

CERN-EP-2016-251 LHCb-PAPER-2016-039 19 October 2016

New algorithms for identifying the flavour of B^0 mesons using pions and protons

The LHCb collaboration[†]

Abstract

Two new algorithms for use in the analysis of pp collision are developed to identify the flavour of B^0 mesons at production using pions and protons from the hadronization process. The algorithms are optimized and calibrated on data, using $B^0 \rightarrow D^- \pi^+$ decays from pp collision data collected by LHCb at centre-of-mass energies of 7 and 8 TeV. The tagging power of the new pion algorithm is 60% greater than the previously available one; the algorithm using protons to identify the flavour of a B^0 meson is the first of its kind.

Published in EPJC

© CERN on behalf of the LHCb collaboration, licence CC-BY-4.0.

 $^{^{\}dagger}\mathrm{Authors}$ are listed at the end of this paper.

1 Introduction

Violation of CP symmetry in the B system was observed for the first time in the interference between mixing and decay processes [1]. Any measurement of a decay-time-dependent asymmetry requires the determination of the flavour of the B meson at production. For B mesons produced in pp collisions, this information is obtained by means of several flavour-tagging algorithms that exploit the correlations between B flavour and other particles in the event.

Algorithms determining the flavour content of B meson by using particles associated to its production are called same-side (SS) taggers. As an example, in the production of B^0 mesons from excited charged B mesons decaying via strong interaction to $B^0\pi^+$, the pion charge identifies the initial flavour of the B^0 meson.¹ A charge correlation can also arise from the hadronization process of the b quark. When a \bar{b} and a d quark hadronize as a B^0 meson, it is likely that the corresponding \bar{d} quark ends up in a charged pion $(u\bar{d})$, or in an antiproton $(\bar{u}\bar{u}\bar{d})$. The B^0 meson and the pion or antiproton are produced in nearby regions of phase space. Other algorithms used at LHCb, called opposite-side (OS) taggers [2,3], attempt to identify the flavour of the other b hadron produced in the same event.

A simple cut-based SS algorithm selecting pions was successfully used by LHCb for tagging $B^0 \rightarrow J/\psi K_s^0$ decays [4] in the measurement of $\sin 2\beta$, and an SS kaon tagger [5] based on a neural network was used to determine the flavour of B_s^0 mesons in measurements of the *CP*-violating phase ϕ_s [6–8]. This paper presents two new SS algorithms exploiting the charge correlation of pions and protons with B^0 mesons, denoted SS π and SSp. This is the first time that protons are used for flavour tagging. The two algorithms are combined into a single tagger, SScomb. Both algorithms are based on multivariate selections and are optmized, calibrated and validated using $B^0 \rightarrow D^-\pi^+$ and $B^0 \rightarrow K^+\pi^-$ decays collected by LHCb in Run 1.

The performance of a flavour-tagging algorithm is measured by its tagging efficiency ε_{tag} , mistag fraction ω , dilution D, and tagging power ε_{eff} , defined as

$$\varepsilon_{\text{tag}} = \frac{R+W}{R+W+U}, \qquad \omega = \frac{W}{R+W}, \quad D = 1 - 2\omega, \quad \varepsilon_{\text{eff}} = \varepsilon_{\text{tag}} D^2,$$
(1)

where R, W, and U are the numbers of correctly-tagged, incorrectly-tagged, and untagged B^0 signal candidates. The tagging power determines the sensitivity to the measurement of a decay-time-dependent CP asymmetry [9], as it quantifies the effective reduction in the sample size of flavour-tagged B^0 candidates. It is the figure of merit used to optimize the algorithms. Each algorithm provides a decision on the flavour of the B^0 candidate and an estimate of the probability η that this decision is incorrect. The probability is used to determine a weight applied to the B^0 candidate, in order to maximize the tagging power of a sample of B^0 mesons in a time-dependent analysis. The probabilities provided by the two SS taggers are used to combine their decisions into the SScomb decision, which can be further combined with the decision of other taggers [2,3].

The expected relationship between the flavour of charged and neutral B mesons and the charge of the tagging particle is reported in Table 1. For a B^+ meson the same correlation as for a B^0 meson holds in the case of protons, but with opposite charge in the

¹The inclusion of charge-conjugate processes is implied throughout the paper, unless otherwise noted.

Table 1: Expected correlation between the flavour of a *B* meson and the hadronization products.

B meson	pion	proton	kaon
$B^0 \\ B^+$	π^+ π^-	$rac{\overline{p}}{\overline{p}}$	$\overline{K}{}^{0}$ K^{-}

case of pions. In addition, the tagging kaons carry the same charge as pions, while they are neutral for a B^0 . Since misidentified hadrons affect the tagging efficiency and the mistag fraction of charged and neutral mesons in different ways, B^+ decays cannot be reliably used for the tuning and calibration of the SS taggers. As a consequence, B^0 decays are used, and a time-dependent analysis is required to determine the mistag fraction.

2 Detector

The LHCb detector [10, 11] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing *b* or *c* quarks. The detector includes a high-precision tracking system consisting of a siliconstrip vertex detector surrounding the *pp* interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. Regular reversal of the magnet polarity allows a quantitative assessment of detector-induced charge asymmetries. The tracking system provides a measurement of momentum, *p*, of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/*c*. The minimum distance of a track to a primary vertex (PV), the impact parameter (IP), is measured with a resolution of $(15+29/p_T) \mu m$, where p_T is the component of the momentum transverse to the beam, in GeV/*c*.

Particularly relevant for this analysis is the identification of the different species of charged hadrons, which mainly relies on the information of two ring-imaging Cherenkov detectors. The first one covers the low and intermediate momentum region 2 - 40 GeV/c over the full spectrometer angular acceptance of 25 - 300 mrad. The second Cherenkov detector covers the high momentum region 15 - 100 GeV/c over the angular range 15 - 120 mrad [12].

Photons, electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers. The online event selection is performed by a trigger [13], which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction. At the hardware trigger stage, events are required to have a muon with high $p_{\rm T}$ or a hadron, photon or electron with high transverse energy in the calorimeters. The software trigger requires a two-, three- or four-track secondary vertex detached from the PV. A multivariate algorithm [14] is used for the identification of secondary vertices consistent with the decay of a *b* hadron.

Samples of simulated events are used to model the signal mass and decay-time distributions. In the simulation, pp collisions are generated using PYTHIA [15] with a specific

LHCb configuration [16]. Decays of hadronic particles are described by EVTGEN [17], in which final-state radiation is generated using PHOTOS [18]. The interaction of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit [19] as described in Ref. [20].

3 Development of the same-side taggers

The SS π and SSp algorithms are developed following similar strategies. A sample of B^0 mesons decaying into the flavour-specific final state $D^-\pi^+$, with D^- candidates reconstructed in the final state $K^+\pi^-\pi^-$, is selected using requirements similar to those presented in Ref. [21]. The sample is collected from pp collisions at $\sqrt{s} = 8$ TeV, corresponding to an integrated luminosity of 2 fb⁻¹. Tagging pion or proton candidates, with their charge correlated with the B^0 flavour, are selected by means of a set of loose selection requirements and a multivariate classifier, as described below. The $B^0 \rightarrow D^-\pi^+$ candidates are separated randomly into three disjoint subsamples of equal size. The first sample is used for training the multivariate classifiers, the second is used for determining the probability of an incorrect tagging decision, and the third is used to evaluate the calibration of the mistag probability.

The correctness of a tagging decision is evaluated by comparing the charge of the tagging particle with the B^0 decay flavour as determined by the reconstructed final state. Those B^0 candidates that have oscillated before decaying enter the training process with an incorrectly assigned production flavour. In the training phase the dilution is reduced by requiring the decay time of the reconstructed B^0 mesons to be smaller than 2.2 ps. This value was optimized with simulated events and reduces the fraction of oscillated candidates to about 11%, keeping 66% of the original sample.

The signal and background components of the B^0 sample are determined by an unbinned maximum likelihood fit to the $D^-\pi^+$ mass distribution of the selected candidates in the region [5.2, 5.5] GeV/ c^2 . The signal is described by a Johnson's S_U distribution [22], while the combinatorial background is modelled by the sum of an exponential function and a constant. All parameters are free to vary in the fit. A small component of $B^0 \rightarrow D^-K^+$ decays (~1.2% as estimated from simulation), with the kaon misidentified as a pion, is neglected in the fit. The number of signal candidates in the full 2 fb⁻¹ sample, estimated by the mass fit and shown in Fig. 1, is 300 370 ± 674. The fit to the mass distribution is used to assign event-by-event weights (sWeights), using the *sPlot* technique [23]. The weights are subsequently used to subtract the background contribution when training the SS π and SSp classifiers and in the fits to the B^0 decay-time distribution.

The loose selection requirements reduce the multiplicity of pion (proton) candidates to 2.3 (1.7) per $B^0 \rightarrow D^-\pi^+$ signal candidate, and are reported in Table 2. Only tracks with hits in all tracking detectors are considered as tagging candidates. The following observables are used: the χ^2 /ndf of the track fit, where ndf is the number of degrees of freedom, the track transverse momentum $p_{\rm T}^{\rm track}$, the ratio between the track impact parameter with respect to the PV associated to the B^0 meson and the error on this variable ${\rm IP}/\sigma_{\rm IP}$, the ratio between the track impact parameter with respect to any other PV in the event and its error ${\rm IP}_{\rm PU}/\sigma_{\rm IP}_{\rm PU}$, the difference between the logarithms of the likelihood of the proton and pion hypothesis $\log L_p - \log L_{\pi}$, or kaon and pion hypothesis $\log L_K - \log L_{\pi}$. The likelihoods for the various mass hypothesis are determined using

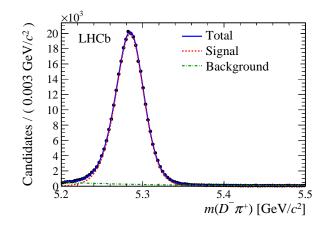


Figure 1: Mass distribution of $B^0 \to D^- \pi^+$ candidates with fit projections overlaid. Data points (black dots) correspond to the B^0 candidates selected in the 2 fb⁻¹ data sample collected at $\sqrt{s} = 8$ TeV. The solid blue curve represents the total fit function which is the sum of signal (red dashed) and combinatorial background (green dash-dotted).

the track and the Cherenkov angle information, as described in Ref. [24]. For particles passing the loose selection criteria the efficiency to identify a pion is 89% with a kaon misidentification probability of 2%, while the efficiency to identify a proton is 92% with a pion misidentification probability of 5%. Since mutually exclusive particle identification criteria are imposed, a given tagging track is identified either as a pion or as a proton. If more than one PV is reconstructed in the event, the PV associated to the B^0 meson is the one which has the smallest increase in the vertex-fit χ^2 when adding the B^0 meson to the PV.

Additional requirements are introduced on the system formed by the tagging particle and the reconstructed B^0 meson. They are applied to the total transverse momentum of the system $p_{\rm T}^{\rm tot}$, the difference between the pseudorapidity of the B^0 candidate and the tagging particle $\Delta \eta$, the azimuthal angle $\Delta \phi$ between the B^0 candidate and the tagging particle, and the difference between the invariant mass of the system and the mass of the B^0 and of the tagging particle $\Delta Q = m(B^0 + h) - m(B^0) - m(h)$, where h denotes the hadron, π or p. The vertex formed by the B^0 meson and the tagging particle is required to have the χ^2 of vertex fit $\chi^2_{B^0-{\rm track}}$, less than 100.

The multivariate classifiers used for the selection of the tagging particles are boosted decision trees (BDT) [25] using the AdaBoost [26] method to enhance and to increase the stability with respect to statistical fluctuations. This choice has been shown to be optimal with respect to the achievable tagging power. The classifiers take most of the above observables as input, as specified in Table 2. In addition the BDTs use the following variables: the momentum of the tagging particle p^{track} , the transverse momentum of the B^0 candidate $p^{B^0}_{T}$, the separation of tagging particle and the B^0 candidate $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$, and the number of tracks contributing to the PV fit PV_{tracks} . The sWeights are used to subtract the contribution of background B^0 candidates in the training of the classifiers. The charge of the tagging particle determines the flavour of the B^0 candidate. In case of multiple tagging particle candidates per B^0 candidate, the tagging particle with the highest BDT output value is chosen. The BDT outputs, α_{BDT} , are shown in Fig. 2. The global separation between signal and background is small, but enough to provide useful information to determine the flavour of the B^0 candidate, as shown below.

	$SS\pi$	-	$\mathrm{SS}p$		
Variable	selection	BDT	selection	BDT	
$\chi^2_{\rm track}/{\rm ndf}$	< 3	\checkmark	< 3	_	
$p_{\rm T}^{\rm track} [{\rm GeV/c}]$	> 0.4	\checkmark	> 0.4	\checkmark	
$p^{\text{track}} [\text{GeV/c}]$	-	\checkmark	-	\checkmark	
$\mathrm{IP}/\sigma_\mathrm{IP}$	< 4	\checkmark	< 4	\checkmark	
$\mathrm{IP}_{\mathrm{PU}}/\sigma_{\mathrm{IP}_{\mathrm{PU}}}$	> 3	-	-	-	
$\log L_p - \log L_\pi$	< 5	-	> 5	\checkmark	
$\log L_K - \log L_\pi$	< 5	\checkmark	-	-	
$p_{\mathrm{T}}^{B^0}~[\mathrm{GeV/c}]$	_	\checkmark	-	-	
$p_{\rm T}^{\rm tot}~[{\rm GeV/c}]$	> 3	\checkmark	> 3	\checkmark	
$\chi^2_{B^0-{ m track}}$	< 100	-	< 100	-	
$\Delta Q [{\rm GeV/c^2}]$	< 1.2	\checkmark	< 1.3	\checkmark	
$\Delta\eta$	< 1.2	\checkmark	< 1.2	\checkmark	
$\Delta \phi \; [rad]$	< 1.1	\checkmark	< 1.2	-	
ΔR	-	\checkmark	-	\checkmark	
$PV_{\rm tracks}$	-	\checkmark	-	\checkmark	

Table 2: Loose selection requirements for the SS π and SSp algorithms. The variables used as input for the BDT classifiers are indicated by \checkmark .

4 Evaluation and calibration of mistag probability

4.1 The SS π and SSp taggers

The BDT output is transformed into an estimate of the mistag probability through linear regression. The decay-time distribution of all tagged B^0 candidates is considered and the dilution due to mixing is decoupled by means of a full time-dependent analysis. Tagged B^0 candidates are divided into eight bins of the BDT output and for each bin the probability of an incorrect tagging decision is determined from an unbinned maximum likelihood fit

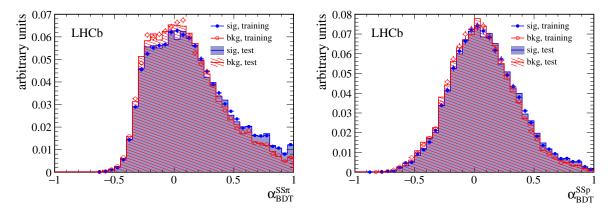


Figure 2: Distribution of the BDT output of signal (correct-tag decision) and background (wrong-tag decision) tagging particles, for (left) $SS\pi$ and (right) SSp taggers. In case of multiple tagging candidates per B^0 candidate, only the candidate with the highest BDT output value is shown.

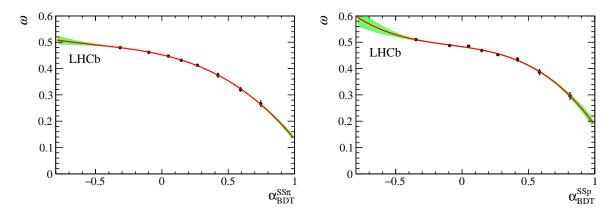


Figure 3: Measured average mistag fraction in bins of (left) $SS\pi$ and (right) SSp BDT output. The plots are obtained with the test sample of background-subtracted $B^0 \rightarrow D^-\pi^+$ candidates. The green-shaded area shows the confidence range within $\pm 1\sigma$.

to the distribution of the measured decay time t of the candidates, using the sWeights. The probability density function (PDF) for the signal is described as

$$\mathcal{S}(t,q) = \mathcal{N} \ a(t) \ e^{-t'/\tau_d} (1 + q(1 - 2\omega)\cos(\Delta m_d \ t')) \otimes \mathcal{R}(t - t'), \tag{2}$$

where t' represents the true decay time, \mathcal{N} is a normalization factor, ω is the average mistag fraction in the bin, q is the mixing state (q = +1 when the flavour at production and the flavour at decay are the same, q = -1 otherwise), $\mathcal{R}(t - t')$ is the decay-time resolution and a(t) is the decay-time acceptance. The B^0 lifetime τ_d , and the mixing frequency Δm_d , are fixed in the fit to their known values [27].

Equation 2 is obtained under the assumption of zero width difference $\Delta\Gamma_d$ and neglecting the production and detection asymmetries between B^0 and \overline{B}^0 . The decay-time resolution is modelled by a Gaussian function with a fixed width of 50 fs, as determined from simulation. The decay-time acceptance a(t), is described by a parametric function based on cubic splines [28] whose nodes have fixed position and whose parameters are determined from data. Figure 3 shows the measured average mistag rate per subsample, interpolated with a third-order polynomial that represents η as a function of α_{BDT} , for the SS π and SSp taggers.

This polynomial parametrization is then used to determine the mistag probability $\eta(\alpha_{\text{BDT}})$ of a B^0 candidate. Tagging particles with $\eta(\alpha_{\text{BDT}}) > 0.5$ are rejected. With the third subsample of B^0 candidates, it is checked that the estimated mistag probability corresponds to the true value by measuring the mistag fraction ω with an unbinned likelihood fit to the decay-time distribution of the B^0 candidates. Possible differences between the mistag probability of B^0 and \overline{B}^0 mesons may arise from the different interaction cross-sections of hadrons and antihadrons in the detector material and from differences in detection efficiencies of positive and negative hadrons. They are taken into account in the decay-time fit by defining the variables

$$\overline{\omega} = (\omega^{B^0} + \omega^{\overline{B}^0})/2, \qquad \Delta \omega = \omega^{B^0} - \omega^{\overline{B}^0}, \qquad (3)$$

where ω^{B^0} and $\omega^{\overline{B}^0}$ are the mistag fractions related to B^0 and \overline{B}^0 . Assuming a linear relation between the measured and estimated mistag fractions, the calibration functions

are written as

where $p_i^{B^0}$ and $p_i^{\overline{B}^0}$ (with i = 0, 1) are the calibration parameters. The average calibration parameters and the differences between the B^0 and \overline{B}^0 parameters are defined as

$$\overline{p}_i = (p_i^{B^0} + p_i^{\overline{B}^0})/2, \qquad \Delta p_i = p_i^{B^0} - p_i^{\overline{B}^0}.$$
 (5)

The use of the arithmetic mean $\langle \eta \rangle$ of the η distribution aims at decorrelating p_0 and p_1 . A perfect calibration corresponds to $\overline{p}_0 = \langle \eta \rangle$ and $\overline{p}_1 = 1$.

A difference in the number of reconstructed and tagged B^0 and \overline{B}^0 mesons arises from several possible sources. Two of these sources are considered in the fit by introducing an asymmetry in the detection efficiency of the final state particles, defined as

$$A_{\rm det} = \frac{\varepsilon_{\rm det}^{D^+\pi^-} - \varepsilon_{\rm det}^{D^-\pi^+}}{\varepsilon_{\rm det}^{D^+\pi^-} + \varepsilon_{\rm det}^{D^-\pi^+}},\tag{6}$$

and an asymmetry of the tagging efficiencies, defined as

$$A_{\rm tag} = \frac{\varepsilon_{\rm tag}^{\bar{B}^0} - \varepsilon_{\rm tag}^{B^0}}{\varepsilon_{\rm tag}^{\bar{B}^0} + \varepsilon_{\rm tag}^{B^0}}.$$
(7)

With these additional inputs, the PDF becomes

$$\mathcal{S}(t,q) = \mathcal{N} \ a(t) \ e^{-t'/\tau_d} (C_{\cosh} + C_{\cos} \cos(\Delta m_d \ t')) \otimes \mathcal{R}(t-t').$$
(8)

The coefficients $C_{\rm cosh}$ and $C_{\rm cos}$ are

$$C_{\rm cosh} = (1 - r \ A_{\rm det}) \left(1 - \frac{a_{\rm sl}^d}{2} \ \frac{1 + r}{2} \right) \left((1 + A_{\rm prod} + A_{\rm tag}) \left(\frac{1 - d}{2} + d(\omega + \Delta \omega) \right) + (1 - A_{\rm prod} - A_{\rm tag}) \left(\frac{1 + d}{2} - d(\omega - \Delta \omega) \right) \left(1 + \frac{a_{\rm sl}^d}{2} \right) \right),$$

$$C_{\rm cos} = -r(1 - r \ A_{\rm det}) \left(1 - \frac{a_{\rm sl}^d}{2} \ \frac{1 + r}{2} \right) \left((1 + A_{\rm prod} + A_{\rm tag}) \left(\frac{1 - d}{2} + d(\omega + \Delta \omega) \right) - (1 - A_{\rm prod} - A_{\rm tag}) \left(\frac{1 + d}{2} - d(\omega - \Delta \omega) \right) \left(1 + \frac{a_{\rm sl}^d}{2} \right) \right),$$
(9)

where r is the B meson flavour at decay $(r = +1 \text{ for } B^0 \to D^- \pi^+, r = -1 \text{ for } \overline{B}^0 \to D^+ \pi^-)$ and d is the tagging decision $(d = +1 \text{ for } \pi^+ (\overline{p}), d = -1 \text{ for } \pi^- (p))$. These coefficients also take into account the production asymmetry, $A_{\text{prod}} = \frac{N_{\overline{B}}0 - N_{B}0}{N_{\overline{B}}0 + N_{B}0}$, and the asymmetry in mixing, or flavour-specific asymmetry, a_{sl}^d . These two asymmetries cannot be distinguished from the tagging and detection asymmetries and are fixed in the fit. The production asymmetry is fixed to the value measured in Ref. [29], $A_{\text{prod}} = (-0.58 \pm 0.70)\%$, while a_{sl}^d is fixed to the world average $a_{\text{sl}}^d = (-0.15 \pm 0.17)\%$ [30]. The effect of their uncertainties on the calibration parameters is included in the systematic uncertainty.

Table 3: Calibration parameters for the $SS\pi$, SSp and SScomb taggers where the first uncertainties are statistical and the second are systematic.

	$SS\pi$	$\mathrm{SS}p$	SScomb	
$\langle \eta \rangle$	0.444	0.461	0.439	
\overline{p}_0	$0.446 \pm 0.003 \pm 0.001$	$0.468 \pm 0.004 \pm 0.001$	$0.441 \pm 0.003 \pm 0.002$	
\overline{p}_1	$1.05 \pm 0.05 \pm 0.01$	$1.04 \pm 0.08 \pm 0.02$	$0.99 \pm 0.04 \pm 0.02$	
Δp_0	$-0.0028 \pm 0.0036 \pm 0.0016$	$-0.0218 \pm 0.0048 \pm 0.0016$	$-0.0056 \pm 0.0036 \pm 0.0018$	
Δp_1	$0.015 \pm 0.074 \pm 0.014$	$0.140 \pm 0.112 \pm 0.019$	$0.052 \pm 0.060 \pm 0.017$	
A_{tag}	$-0.001 \pm 0.007 \pm 0.007$	$0.008 \pm 0.009 \pm 0.007$	$0.002 \pm 0.007 \pm 0.007$	

Table 4: Tagging efficiencies and tagging power of the $SS\pi$, SSp and SScomb algorithms. The SScomb efficiencies are shown splitting the sample in candidates tagged exclusively by $SS\pi$ or SSp, or by both. As explained in the text, there is a large overlap between the $SS\pi$ and SSp taggers.

Tagger	Sample	$\varepsilon_{\mathrm{tag}}$ [%]	$\varepsilon_{\rm eff}$ [%]
$SS\pi$		71.96 ± 0.23	1.69 ± 0.10
SSp		38.56 ± 0.15	0.53 ± 0.05
SScomb	$SS\pi$ only	35.91 ± 0.14	0.95 ± 0.08
	SSp only	8.75 ± 0.10	0.12 ± 0.02
	$SS\pi \& SSp$	34.74 ± 0.15	1.04 ± 0.07
	total	79.40 ± 0.23	2.11 ± 0.11

The calibration parameters for the two taggers obtained in the fit to the calibration sample of $B^0 \to D^-\pi^+$ decays are reported in Table 3. The correlations between the calibration parameters are below 10%, except for the asymmetry of the tagging efficiencies, which has a correlation of about 16% with Δp_0 and Δp_1 and about 64% with A_{det} . For the SS π tagger, A_{tag} , Δp_0 and Δp_1 are zero within one standard deviation, showing no significant difference in tagging behaviour between B^0 and \overline{B}^0 decays. For the SSptagger, it is found that $\Delta p_0 < 0$, as a consequence of the higher interaction cross-section of anti-protons with matter compared to protons. A similar effect is reported for kaon taggers [5]. The fit result of the detection asymmetry is comparable for the two taggers $(A_{det}^{SS\pi} = (-0.87 \pm 0.48)\%, A_{det}^{SSp} = (-0.66 \pm 0.62)\%)$ and in agreement with that found in Ref. [31]. The systematic uncertainties on the parameters will be described in Section 5.

After calibration, the total tagging power of the sample is calculated as

...

$$\varepsilon_{\text{eff}} = \frac{\sum_{i=1}^{N_{\text{tag}}} (1 - 2\overline{\omega}(\eta_i))^2 s_i}{\sum_{j=1}^{N} s_j}$$
(10)

where s_i is the sWeight of the candidate *i*, *N* and N_{tag} are the numbers of total and tagged candidates, having mistag probability η_i , and the average mistag fraction $\overline{\omega}(\eta_i)$ is calculated using Eqs. 3 and 4. Candidates with a mistag probability larger than 0.5 are considered untagged and are removed from the sum in the numerator, effectively setting $\omega(\eta_i) = 0.5$. The tagging performances for the SS π and SSp taggers are reported in Table 4.

The fit of the decay-time distribution is repeated after dividing events into bins of predicted mistag probability. The distribution of η and the dependence of the measured

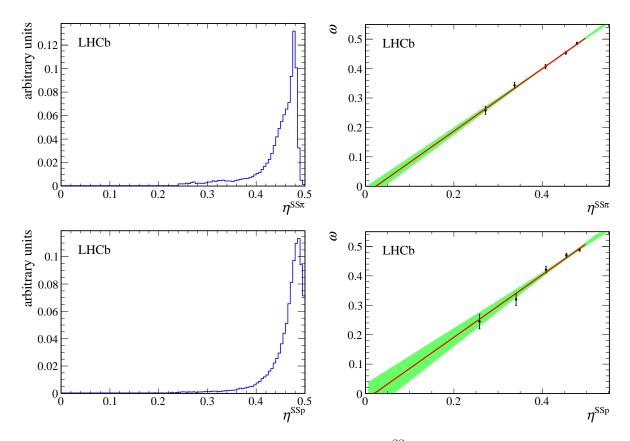


Figure 4: (top left) Distribution of the mistag probability $\eta^{SS\pi}$ and (top right) measured mistag fraction ω as a function of $\eta^{SS\pi}$. (bottom left) Distribution of the mistag probability η^{SSp} and (bottom right) measured mistag fraction ω as a function of η^{SSp} . The green-shaded area shows the 68% confidence range.

mistag fraction on η are shown in Fig. 4 with the linear fits superimposed, demonstrating the expected linearity. In Figs. 5 and 6 the time-dependent mixing asymmetries $A = \frac{N^{\text{unmix}} - N^{\text{mix}}}{N^{\text{unmix}} + N^{\text{mix}}}$ are shown for each of the five bins.

4.2 The SScomb tagger

Even though a given tagging particle can be selected by only one of the SS π or the SSp taggers, both taggers may find a candidate track in the same event. About 50% of the candidates tagged by SS π are also tagged by SSp, and 80% of the candidates tagged by SSp are also tagged by SS π . When both taggers provide a decision, they are combined into a single decision. Since the correlation between the SS π and SSp decisions, and between their mistag probabilities, is found to be small, it is neglected when combining them using the following formulae

$$p(b) = \prod_{i} \left(\frac{1+d_i}{2} - d_i(1-\eta_i) \right), \qquad p(\bar{b}) = \prod_{i} \left(\frac{1-d_i}{2} + d_i(1-\eta_i) \right), \qquad (11)$$

where p(b) and $p(\overline{b})$ are the probabilities that the signal *B* meson contains a *b* or a \overline{b} quark respectively, and d_i is the tagging decision of the tagger $i = SS\pi$, SSp. The normalized

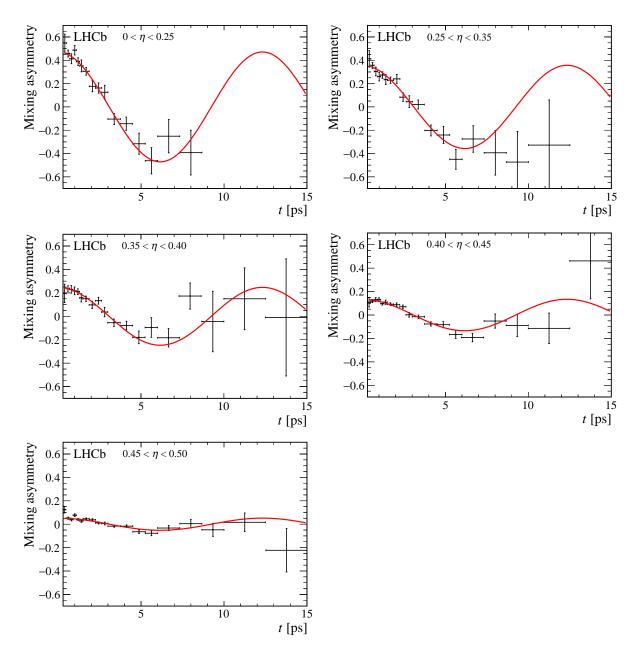


Figure 5: Mixing asymmetry in bins of mistag probability using the SS π tagger.

probabilities are

$$P(\bar{b}) = \frac{p(b)}{p(\bar{b}) + p(b)}, \qquad P(b) = 1 - P(\bar{b}).$$
(12)

For $P(\bar{b}) > P(b)$ the combined tagging decision is d = +1 and the final mistag probability is $\eta = P(b)$. Otherwise, the combined tagging decision and the mistag probability are d = -1 and $\eta = P(\bar{b})$.

The combination procedure, which assumes no correlation, is validated by checking the combined mistag probability a posteriori. Assuming a linear relation between the predicted mistag probability and the true mistag fraction, the calibration parameters in the overlapping sample give $(\bar{p}_0 - \langle \eta \rangle) = 0.010 \pm 0.005$ and $(\bar{p}_1 - 1) = 0.01 \pm 0.08$. The

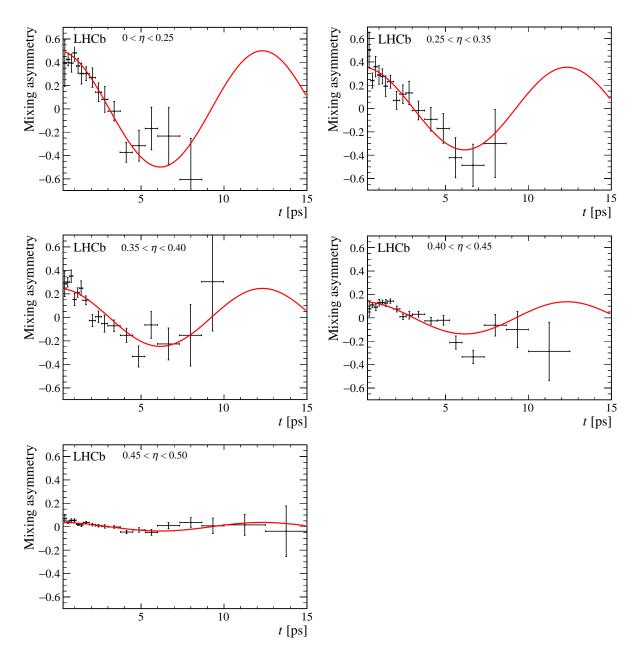


Figure 6: Mixing asymmetry in bins of mistag probability using the SSp tagger.

calibration is repeated on the sample of all B^0 candidates tagged by the SScomb tagger, and the calibration parameters derived from the unbinned likelihood fit with the PDF of Eq. 8, reported in Table 3, demonstrate its validity. The performance of SScomb is reported in Table 4. The total tagging power obtained by the combined algorithm is $(2.11 \pm 0.11)\%$, a relative increase of 25% compared to that provided by the SS π tagger alone.

A higher tagging power can be obtained from the combination of the SScomb tagger with the OS tagger. The OS tagger is the combination of various OS tagging algorithms using electrons and muons from semileptonic decays of b hadrons, kaons from $b \rightarrow c \rightarrow s$ decay chains and the inclusive reconstruction of a secondary vertex of the decay products of the opposite side b hadron. The SS and OS taggers are found to be uncorrelated, so their combination follows the same procedure as the combination of SS π and SSp into SScomb. The calibration of the combined mistag probability is verified a posteriori with a fit of the decay-time distribution of the B^0 candidates. For $B^0 \rightarrow D^-\pi^+$ decays, the total tagging efficiency and the total tagging power are $(84.48 \pm 0.26)\%$ and $(5.14 \pm 0.15)\%$, respectively. On the same sample, the use of the OS tagger only provides a tagging efficiency and a tagging power of $(37.95 \pm 0.15)\%$ and $(3.52 \pm 0.17)\%$, respectively.

5 Validation and systematic uncertainties

A possible dependence of the calibration parameters of the SS taggers on properties of the event sample is checked by repeating the calibration after splitting the data according to the data-taking conditions (magnet polarity), global event properties (total number of reconstructed tracks, number of primary vertices) or according to the kinematic properties of the B^0 meson (transverse momentum, pseudorapidity and azimuthal angle). The average mistag probability has a weak dependence on the number of tracks in the event. On the other hand, it decreases as a function of the transverse momentum since the number of random tracks decreases at high p_T^B . The tagging efficiency is nearly constant for pions, while the requirement on proton identification reduces the number of proton candidates at high p_T^B . A similar dependence is present versus the pseudorapidity of the B^0 meson. Since the average mistag fraction and the p_0 parameter decrease with increasing $p_T^{B^0}$, the calibration remains valid in all subsamples, with variations below two standard deviations.

The portability of the mistag calibration, from the training data sample to other data samples and other B^0 decay modes, is validated using an independent sample of $B^0 \rightarrow D^-\pi^+$ decays collected at $\sqrt{s} = 7 \text{ TeV}$ (corresponding to an integrated luminosity of 1 fb⁻¹) and a sample of $B^0 \rightarrow K^+\pi^-$ decays collected at $\sqrt{s} = 8 \text{ TeV}$ (corresponding to an integrated luminosity of 2 fb⁻¹). The same selection criteria and fitting procedure as described above are used for the $B^0 \rightarrow D^-\pi^+$ validation sample at $\sqrt{s} = 7 \text{ TeV}$. The calibration parameters for the SS π , SSp, and SScomb taggers determined from an unbinned maximum likelihood fit to the decay-time distribution are compatible with those derived in the 8 TeV sample. Consistent values of tagging power are found for all taggers.

The selection criteria and the mass model for the $B^0 \to K^+\pi^-$ candidates are described in Ref. [32]. The decay-time acceptance is parametrized using cubic splines with six nodes, whose positions are fixed and whose coefficients are free in the fit. The decay-time resolution is described by a Gaussian function with parameters determined from simulation. The parameters shown in Table 5 demonstrate a good portability of the mistag calibration, with $\bar{p}_0 - \langle \eta \rangle \approx 0$ and $\bar{p}_1 - 1 \approx 0$ as expected. A lower tagging power is measured in this channel, giving $(1.06 \pm 0.09)\%$, $(0.42 \pm 0.06)\%$, and $(1.37 \pm 0.13)\%$ for SS π , SSp and SScomb, respectively, as expected from the lower average $p_{\rm T}$ of the selected B^0 candidates.

Several sources of systematic uncertainties on the calibration parameters are studied and the associated uncertainties are reported in Table 6. Uncertainties related to the mass model and background unfolding procedure are assessed by repeating the calibration replacing the sWeights derived in the fit to the mass distribution of all B^0 candidates by the sWeights derived after restricting the sample to tagged B^0 candidates. In a second test, the signal mass model is replaced by a Hypatia function [33] convolved with a Gaussian function. The sum in quadrature of the variations of the calibration parameters observed

Table 5: Calibration parameters for the $B^0 \rightarrow K^+\pi^-$ decay sample. Uncertainties are statistical only.

Tagger	$\langle \eta \rangle$	\overline{p}_0	\overline{p}_1	Δp_0	Δp_1	A_{tag}
$SS\pi$	0.456	0.452 ± 0.003	1.06 ± 0.09	0.0053 ± 0.0042	0.047 ± 0.115	-0.009 ± 0.008
SSp	0.467	0.459 ± 0.004	0.80 ± 0.14	-0.0138 ± 0.0051	0.025 ± 0.141	0.008 ± 0.009
SScomb	0.452	0.457 ± 0.003	0.94 ± 0.07	-0.0034 ± 0.0040	0.079 ± 0.086	0.007 ± 0.007

in the two tests is taken as uncertainty on the mass model.

Uncertainties related to the decay-time acceptance model are assessed by changing the number of nodes in the cubic splines from six to nine and are found to be negligible. A negligible uncertainty is associated to the decay-time resolution model. The mistag model uncertainties are assessed by comparing the calibration parameters derived in the nominal fit and those derived in fits with the mistag probability binned in categories. Five, seven and nine bins are tested and the largest observed variation of the parameters is taken as a systematic uncertainty. Differences between the results of the two implementations of the time-dependent fit are due to the dependence of the mistag probability on the decay time. Pseudoexperiments are generated where the mistag probability has the same dependence on time as in data and are fitted with the two approaches. The difference in parameters is similar to or smaller than that observed in data.

Uncertainties related to neglecting $\Delta\Gamma_d$ and possible CP violation in the $B^0 \rightarrow D^-\pi^+$ decays in the decay-time fit, are studied by performing pseudoexperiments in which changes associated with the parameter under study are incorporated in the generation and neglected in the subsequent fit. Terms proportional to the relevant CP parameters are added to the PDF in Eq. 8 and the values of the parameters are taken from Ref. [30]. The associated systematic uncertainties are taken to be the changes in the calibration parameters with respect to perfect calibration ($\bar{p}_0 = \langle \eta \rangle$, $\bar{p}_1=1$), used in the generation. Uncertainties related to the variation of $A_{\rm prod}$ and $a_{\rm sl}^d$, which are fixed in the decay-time fit, are evaluated with pseudoexperiments where the parameters are varied within their uncertainties. The uncertainties are determined in the SS π configuration and attributed to both taggers. A breakdown of the systematic uncertainties related to the decay-time model is shown in Table 7.

6 Conclusion

Two new same-side algorithms are developed to determine the production flavour of B^0 mesons using pions and protons from the hadronization process. This is the first time that protons are used to identify the flavour of a B^0 meson. The algorithms are optimized and calibrated on data using $B^0 \rightarrow D^-\pi^+$ decays. The calibration parameters of the taggers are reported in Table 3. The efficiency and mistag probability of the taggers depend on the kinematic properties of the B^0 decay mode under study. Estimated mistag probabilities match the true mistag fraction throughout the phase space. The new SS π tagger provides a tagging power that is greater by 60% relative to the previous algorithm using pions, employed in Ref. [4]. Adding the combination of the two new algorithms to the existing OS taggers provides a relative increase of the total tagging power of about 40%.

ligible with respect to the quoted precision.						
Tagger	Source	$\sigma(\overline{p}_0)$	$\sigma(\overline{p}_1)$	$\sigma(\Delta p_0)$	$\sigma(\Delta p_1)$	$\sigma(A_{\rm tag})$
	mass model	_	-	—	0.001	_
88-	mistag model	0.001	0.01	0.0002	0.007	—
$SS\pi$	decay model	0.001	0.01	0.0016	0.012	0.007
	total	0.001	0.01	0.0016	0.014	0.007
	mass model	_	_	0.0002	0.004	_
SSp	mistag model	0.001	0.02	_	0.014	0.001
	decay model	0.001	0.01	0.0016	0.012	0.007
	total	0.001	0.02	0.0016	0.019	0.007

0.0008

0.0004

0.0016

0.0018

0.005

0.010

0.012

0.017

0.001

0.007

0.007

Table 6: Systematic uncertainties on the calibration parameters of $SS\pi$, SSp and SScomb taggers. The total systematic uncertainty is the squared sum of all contributions. A dash indicates a value negligible with respect to the quoted precision.

Table 7: Systematic uncertainties related to the decay-time model. A dash indicates a value
negligible with respect to the quoted precision.

0.02

0.01

0.02

0.002

0.001

0.002

mass model

mistag model

decay model

total

Source	$\sigma(\overline{p}_0)$	$\sigma(\overline{p}_1)$	$\sigma(\Delta p_0)$	$\sigma(\Delta p_1)$	$\sigma(A_{\rm tag})$
$\Delta\Gamma$	0.00013	—	—	—	0.001
A_{prod}	0.00002	—	—	—	0.007
$a_{ m sl}^{ m d}$	—	_	—	—	—
CP violation	0.00124	0.01	0.0016	0.012	0.002
total	0.001	0.01	0.0016	0.012	0.007

Acknowledgements

SScomb

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); FOM and NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FASO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union), Conseil Général de Haute-Savoie, Labex ENIGMASS and OCEVU, Région Auvergne (France), RFBR and Yandex LLC (Russia), GVA, XuntaGal and GENCAT (Spain), Herchel Smith Fund, The Royal Society, Royal Commission for the Exhibition of 1851 and the Leverhulme Trust

(United Kingdom).

References

- Particle Data Group, K. A. Olive et al., Review of particle physics, "CP violation in the quark sector" (pages 223-234), Chin. Phys. C38 (2014) 090001.
- [2] LHCb collaboration, R. Aaij et al., Opposite-side flavour tagging of B mesons at the LHCb experiment, Eur. Phys. J. C72 (2012) 2022, arXiv:1202.4979.
- [3] LHCb collaboration, R. Aaij et al., B flavour tagging using charm decays at the LHCb experiment, JINST 10 (2015) P10005, arXiv:1507.07892.
- [4] LHCb collaboration, R. Aaij *et al.*, Measurement of CP violation in $B^0 \rightarrow J/\psi K_S^0$ decays, Phys. Rev. Lett. **115** (2015) 031601, arXiv:1503.07089.
- [5] LHCb collaboration, R. Aaij et al., Neural-network-based same side kaon tagging algorithm calibrated with B⁰_s → D⁻_sπ⁺ and B^{*}_{s2}(5840)⁰ → B⁺K⁻ decays, JINST 11 (2016) P05010, arXiv:1602.07252.
- [6] LHCb collaboration, R. Aaij et al., Precision measurement of CP violation in $B_s^0 \rightarrow J/\psi K^+ K^-$ decays, Phys. Rev. Lett. **114** (2015) 041801, arXiv:1411.3104.
- [7] LHCb collaboration, R. Aaij et al., Measurement of the CP-violating phase ϕ_s in $\overline{B}_s^0 \to J/\psi \pi^+ \pi^-$ decays, Phys. Lett. **B736** (2014) 186, arXiv:1405.4140.
- [8] LHCb collaboration, R. Aaij *et al.*, Measurement of the CP-violating phase ϕ_s in $\overline{B}_s^0 \to D_s^+ D_s^-$ decays, Phys. Rev. Lett. **113** (2014) 211801, arXiv:1409.4619.
- [9] Ed. A. J. Bevan, B. Golob, Th. Mannel, S. Prell and B. D. Yabsley, The Physics of the B Factories, Eur. Phys. J. C74 (2014) 3026, arXiv:1406.6311.
- [10] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.
- [11] LHCb collaboration, R. Aaij et al., LHCb detector performance, Int. J. Mod. Phys. A30 (2015) 1530022, arXiv:1412.6352.
- M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C73 (2013) 2431, arXiv:1211.6759.
- [13] R. Aaij et al., The LHCb trigger and its performance in 2011, JINST 8 (2013) P04022, arXiv:1211.3055.
- [14] V. V. Gligorov and M. Williams, Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree, JINST 8 (2013) P02013, arXiv:1210.6861.
- T. Sjöstrand, S. Mrenna, and P. Skands, *PYTHIA 6.4 physics and manual*, JHEP 05 (2006) 026, arXiv:hep-ph/0603175; T. Sjöstrand, S. Mrenna, and P. Skands, *A brief introduction to PYTHIA 8.1*, Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820.

- [16] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047.
- [17] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A462 (2001) 152.
- [18] P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision tool for QED corrections in Z and W decays, Eur. Phys. J. C45 (2006) 97, arXiv:hep-ph/0506026.
- [19] Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270; Geant4 collaboration, S. Agostinelli et al., Geant4: A simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250.
- [20] M. Clemencic et al., The LHCb simulation application, Gauss: Design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023.
- [21] LHCb collaboration, R. Aaij *et al.*, Measurement of the \overline{B}_s^0 meson lifetime in $D_s^+\pi^-$ decays, Phys. Rev. Lett. **113** (2014) 172001, arXiv:1407.5873.
- [22] N. L. Johnson, Systems of frequency curves generated by methods of translation, Biometrika 36 (1949) 149.
- [23] M. Pivk and F. R. Le Diberder, sPlot: A statistical tool to unfold data distributions, Nucl. Instrum. Meth. A555 (2005) 356, arXiv:physics/0402083.
- [24] A. A. Alves Jr. et al., Performance of the LHCb muon system, JINST 8 (2013) P02022, arXiv:1211.1346.
- [25] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, *Classification and regression trees*, Wadsworth international group, Belmont, California, USA, 1984.
- [26] R. E. Schapire and Y. Freund, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55 (1997) 119.
- [27] Particle Data Group, K. A. Olive et al., Review of particle physics, Chin. Phys. C38 (2014) 090001, and 2015 update.
- [28] C. de Boor, A Practical Guide to Splines (revised edition), Springer, New York, NY, USA, 2001.
- [29] LHCb collaboration, R. Aaij et al., Measurement of the $\overline{B}{}^0-B{}^0$ and $\overline{B}{}^0_s-B{}^0_s$ production asymmetries in pp collisions at $\sqrt{s} = 7$ TeV, Phys. Lett. **B739** (2014) 218, arXiv:1408.0275.
- [30] Heavy Flavor Averaging Group, Y. Amhis *et al.*, Averages of b-hadron, c-hadron, and τ -lepton properties as of summer 2014, arXiv:1412.7515, updated results and plots available at http://www.slac.stanford.edu/xorg/hfag/.
- [31] LHCb collaboration, R. Aaij et al., Measurement of the semileptonic CP asymmetry in B⁰-B
 ⁰ mixing, Phys. Rev. Lett. **114** (2015) 041601, arXiv:1409.8586.
- [32] LHCb collaboration, R. Aaij et al., First measurement of time-dependent CP violation in $B_s^0 \to K^+K^-$ decays, JHEP **10** (2013) 183, arXiv:1308.1428.

[33] D. Martinez-Santos and F. Dupertuis, Mass distributions marginalized over per-event errors, Nucl. Instrum. Meth. A764 (2014) 150, arXiv:1312.5000.

LHCb collaboration

R. Aaij⁴⁰, B. Adeva³⁹, M. Adinolfi⁴⁸, Z. Ajaltouni⁵, S. Akar⁶, J. Albrecht¹⁰, F. Alessio⁴⁰, M. Alexander⁵³, S. Ali⁴³, G. Alkhazov³¹, P. Alvarez Cartelle⁵⁵, A.A. Alves Jr⁵⁹, S. Amato², S. Amerio²³, Y. Amhis⁷, L. An⁴¹, L. Anderlini¹⁸, G. Andreassi⁴¹, M. Andreotti^{17,g}, J.E. Andrews⁶⁰, R.B. Appleby⁵⁶, F. Archilli⁴³, P. d'Argent¹², J. Arnau Romeu⁶, A. Artamonov³⁷, M. Artuso⁶¹, E. Aslanides⁶, G. Auriemma²⁶, M. Baalouch⁵, I. Babuschkin⁵⁶, S. Bachmann¹², J.J. Back⁵⁰, A. Badalov³⁸, C. Baesso⁶², S. Baker⁵⁵, W. Baldini¹⁷, R.J. Barlow⁵⁶, C. Barschel⁴⁰, S. Barsuk⁷, W. Barter⁴⁰, M. Baszczyk²⁷, V. Batozskaya²⁹, B. Batsukh⁶¹, V. Battista⁴¹, A. Bay⁴¹, L. Beaucourt⁴, J. Beddow⁵³, F. Bedeschi²⁴, I. Bediaga¹, L.J. Bel⁴³, V. Bellee⁴¹, N. Belloli^{21,i}, K. Belous³⁷, I. Belvaev³², E. Ben-Haim⁸, G. Bencivenni¹⁹, S. Benson⁴³, J. Benton⁴⁸, A. Berezhnoy³³, R. Bernet⁴², A. Bertolin²³, F. Betti¹⁵, M.-O. Bettler⁴⁰, M. van Beuzekom⁴³, Ia. Bezshyiko⁴², S. Bifani⁴⁷, P. Billoir⁸, T. Bird⁵⁶, A. Birnkraut¹⁰, A. Bitadze⁵⁶, A. Bizzeti^{18,u}, T. Blake⁵⁰, F. Blanc⁴¹, J. Blouw^{11,†}, S. Blusk⁶¹, V. Bocci²⁶, T. Boettcher⁵⁸, A. Bondar^{36,w}, N. Bondar^{31,40}, W. Bonivento¹⁶, I. Bordyuzhin³², A. Borgheresi^{21,i}, S. Borghi⁵⁶, M. Borisyak³⁵, M. Borsato³⁹, F. Bossu⁷, M. Boubdir⁹, T.J.V. Bowcock⁵⁴, E. Bowen⁴², C. Bozzi^{17,40}, S. Braun¹², M. Britsch¹², T. Britton⁶¹, J. Brodzicka⁵⁶, E. Buchanan⁴⁸, C. Burr⁵⁶, A. Bursche², J. Buytaert⁴⁰, S. Cadeddu¹⁶, R. Calabrese^{17,g}, M. Calvi^{21,i}, M. Calvo Gomez^{38,m}, A. Camboni³⁸, P. Campana¹⁹, D. Campora Perez⁴⁰, D.H. Campora Perez⁴⁰, L. Capriotti⁵⁶, A. Carbone^{15,e}, G. Carboni^{25,j}, R. Cardinale^{20,h}, A. Cardini¹⁶, P. Carniti^{21,i}, L. Carson⁵², K. Carvalho Akiba², G. Casse⁵⁴, L. Cassina^{21,i}, L. Castillo Garcia⁴¹, M. Cattaneo⁴⁰, Ch. Cauet¹⁰, G. Cavallero²⁰, R. Cenci^{24,t}, M. Charles⁸, Ph. Charpentier⁴⁰, G. Chatzikonstantinidis⁴⁷, M. Chefdeville⁴, S. Chen⁵⁶, S.-F. Cheung⁵⁷, V. Chobanova³⁹, M. Chrzaszcz^{42,27}, X. Cid Vidal³⁹, G. Ciezarek⁴³, P.E.L. Clarke⁵², M. Clemencic⁴⁰, H.V. Cliff⁴⁹, J. Closier⁴⁰, V. Coco⁵⁹, J. Cogan⁶, E. Cogneras⁵, V. Cogoni^{16,40,f}, L. Cojocariu³⁰, G. Collazuol^{23,o}, P. Collins⁴⁰, A. Comerma-Montells¹², A. Contu⁴⁰, A. Cook⁴⁸, G. Coombs⁴⁰, S. Coquereau³⁸, G. Corti⁴⁰, M. Corvo^{17,g}, C.M. Costa Sobral⁵⁰, B. Couturier⁴⁰, G.A. Cowan⁵², D.C. Craik⁵², A. Crocombe⁵⁰, M. Cruz Torres⁶², S. Cunliffe⁵⁵, R. Currie⁵⁵, C. D'Ambrosio⁴⁰, F. Da Cunha Marinho², E. Dall'Occo⁴³, J. Dalseno⁴⁸, P.N.Y. David⁴³, A. Davis⁵⁹, O. De Aguiar Francisco², K. De Bruyn⁶, S. De Capua⁵⁶, M. De Cian¹², J.M. De Miranda¹, L. De Paula², M. De Serio^{14,d}, P. De Simone¹⁹, C.-T. Dean⁵³, D. Decamp⁴, M. Deckenhoff¹⁰, L. Del Buono⁸, M. Demmer¹⁰, A. Dendek²⁸, D. Derkach³⁵, O. Deschamps⁵, F. Dettori⁴⁰, B. Dey²², A. Di Canto⁴⁰, H. Dijkstra⁴⁰, F. Dordei⁴⁰, M. Dorigo⁴¹, A. Dosil Suárez³⁹, A. Dovbnya⁴⁵, K. Dreimanis⁵⁴, L. Dufour⁴³, G. Dujany⁵⁶, K. Dungs⁴⁰, P. Durante⁴⁰, R. Dzhelyadin³⁷, A. Dziurda⁴⁰, A. Dzyuba³¹, N. Déléage⁴, S. Easo⁵¹, M. Ebert⁵², U. Egede⁵⁵, V. Egorychev³², S. Eidelman^{36,w}, S. Eisenhardt⁵², U. Eitschberger¹⁰, R. Ekelhof¹⁰, L. Eklund⁵³, Ch. Elsasser⁴², S. Ely⁶¹, S. Esen¹², H.M. Evans⁴⁹, T. Evans⁵⁷, A. Falabella¹⁵, N. Farley⁴⁷, S. Farry⁵⁴, R. Fay⁵⁴, D. Fazzini^{21,i}, D. Ferguson⁵², A. Fernandez Prieto³⁹, F. Ferrari^{15,40}, F. Ferreira Rodrigues¹, M. Ferro-Luzzi⁴⁰, S. Filippov³⁴, R.A. Fini¹⁴, M. Fiore^{17,g}, M. Fiorini^{17,g}, M. Firlej²⁸, C. Fitzpatrick⁴¹, T. Fiutowski²⁸, F. Fleuret^{7,b}, K. Fohl⁴⁰, M. Fontana^{16,40}, F. Fontanelli^{20,h}, D.C. Forshaw⁶¹, R. Forty⁴⁰, V. Franco Lima⁵⁴, M. Frank⁴⁰, C. Frei⁴⁰, J. Fu^{22,q}, E. Furfaro^{25,j}, C. Färber⁴⁰, A. Gallas Torreira³⁹, D. Galli^{15,e}, S. Gallorini²³, S. Gambetta⁵², M. Gandelman², P. Gandini⁵⁷, Y. Gao³, L.M. Garcia Martin⁶⁸, J. García Pardiñas³⁹, J. Garra Tico⁴⁹, L. Garrido³⁸, P.J. Garsed⁴⁹, D. Gascon³⁸, C. Gaspar⁴⁰, L. Gavardi¹⁰, G. Gazzoni⁵, D. Gerick¹², E. Gersabeck¹², M. Gersabeck⁵⁶, T. Gershon⁵⁰, Ph. Ghez⁴, S. Giani⁴¹, V. Gibson⁴⁹, O.G. Girard⁴¹, L. Giubega³⁰, K. Gizdov⁵², V.V. Gligorov⁸, D. Golubkov³², A. Golutvin^{55,40}, A. Gomes^{1,a}, I.V. Gorelov³³, C. Gotti^{21,i}, M. Grabalosa Gándara⁵, R. Graciani Diaz³⁸, L.A. Granado Cardoso⁴⁰, E. Graugés³⁸, E. Graverini⁴², G. Graziani¹⁸, A. Grecu³⁰, P. Griffith⁴⁷, L. Grillo^{21,40,i}, B.R. Gruberg Cazon⁵⁷, O. Grünberg⁶⁶, E. Gushchin³⁴, Yu. Guz³⁷, T. Gys⁴⁰,

C. Göbel⁶², T. Hadavizadeh⁵⁷, C. Hadjivasiliou⁵, G. Haefeli⁴¹, C. Haen⁴⁰, S.C. Haines⁴⁹, S. Hall⁵⁵, B. Hamilton⁶⁰, X. Han¹², S. Hansmann-Menzemer¹², N. Harnew⁵⁷, S.T. Harnew⁴⁸, J. Harrison⁵⁶, M. Hatch⁴⁰, J. He⁶³, T. Head⁴¹, A. Heister⁹, K. Hennessy⁵⁴, P. Henrard⁵, L. Henry⁸, J.A. Hernando Morata³⁹, E. van Herwijnen⁴⁰, M. Heß⁶⁶, A. Hicheur², D. Hill⁵⁷. C. Hombach⁵⁶, H. Hopchev⁴¹, W. Hulsbergen⁴³, T. Humair⁵⁵, M. Hushchyn³⁵, N. Hussain⁵⁷ D. Hutchcroft⁵⁴, M. Idzik²⁸, P. Ilten⁵⁸, R. Jacobsson⁴⁰, A. Jaeger¹², J. Jalocha⁵⁷, E. Jans⁴³, A. Jawahery⁶⁰, F. Jiang³, M. John⁵⁷, D. Johnson⁴⁰, C.R. Jones⁴⁹, C. Joram⁴⁰, B. Jost⁴⁰, N. Jurik⁶¹, S. Kandybei⁴⁵, W. Kanso⁶, M. Karacson⁴⁰, J.M. Kariuki⁴⁸, S. Karodia⁵³, M. Kecke¹², M. Kelsey⁶¹, I.R. Kenyon⁴⁷, M. Kenzie⁴⁹, T. Ketel⁴⁴, E. Khairullin³⁵, B. Khanji^{21,40,i}, C. Khurewathanakul⁴¹, T. Kirn⁹, S. Klaver⁵⁶, K. Klimaszewski²⁹, S. Koliiev⁴⁶, M. Kolpin¹², I. Komarov⁴¹, R.F. Koopman⁴⁴, P. Koppenburg⁴³, A. Kosmyntseva³², A. Kozachuk³³, M. Kozeiha⁵, L. Kravchuk³⁴, K. Kreplin¹², M. Kreps⁵⁰, P. Krokovny^{36,w}, F. Kruse¹⁰, W. Krzemien²⁹, W. Kucewicz^{27,l}, M. Kucharczyk²⁷, V. Kudryavtsev^{36,w}, A.K. Kuonen⁴¹, K. Kurek²⁹, T. Kvaratskheliya^{32,40}, D. Lacarrere⁴⁰, G. Lafferty⁵⁶, A. Lai¹⁶. D. Lambert⁵², G. Lanfranchi¹⁹, C. Langenbruch⁹, T. Latham⁵⁰, C. Lazzeroni⁴⁷, R. Le Gac⁶, J. van Leerdam⁴³, J.-P. Lees⁴, A. Leflat^{33,40}, J. Lefrançois⁷, R. Lefèvre⁵, F. Lemaitre⁴⁰, E. Lemos Cid³⁹, O. Leroy⁶, T. Lesiak²⁷, B. Leverington¹², Y. Li⁷, T. Likhomanenko^{35,67}, R. Lindner⁴⁰, C. Linn⁴⁰, F. Lionetto⁴², B. Liu¹⁶, X. Liu³, D. Loh⁵⁰, I. Longstaff⁵³, J.H. Lopes², D. Lucchesi^{23,o}, M. Lucio Martinez³⁹, H. Luo⁵², A. Lupato²³, E. Luppi^{17,g}, O. Lupton⁵⁷, A. Lusiani²⁴, X. Lyu⁶³, F. Machefert⁷, F. Maciuc³⁰, O. Maev³¹, K. Maguire⁵⁶, S. Malde⁵⁷, A. Malinin⁶⁷, T. Maltsev³⁶, G. Manca⁷, G. Mancinelli⁶, P. Manning⁶¹, J. Maratas^{5,v}, J.F. Marchand⁴, U. Marconi¹⁵, C. Marin Benito³⁸, P. Marino^{24,t}, J. Marks¹², G. Martellotti²⁶, M. Martin⁶, M. Martinelli⁴¹, D. Martinez Santos³⁹, F. Martinez Vidal⁶⁸, D. Martins Tostes², L.M. Massacrier⁷, A. Massafferri¹, R. Matev⁴⁰, A. Mathad⁵⁰, Z. Mathe⁴⁰, C. Matteuzzi²¹, A. Mauri⁴², B. Maurin⁴¹, A. Mazurov⁴⁷, M. McCann⁵⁵, J. McCarthy⁴⁷, A. McNab⁵⁶, R. McNulty¹³, B. Meadows⁵⁹, F. Meier¹⁰, M. Meissner¹², D. Melnychuk²⁹, M. Merk⁴³, A. Merli^{22,q}, E. Michielin²³, D.A. Milanes⁶⁵, M.-N. Minard⁴, D.S. Mitzel¹², A. Mogini⁸, J. Molina Rodriguez¹, I.A. Monroy⁶⁵, S. Monteil⁵, M. Morandin²³, P. Morawski²⁸, A. Mordà⁶, M.J. Morello^{24,t}, J. Moron²⁸, A.B. Morris⁵², R. Mountain⁶¹, F. Muheim⁵², M. Mulder⁴³, M. Mussini¹⁵, D. Müller⁵⁶, J. Müller¹⁰, K. Müller⁴², V. Müller¹⁰, P. Naik⁴⁸, T. Nakada⁴¹, R. Nandakumar⁵¹, A. Nandi⁵⁷, I. Nasteva², M. Needham⁵², N. Neri²², S. Neubert¹², N. Neufeld⁴⁰, M. Neuner¹², A.D. Nguyen⁴¹, T.D. Nguyen⁴¹, C. Nguyen-Mau^{41,n}, S. Nieswand⁹, R. Niet¹⁰, N. Nikitin³³, T. Nikodem¹², A. Novoselov³⁷, D.P. O'Hanlon⁵⁰, A. Oblakowska-Mucha²⁸, V. Obraztsov³⁷, S. Ogilvy¹⁹, R. Oldeman⁴⁹, C.J.G. Onderwater⁶⁹, J.M. Otalora Goicochea², A. Otto⁴⁰, P. Owen⁴², A. Oyanguren⁶⁸, P.R. Pais⁴¹, A. Palano^{14,d}, F. Palombo^{22,q}, M. Palutan¹⁹, J. Panman⁴⁰, A. Papanestis⁵¹, M. Pappagallo^{14,d}, L.L. Pappalardo^{17,g}, W. Parker⁶⁰, C. Parkes⁵⁶, G. Passaleva¹⁸, A. Pastore^{14,d}, G.D. Patel⁵⁴, M. Patel⁵⁵, C. Patrignani^{15,e}, A. Pearce^{56,51}, A. Pellegrino⁴³, G. Penso²⁶, M. Pepe Altarelli⁴⁰, S. Perazzini⁴⁰, P. Perret⁵, L. Pescatore⁴⁷, K. Petridis⁴⁸, A. Petrolini^{20,h}, A. Petrov⁶⁷, M. Petruzzo^{22,q}, E. Picatoste Olloqui³⁸, B. Pietrzyk⁴, M. Pikies²⁷, D. Pinci²⁶, A. Pistone²⁰, A. Piucci¹², S. Playfer⁵², M. Plo Casasus³⁹, T. Poikela⁴⁰, F. Polci⁸, A. Poluektov^{50,36}, I. Polyakov⁶¹, E. Polycarpo², G.J. Pomery⁴⁸, A. Popov³⁷, D. Popov^{11,40}, B. Popovici³⁰, S. Poslavskii³⁷, C. Potterat², E. Price⁴⁸, J.D. Price⁵⁴, J. Prisciandaro³⁹, A. Pritchard⁵⁴, C. Prouve⁴⁸, V. Pugatch⁴⁶, A. Puig Navarro⁴¹, G. Punzi^{24,p}, W. Qian⁵⁷, R. Quagliani^{7,48}, B. Rachwal²⁷, J.H. Rademacker⁴⁸, M. Rama²⁴, M. Ramos Pernas³⁹, M.S. Rangel², I. Raniuk⁴⁵, F. Ratnikov³⁵, G. Raven⁴⁴, F. Redi⁵⁵, S. Reichert¹⁰, A.C. dos Reis¹, C. Remon Alepuz⁶⁸, V. Renaudin⁷, S. Ricciardi⁵¹, S. Richards⁴⁸, M. Rihl⁴⁰, K. Rinnert⁵⁴, V. Rives Molina³⁸, P. Robbe^{7,40}, A.B. Rodrigues¹, E. Rodrigues⁵⁹, J.A. Rodriguez Lopez⁶⁵, P. Rodriguez Perez^{56,†}, A. Rogozhnikov³⁵, S. Roiser⁴⁰, A. Rollings⁵⁷, V. Romanovskiy³⁷, A. Romero Vidal³⁹,

J.W. Ronayne¹³, M. Rotondo¹⁹, M.S. Rudolph⁶¹, T. Ruf⁴⁰, P. Ruiz Valls⁶⁸,

J.J. Saborido Silva³⁹, E. Sadykhov³², N. Sagidova³¹, B. Saitta^{16,f}, V. Salustino Guimaraes², C. Sanchez Mayordomo⁶⁸, B. Sanmartin Sedes³⁹, R. Santacesaria²⁶, C. Santamarina Rios³⁹, M. Santimaria¹⁹, E. Santovetti^{25,j}, A. Sarti^{19,k}, C. Satriano^{26,s}, A. Satta²⁵, D.M. Saunders⁴⁸, D. Savrina^{32,33}, S. Schael⁹, M. Schellenberg¹⁰, M. Schiller⁴⁰, H. Schindler⁴⁰, M. Schlupp¹⁰, M. Schmelling¹¹, T. Schmelzer¹⁰, B. Schmidt⁴⁰, O. Schneider⁴¹, A. Schopper⁴⁰, K. Schubert¹⁰, M. Schubiger⁴¹, M.-H. Schune⁷, R. Schwemmer⁴⁰, B. Sciascia¹⁹, A. Sciubba^{26,k}, A. Semennikov³², A. Sergi⁴⁷, N. Serra⁴², J. Serrano⁶, L. Sestini²³, P. Seyfert²¹, M. Shapkin³⁷, I. Shapoval⁴⁵, Y. Shcheglov³¹, T. Shears⁵⁴, L. Shekhtman^{36,w}, V. Shevchenko⁶⁷, A. Shires¹⁰, B.G. Siddi^{17,40}, R. Silva Coutinho⁴², L. Silva de Oliveira², G. Simi^{23,o}, S. Simone^{14,d}, M. Sirendi⁴⁹, N. Skidmore⁴⁸, T. Skwarnicki⁶¹, E. Smith⁵⁵, I.T. Smith⁵², J. Smith⁴⁹, M. Smith⁵⁵, H. Snoek⁴³, M.D. Sokoloff⁵⁹, F.J.P. Soler⁵³, B. Souza De Paula², B. Spaan¹⁰, P. Spradlin⁵³, S. Sridharan⁴⁰, F. Stagni⁴⁰, M. Stahl¹², S. Stahl⁴⁰, P. Stefko⁴¹, S. Stefkova⁵⁵, O. Steinkamp⁴², S. Stemmle¹², O. Stenyakin³⁷, S. Stevenson⁵⁷, S. Stoica³⁰, S. Stone⁶¹, B. Storaci⁴², S. Stracka^{24,p}, M. Straticiuc³⁰, U. Straumann⁴², L. Sun⁵⁹, W. Sutcliffe⁵⁵, K. Swientek²⁸, V. Syropoulos⁴⁴, M. Szczekowski²⁹, T. Szumlak²⁸, S. T'Jampens⁴, A. Tayduganov⁶, T. Tekampe¹⁰, G. Tellarini^{17,g}, F. Teubert⁴⁰, E. Thomas⁴⁰, J. van Tilburg⁴³, M.J. Tilley⁵⁵ V. Tisserand⁴, M. Tobin⁴¹, S. Tolk⁴⁹, L. Tomassetti^{17,g}, D. Tonelli⁴⁰, S. Topp-Joergensen⁵⁷, F. Toriello⁶¹, E. Tournefier⁴, S. Tourneur⁴¹, K. Trabelsi⁴¹, M. Traill⁵³, M.T. Tran⁴¹, M. Tresch⁴², A. Trisovic⁴⁰, A. Tsaregorodtsev⁶, P. Tsopelas⁴³, A. Tully⁴⁹, N. Tuning⁴³, A. Ukleja²⁹, A. Ustyuzhanin³⁵, U. Uwer¹², C. Vacca^{16,f}, V. Vagnoni^{15,40}, A. Valassi⁴⁰, S. Valat⁴⁰, G. Valenti¹⁵, A. Vallier⁷, R. Vazquez Gomez¹⁹, P. Vazquez Regueiro³⁹, S. Vecchi¹⁷, M. van Veghel⁴³, J.J. Velthuis⁴⁸, M. Veltri^{18, r}, G. Veneziano⁴¹, A. Venkateswaran⁶¹, M. Vernet⁵, M. Vesterinen¹², B. Viaud⁷, D. Vieira¹, M. Vieites Diaz³⁹, X. Vilasis-Cardona^{38,m}, V. Volkov³³, A. Vollhardt⁴², B. Voneki⁴⁰, A. Vorobyev³¹, V. Vorobyev^{36,w}, C. Voß⁶⁶, J.A. de Vries⁴³, C. Vázquez Sierra³⁹, R. Waldi⁶⁶, C. Wallace⁵⁰, R. Wallace¹³, J. Walsh²⁴, J. Wang⁶¹, D.R. Ward⁴⁹, H.M. Wark⁵⁴, N.K. Watson⁴⁷, D. Websdale⁵⁵, A. Weiden⁴², M. Whitehead⁴⁰, J. Wicht⁵⁰, G. Wilkinson^{57,40}, M. Wilkinson⁶¹, M. Williams⁴⁰, M.P. Williams⁴⁷, M. Williams⁵⁸, T. Williams⁴⁷, F.F. Wilson⁵¹, J. Wimberley⁶⁰, J. Wishahi¹⁰, W. Wislicki²⁹, M. Witek²⁷, G. Wormser⁷, S.A. Wotton⁴⁹, K. Wraight⁵³, K. Wyllie⁴⁰, Y. Xie⁶⁴, Z. Xing⁶¹, Z. Xu⁴¹, Z. Yang³, H. Yin⁶⁴, J. Yu⁶⁴, X. Yuan^{36,w}, O. Yushchenko³⁷, K.A. Zarebski⁴⁷, M. Zavertyaev^{11,c}, L. Zhang³, Y. Zhang⁷, Y. Zhang⁶³, A. Zhelezov¹², Y. Zheng⁶³, A. Zhokhov³², X. Zhu³, V. Zhukov⁹, S. Zucchelli¹⁵.

- ¹Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
- ² Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- ³Center for High Energy Physics, Tsinghua University, Beijing, China
- ⁴LAPP, Université Savoie Mont-Blanc, CNRS/IN2P3, Annecy-Le-Vieux, France
- ⁵Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
- ⁶CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
- ⁷LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France

⁹I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany

¹¹Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany

- ¹⁴Sezione INFN di Bari, Bari, Italy
- ¹⁵Sezione INFN di Bologna, Bologna, Italy
- ¹⁶Sezione INFN di Cagliari, Cagliari, Italy
- ¹⁷Sezione INFN di Ferrara, Ferrara, Italy
- ¹⁸Sezione INFN di Firenze, Firenze, Italy

²⁰Sezione INFN di Genova, Genova, Italy

⁸LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France

¹⁰ Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany

¹²Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

¹³School of Physics, University College Dublin, Dublin, Ireland

¹⁹Laboratori Nazionali dell'INFN di Frascati, Frascati, Italy

²¹Sezione INFN di Milano Bicocca, Milano, Italy

²²Sezione INFN di Milano, Milano, Italy

²³Sezione INFN di Padova, Padova, Italy

²⁴Sezione INFN di Pisa, Pisa, Italy

²⁵Sezione INFN di Roma Tor Vergata, Roma, Italy

²⁶Sezione INFN di Roma La Sapienza, Roma, Italy

²⁷Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland

²⁸AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland

²⁹National Center for Nuclear Research (NCBJ), Warsaw, Poland

³⁰Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania

³¹Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia

³²Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia

³³Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia

³⁴Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia

³⁵ Yandex School of Data Analysis, Moscow, Russia

³⁶Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia

³⁷Institute for High Energy Physics (IHEP), Protvino, Russia

³⁸ICCUB, Universitat de Barcelona, Barcelona, Spain

³⁹ Universidad de Santiago de Compostela, Santiago de Compostela, Spain

⁴⁰European Organization for Nuclear Research (CERN), Geneva, Switzerland

⁴¹Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

⁴² Physik-Institut, Universität Zürich, Zürich, Switzerland

⁴³Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands

⁴⁴Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands

⁴⁵NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine

⁴⁶Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine

⁴⁷ University of Birmingham, Birmingham, United Kingdom

⁴⁸H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom

⁴⁹ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

⁵⁰Department of Physics, University of Warwick, Coventry, United Kingdom

⁵¹STFC Rutherford Appleton Laboratory, Didcot, United Kingdom

⁵²School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

⁵³School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

⁵⁴Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

⁵⁵Imperial College London, London, United Kingdom

⁵⁶School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

⁵⁷Department of Physics, University of Oxford, Oxford, United Kingdom

⁵⁸Massachusetts Institute of Technology, Cambridge, MA, United States

⁵⁹ University of Cincinnati, Cincinnati, OH, United States

⁶⁰ University of Maryland, College Park, MD, United States

⁶¹Syracuse University, Syracuse, NY, United States

⁶²Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to ² ⁶³University of Chinese Academy of Sciences, Beijing, China, associated to ³

Oniversity of Chinese Academy of Sciences, Definity, China, associated to

⁶⁴Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to ³

⁶⁵Departamento de Fisica , Universidad Nacional de Colombia, Bogota, Colombia, associated to ⁸

⁶⁶Institut für Physik, Universität Rostock, Rostock, Germany, associated to ¹²

⁶⁷National Research Centre Kurchatov Institute, Moscow, Russia, associated to ³²

⁶⁸Instituto de Fisica Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain, associated to ³⁸

⁶⁹ Van Swinderen Institute, University of Groningen, Groningen, The Netherlands, associated to ⁴³

^a Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil

^bLaboratoire Leprince-Ringuet, Palaiseau, France

^cP.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia

^d Università di Bari, Bari, Italy

^e Università di Bologna, Bologna, Italy

^f Università di Cagliari, Cagliari, Italy

^g Università di Ferrara, Ferrara, Italy

^h Università di Genova, Genova, Italy

ⁱ Università di Milano Bicocca, Milano, Italy

^j Università di Roma Tor Vergata, Roma, Italy

^k Università di Roma La Sapienza, Roma, Italy

¹AGH - University of Science and Technology, Faculty of Computer Science, Electronics and

Telecommunications, Kraków, Poland

^mLIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain

ⁿHanoi University of Science, Hanoi, Viet Nam

^o Università di Padova, Padova, Italy

^pUniversità di Pisa, Pisa, Italy

^qUniversità degli Studi di Milano, Milano, Italy

^r Università di Urbino, Urbino, Italy

^s Università della Basilicata, Potenza, Italy

^tScuola Normale Superiore, Pisa, Italy

^u Università di Modena e Reggio Emilia, Modena, Italy

^vIligan Institute of Technology (IIT), Iligan, Philippines

^wNovosibirsk State University, Novosibirsk, Russia

 $^{\dagger}Deceased$