthal angle φc should remain in ρ(1)(y, φ; yc, φc).

As shown in the Appendix, such elliptic shape can be approximately expressed in terms of a Gaussian
for highest boosted particles. Therefore one gets

ρ(1)(y, φ; yc, φc) ∼ exp

[

− (y − yc)
2

2δ2y

]

exp

[

− (φ− φc)
2

2δ2φ

]

. (19)

The parameter δy, usually referred to as the cluster decay “width”, characterizes the (pseudo)rapidity
separation of particles emitted in a single cluster decay; it has been experimentally measured to be . 1
rapidity units [17]. Therefore, it turns out that δ2cy ≫ δ2y, in accord with our previous discussion.

For small azimuthal angles with respect to the cluster direction in the transverse plane

δφ ∼ 1

vT γT
(20)

stands for the cluster decay “width” regarding the azimuthal angle instead of the rapidity variable. Since
the near-side ridge effect shows up for particles with transverse momentum of order of 1 GeV, we will
take δφ ≃ 0.14 radians as a reference value (corresponding to a pion with pT = 1 GeV emitted at rest in
the cluster reference frame). At low pT , δφ becomes large and the angular distribution remains almost
flat (thereby the ridge disappears). Conversely, at higher pT values δφ will decrease leading to a more
pronounced peak at φ ≃ φc. Note also that one expects δ2cφ ≫ δ2φ since the particles from the boosted
clusters should be more collimated in azimuth than the clusters themselves (the latter being quite more
massive).

On the other hand, we further assume that the clusters are emitted in a correlated manner both in
rapidity and azimuth. Thus, the two-cluster density is given by

ρ
(c)
2 (yc1, φc1, yc2, φc2) ∼ exp

[

− (yc1 + yc2)
2

2δ2cy

]

exp

[

− (φc1 − φc2)
2

2δ2cφ

]

, (21)
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where δcy and δcφ stand for the rapidity and azimuthal correlation lengths, respectively. Let us remark
that Eq. (21) can be regarded as a parameterization especially suitable to determine the near-ridge effect
using the CCM. The physical origin of such azimuthal correlations among clusters has to be provided by
specific models.

The underlying physical picture corresponds to cluster pairs emitted mostly with opposite rapidities
but in the same hemisphere defined by the cluster velocity in the transverse plane. The correlation
strengths are determined by the δcy and δcφ parameters (not to be confused with δy and δφ) respectively.

The condition on the rapidity can be seen as a consequence of longitudinal momentum conservation.
Away-side particles can carry the remaining momentum due to a non-exact momentum balance by the
two clusters along the beams’ direction. The azimuthal condition is implemented in this version of the
CCM by hand3 but should be attributed to a dynamical mechanism developed in a concrete model. As
shown below, the requirement of azimuthal cluster correlations is definitely needed in order to account
for the near-side ridge effect according to the CCM.

In Fig.1 we illustrate the particle emission from two clusters produced in the same primary hadron
collision leading to different elliptic shapes due to different Lorentz boosts. Clusters are assumed to be
correlated both in rapidity and azimuth according to Eq.(21).

Now we integrate over rapidities and azimuthal angles using the Dirac’s δ-functions. Lastly, we end
up with a correlation function depending on e(∆y,∆φ) yielding a “residual” dependence on the rapidity
and azimuthal variables:

s(∆y,∆φ) = 〈Nc〉 ρ̄(1)2 es(∆y,∆φ) , (22)

where es(∆y,∆φ) is defined as:

es(∆y,∆φ) =

∫

dy1dy2dφ1dφ2 δ(∆y − y1 + y2) δ(∆φ− φ1 + φ2)Es(y1, φ1, y2, φ2) . (23)

Since one can reasonably expect that δ2cy ≫ δ2y , δ2cφ ≫ δ2φ (as argued in Sect. 3.1), we write the
short-range and long-range pieces of the two-particle density as (see Appendix for e-functions):

sSR(∆y,∆φ) = 〈Nc〉 ρ̄(1)2 eSRs (∆y,∆φ) , (24)

where

eSRs (∆y,∆φ) ∼ exp

[

− (∆y)2

4δ2y

]

exp

[

− (∆φ)2

4δ2φ

]

. (25)

On the other hand,
sLR(∆y,∆φ) = 〈Nc(Nc − 1)〉 ρ̄(1)2 eLRs (∆y,∆φ) , (26)

where

eLRs (∆y,∆φ) ∼ exp

[

− (∆φ)2

2(2δ2φ + δ2cφ)

]

. (27)

Let us observe that for a Poissonian distribution of clusters 〈Nc(Nc − 1)〉 = 〈Nc〉2.
Regarding the uncorrelated pairs, one finds

b(∆y,∆φ) = 〈Nc〉2 ρ̄(1)2 eb(∆y,∆φ) . (28)

Upon the integration over both rapidities, with ∆y fixed, one readily gets

eb(∆y,∆φ) ∼ exp

[

− (∆y)2

4(δ2y + δ2cy)

]

. (29)

Note that there is no azimuthal dependence in the above expression.

3On the other hand, the Gaussian function exp [−(φc1 − φc2 − π)2/2δ2cφ] would correspond to the back-to-back cluster

emission in the transverse plane rather related to the the away-side ridge effect.
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4. Interpretation of the near-side ridge effect according to CCM

In this section we show that the near-side effect emerges quite naturally from Eqs.(24) to (29) according
to the CCM. To this end, we write

C(∆y,∆φ) =
sSR(∆y,∆φ) + sLR(∆y,∆φ)

b(∆y,∆φ)
= 1 +

hSR(∆y,∆φ)

〈Nc〉
+

〈Nc(Nc − 1)〉
〈Nc〉2

hLR(∆φ) , (30)

where

hSR(∆y,∆φ) =
eSRs (∆y,∆φ)

eb(∆y,∆φ)
= exp

[

−
δ2cy

4δ2y(δ
2
y + δ2cy)

(∆y)2
]

exp

[

− (∆φ)2

4δ2φ

]

, (31)

and

hLR(∆y,∆φ) =
eLRs (∆y,∆φ)

eb(∆y,∆φ)
≃ exp

[

(∆y)2

4(δ2y + δ2cy)

]

exp

[

− (∆φ)2

2(2δ2φ + δ2cφ)

]

, (32)

where the latter smoothly increases with the (pseudo)rapidity separation ∆y provided that δ2cy ≫ 1, as
discussed above.

For δ2cy ≫ δ2y we find

hSR(∆y,∆φ) = exp

[

− (∆y)2

4δ2y

]

exp

[

− (∆φ)2

4δ2φ

]

(33)

and

hLR(∆y,∆φ) ≃ exp

[

− (∆φ)2

2(2δ2φ + δ2cφ)

]

(34)

since there is an almost complete cancellation of the rapidity dependence; only the dependence on the
azimuthal difference survives the ratio leading to the rise of a ridge at small ∆φ. The physical reason is
that δcy is provided by the plateau length in the multiplicity pseudorapidity distribution (hence large),
while δcφ is assumed to be quite smaller, as shown below.

Indeed, the angular dependence of the second-order Fourier harmonic contribution (cos(2∆φ)) to the
near-side correlation function can be approximated by the Gaussian of Eq. (34) for small ∆φ. By Taylor-

expanding the exponential about ∆φ ≃ 0, and requiring cos(2∆φ) ≃ exp
[

−(∆φ)2/2(2δ2φ + δ2cφ)
]

, we

get
2δ2φ + δ2cφ ≃ 0.25. (35)

For high pT enough (therefore δ2φ small) the above condition leads to

δcφ . 0.5 (radians),

in good agreement with findings from [19, 20] and experimental measurements [21]. Let us stress that
the long-range correlations in hLR are consequence of the azimuthal cluster correlations shown above,
whereas the (pseudo)rapidity correlations play a minor role in the near-side ridge effect, as also pointed
out in [20].

Finally, note that the weight of hLR relative to the other terms of Eq.(30) should increase as 〈Nc〉
increases. This can explain why the near-side ridge effect shows up at larger multiplicity (hence larger
〈Nc〉).

5. Summary

We have studied the near-side ridge effect observed in nuclear and hadronic collisions at RHIC and
LHC. The study is carried out in the context of the correlated cluster model (CCM) using Gaussian
distributions in azimuth and rapidity both for clusters and final state hadrons, encoding short-range and
long-range correlations.

In order to reproduce the ridge phenomenon representing two-particle correlations at small azimuthal
difference ∆φ over a wide (pseudo)rapidity range, clusters have necessarilly to be emitted in a correlated
way in azimuthal space, but not in rapidity space. Let us stress that correlations among particles in
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single-cluster decays are not enough to account for the near-side ridge effect. Moreover, a relation for
the second-order Fourier harmonic (related to the elliptic flow in a hydrodynamical scenario) is obtained
in agreement with experimental results. Although the physical origin of cluster correlations could vary
depending on the nature of the colliding bodies, the CCM provides a common framework to explain the
ridge effect in proton-proton, proton-nucleus and heavy-ion collisions.
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Appendix A. Gaussian distributions and their convolutions

Appendix A.1. (Pseudo)rapidity dependence

We will assume throughout that both clusters and particles stemming from clusters obey Gaussian
distributions in rapidity space, i.e.

ρ(c)(yc, φc) ∼ exp

[

− y2c
2δ2cy

]

, ρ(1)(y, φ; yc, φc) ∼ exp

[

− (y − yc)
2

2δ2y

]

. (A.1)

respectively.
Upon integration over the cluster rapidity yc, the EL

1 (y) function, introduced in Eq.(12), reads

EL
1 (y) ∼

∫

dyc exp

[

− y2c
2δ2cy

]

exp

[

− (y − yc)
2

2δ2y

]

∼ exp

[

− y2

2(δ2y + δ2cy)

]

. (A.2)

Hence, for two particles emitted from the two different clusters one gets for the longitudinal part of
the Eb function, introduced in Eq.(13),

EL
b (y1, y2) = EL

1 (y1) · EL
1 (y2) ∼ exp

[

− (y21 + y22)

2(δ2y + δ2cy)

]

. (A.3)

Upon integration on both rapidities keeping the rapidity interval ∆y = y1 − y2 fixed, one gets

eLb (∆y) ∼ exp

[

− (∆y)2

4(δ2y + δ2cy)

]

, (A.4)

For two particles stemming from the same cluster with rapidity yc

EL
s (y1, y2) ∼

∫

dyc exp

[

− y2c
2δ2cy

]

exp

[

− (y1 − yc)
2

2δ2y

]

exp

[

− (y2 − yc)
2

2δ2y

]

∼ exp

[

−
δ2cy(y1 − y2)

2

2δ2y(δ
2
y + 2δ2cy)

]

exp

[

− (y21 + y22)

2(δ2y + 2δ2cy)

]

. (A.5)

After integration using the Dirac’s δ-function, the above expression leads to

eSRs (y1, y2) ∼ exp

[

− (∆y)2

4δ2y

]

. (A.6)

Notice that δcy drops off in the last expression so that it can be referred to as a short-range correlation
(SRC) contribution, as indicated in the superscript.

For two particles with rapidity y1 and y2 coming from two different (correlated) clusters with rapidities
yc1 and yc2 respectively, we have (see Eq.(21))

EL
s (y1, y2) ∼

∫

dyc1dyc2 exp

[

− (yc1 + yc2)
2

2δ2cy

]

exp

[

− (y1 − yc1)
2

2δ2y

]

exp

[

− (y2 − yc2)
2

2δ2y

]

8



∼ exp

[

− (y1 + y2)
2

2(2δ2y + δ2cy)

]

. (A.7)

Using again the Dirac δ-function, one gets

eLRs (∆y) ∼ const. , (A.8)

which corresponds to a long-range correlation (LRC), as indicated in the superscript.
In sum, we get two pieces with different behaviours (SRC versus LRC) in rapidity space:

eSRs (∆y) ∼ exp

[

− (∆y)2

4δ2y

]

; eLRs (∆y) ∼ const. (A.9)

Had we used uncorrelated cluster production, i.e. ρ
(c)
2 ∼ exp

[

−(y2c1 + y2c2)/2 δ
2
cy

]

, our final results
given by Eqs. (33) and (34) would remain the same.

Appendix A.2. Azimuthal dependence

Clusters are supposed to be produced isotropically in the transverse plane of the hadron collision. Let
φc be a particular value of the azimuthal variable for a cluster whose decay into particles is also assumed
isotropic. Thus the azimuthal distribution w(φ∗) in the cluster rest frame should be a constant.

Under a Lorentz boost of velocity vT , the angular distribution in the LRF is given by [22]

w(φ − φc) =
1

γT [1− v2T cos2 (φ− φc)]
f(φ, g) . (A.10)

We recall here that φ is measured in the LRF, i.e. the angular distribution is boosted by a Lorentz factor
γT = (1− v2T )

−1/2 in the transverse plane. The f(φ, g) function stands for

f(φ, g) =
g ±

√
D

±
√
D

, (A.11)

where D = 1 + γ2
T (1 − g2) tan 2(φ − φc), with g = v

(c)
T /v∗T denoting the ratio of the cluster transverse

velocity v
(c)
T in the LRF and the particle transverse velocity v∗T measured in the cluster rest frame,

respectively.
For g ≥ 1 all particles are emitted along the forward hemisphere (defined by the cluster velocity) in

the transverse plane of the LRF. In fact, this should be the case for particles, emitted with transverse
momentum in the range 1 ≤ pT ≤ 5 GeV measured in the LRF. Therefore, we will consider that g ≈ 1 and
set f(φ, g) approximately equal to a constant. Larger transverse momenta of particles would correspond
rather to jet production instead of an intermediate-pT cluster production on which we are focusing in
this work.

In order to get simpler expressions at the end, we approximate the azimuthal distribution by a
Gaussian for small φ− φc angles, namely,

w(φ − φc) ≈ exp

[

− (φ− φc)
2

2δ2φ

]

, δφ ≃ 1

vT γT
. (A.12)

It becomes apparent that large cluster transverse velocity leads to small δφ and thereby a more pronounced
peak at φ ≃ φc, in accordance with Eq.(A.10).

Admittedly, cluster emission boosted along the transverse plane has only been considered above, while
the general situation should contemplate cluster and particle motions with velocity components along
the beam direction as well. However, the main conclusion of the above should remain valid.

In addition to the hypothesis of isotropically decaying clusters in their own rest frame, we will assume
axial symmetry for cluster production in the transverse plane, i.e.

ET
b (φ1, φ2) ∼ const. → eTb (∆φ) ∼ const. (A.13)
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Thus, the distribution for two particles, emitted from the same cluster with azimuthal angle φc should
obey

∫

dφc exp

[

− (φ1 − φc)
2

2δ2φ

]

exp

[

− (φ2 − φc)
2

2δ2φ

]

∼ exp

[

− (φ1 − φ2)
2

4δ2φ

]

(A.14)

for small azimuthal angles. Therefore, regarding the azimuthal dependence we can write

eSRs (∆φ) ∼ exp

[

− (∆φ)2

4δ2cφ

]

. (A.15)

On the other hand, we will assume that clusters are produced in a correlated way according to Eq.(21).
Hence for two particles with azimuthal angles φ1 and φ2 coming from two different clusters with azimuthal
angles φc1 and φc2, we will write

ET
s (φ1, φ2) ∼

∫

dφc1dφc2 exp

[

− (φc1 − φc2)
2

2δ2cφ

]

exp

[

− (φ1 − φc1)
2

2δ2φ

]

exp

[

− (φ2 − φc2)
2

2δ2φ

]

(A.16)

∼ exp

[

− (φ1 − φ2)
2

2(2δ2φ + δ2cφ)

]

,

that directly leads to

eLRs (∆φ) ∼ exp

[

− (∆φ)2

2(2δ2φ + δ2cφ)

]

, (A.17)

which corresponds to a LRC, as indicated in the superscript.

Appendix A.3. Final expressions

In sum, we find that the SRC and the LRC pieces of the es(∆y,∆φ) function can be written as

eSRs (∆y,∆φ) ∼ exp

[

− (∆y)2

4δ2y

]

exp

[

− (∆φ)2

4δ2φ

]

and

eLRs (∆y,∆φ) ∼ exp

[

− (∆φ)2

2(2δ2φ + δ2cφ)

]

.

Note that eb(∆y,∆φ) only retains dependence on the rapidity variable for isotropic cluster production
in the transverse plane,

eb(∆y,∆φ) ∼ exp

[

− (∆y)2

4(δ2y + δ2cy)

]

.
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