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Using a simple wake function, it is shown that the equilibrium bunch length in electron storage rings
with localized wake can have a cusp-catastrophe behavior. Contrary to the results of the conventional
theory for a distributed wake force, the system becomes bistable (period 1 and period 2) and exhibits
hysteresis in some region of the parameter space. These features are predicted by a Gaussian approxi-

mation and confirmed by multiparticle tracking.

PACS numbers: 29.20.Dh, 41.80.Ee

The electromagnetic interaction between particles and
environment (i.e., vacuum chamber with its discontinui-
ties) gives rise to a wake force that affects the particle
distribution in a bunch.! Many kinds of wake sources
are distributed in the ring, but each source should be re-
garded as a localized object. Usually, however, one aver-
ages the wake force over one turn and assumes that this
averaged wake is distributed uniformly. The validity of
this simplification is not clear: In the case of the exter-
nal nonlinear field, the time averaging of the force makes
the dynamics completely different. In the uniformly dis-
tributed case, the equilibrium bunch distribution at low
current is a solution of the potential-well-distortion
(PWD) equation.? A linear stability analysis around
this static solution enables us to predict the threshold for
turbulent bunch lengthening, provided we use an accu-
rate PWD solution.? As for the localized case, however,
this method tells us very little. The aim of this paper* is
to investigate the case of a localized wake by considering
a simple case.

Recently, one of the authors proposed a model to
study the localized effect analytically.> He obtained an
explicit expression for the equilibrium bunch distribu-
tion, but surveyed its stability only numerically and over
a limited range of parameters. Here, we use the same
model but, on the basis of a linear stability analysis, we
extend the survey to a wider range of parameters. We
will show that the model implies a new type of bunch
lengthening, which was overlooked in Ref. 5. The equi-
librium bunch length, or, more exactly, the synchrotron
envelope matrix in the asymptotic state, behaves in the
manner of the cusp catastrophe.® Depending on the pa-
rameters (strength of the wake force, synchrotron tune,
and damping time), the equilibrium envelope is either in
period-1 or in period-2 states: In some particular cases,
it can jump from one state to the other, showing hys-
teresis. Such a behavior, implied by the model, will be
confirmed with a more accurate simulation.

As in Ref. 5, we consider the case where there is only

one localized wake source in the ring. Introducing the
normalized synchrotron variables
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the motion of a particle in one turn is written as
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Here of is the nominal energy spread, U is the rotation
matrix for the synchrotron oscillation,
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v being the synchrotron tune, A=exp(—2/T), T the
synchrotron damping time measured in units of the revo-
lution period, and 7 a Gaussian random variable with
(/)=0 and (#? =1. Without the wake force ¢(x,), Eq.
(2) represents the one-turn effect of the synchrotron
motion perturbed by radiation.” As long as the accelera-
tion is considered in a linear approximation, a more ac-
curate treatment would make little difference in what
follows. The wake force ¢(x) is given by

¢(x1)=FoJ;wp(x1—u)du , 3)

where p(x) is the charge density normalized to unity.
Here we have employed a constant wake function as in
Ref. 5 and Fy is a dimensionless parameter defined by
Fo=eQWq/og, where e denotes the electron charge, Q
the total charge in the bunch, and W, the wake strength.
As an order-of-magnitude estimate, we can evaluate Fy
by identifying W, with twice the value of the loss param-
eter. For example, for the CERN LEP collider?® at injec-
tion (20 GeV), a bunch current around 0.1 mA corre-
sponds to Fo~1.
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The above stochastic mapping is equivalent to an
infinite hierarchy of deterministic mappings for the sta-
tistical quantities

f,' =(X,‘> N
4)

O'ij=<(x,' —)—C_,')(Xj—)-c_j)) )

and so on, which are the moments of the phase-space dis-
tribution w(x,x;). In principle, this system should in-
clude an infinite number of equations for all higher-order
moments. We now introduce the Gaussian approxima-
tion:> The distribution function in phase space is always
approximated by a Gaussian even in the presence of the
wake force; i.e., we consider only second-order moments.
(We will not consider X; hereafter, since it does not
affect the higher-order moments.) The original mapping
can be conveniently split into three parts: Radiation,

o1 =011,
Giz'—'AO']z, (5)
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wake force,
ol1=o0o1,
, Foolf?
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and synchrotron oscillation,
2
0',~'j =hkz_]U,'h0'hkUjk . )

We call the whole mapping for o;; the moment mapping
and represent it as

¢'=S(o),

where o =(011,012,622)".
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FIG. 1. The second region, where the period-1 fixed point is
unstable, for v=0.2. For smaller values of v, the region is
smaller. Note that the “first” region is not defined yet.
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The period-1 fixed point of the moment mapping,
o =S(ao/”),

can be obtained explicitly.> The stability of this fixed
point can be investigated by linearizing the mapping
around oy” and studying the eigenvalues of the linearized
mapping

(85/86) .=

By this eigenvalue analysis, we find that o|” is unstable
in some region of the parameter space, referred to as
“the second region.” This region is shown in Fig. 1 for
v=0.2.

What happens in the second region? A numerical
tracking of the moment mapping shows that period-2
solutions o,° and o}° develop, which are solutions of

6. =S(05%,) .

Period-2 solutions o, and o;° occur in alternating pairs.
When Fy is small enough, o° repeats itself every turn at
equilibrium. When F)y is increased and the parameters
enter the second region, of” becomes unstable while o,
become stable asymptotic states. Moreover, o, is
stable not only in the second region but also in some re-
gion outside it. That is, in some region, both the period-
1 and the period-2 fixed points are stable. Thus the pa-
rameter space is divided into three parts: the first re-
gion, where only the period-1 solution is stable; the
second region, where only the period-2 solution is stable;
and the third region, where both types of solutions are
stable. The situation is illustrated in Fig. 2, where the
three regions are shown with their numbers. In the third
region, the state is not a single-valued function of the pa-
rameters. The actual state depends on the initial condi-
tions.

Let us imagine a move along the line a-b-c-d in Fig. 2.
At a, the asymptotic state of the system has period 1. At
b, it shows period-doubling bifurcation and o, devel-

Continuous
A

Discontinuous

T

FIG. 2. An illustration of the three regions in parameter
space. The second region is identical with the area shown in
Fig. 1. The dashed line represents a path from a to d along
which the system can always be in the period-1 state.
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ops. This remains stable for larger values of Fg (b-c-d)
provided the change is adiabatic. From c to d, however,
o) becomes stable again. Both kinds of states are possi-
ble. If the change of parameters is too rapid, or if we ar-
rived at ¢ from a by a path outside the second region
(dashed line), the system chooses o there. When we go
down from d and the state is oy there, the state jumps
to o4 at c. The change of o] as a function of Fy (i.e.,
along the line a-b-c-d in Fig. 2) is shown in Fig. 3.
Points b and ¢ in Fig. 2 correspond to Fp~2 and ~6 in
Fig. 3, respectively.

When the parameters are changed slowly along a line
e-f-g-h-i in Fig. 2, the system shows hysteresis. Let us
start at e, where the state is uniquely period 1. If we
move from e to i, o;; remains period 1 until A, where it
jumps to period 2. If we start from i, the state is period
2 until f, where it jumps to period 1. The transitions are
discontinuous and show hysteresis. The state structure is
that of the cusp catastrophe.$

The above discussion was based on the Gaussian ap-
proximation. It is thus quite interesting to check wheth-
er this feature comes merely from a large simplification
or it also occurs in a more accurate treatment. To this
end, a multiparticle-tracking code was written, which
tracks many particles (typically 1000) according to the
map of Eq. (2). The calculation of the wake force ¢ ex-
perienced by a given particle is done by counting the
number of particles preceding it. The results of the mul-
tiparticle tracking are shown and compared with the
model prediction in Fig. 3. The agreement is quite satis-
factory. The cusp catastrophe structure was also ob-
served in the tracking.

The synchrotron phase-space distributions correspond-
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FIG. 3. The bunch length squared o1 as a function of Fo,
for v=0.2 and T =25. The dashed line denotes the unstable
period-1 solution. The results of multiparticle tracking are also
superimposed.

ing to period-1 and period-2 fixed points are shown in
Figs. 4(a) and 4(b), 4(c), respectively, for the same set
of parameters. In the tracking, it is a little difficult to
confirm that the system has reached equilibrium. In par-
ticular, for the period-1 state shown in Fig. 4(a) the
number of superparticles in the four islands seems to be-
come eventually equal. However, one needs infinitely
many turns to confirm this. It is also difficult to decide
the exact threshold for the discontinuous change. Near
threshold, the state easily becomes unstable as a conse-
quence of a tiny fluctuation, which depends on the num-
ber of superparticles. Within these limitations, it can be
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FIG. 4. Synchrotron phase-space distributions for (a) the
period-1 and (b),(c) the period-2 cases at a Poincaré surface of
section. In the period-2 case, the asymptotic state alternates
the distributions (b) and (c) every turn. The parameters are
v=0.2, T=25, and Fo=9.
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said that the qualitative and quantitative features of the
model were verified by multiparticle tracking.

Obviously, the present model is too simple and cannot
be used to predict the performance of a particle ring.
We have used the constant wake only because of its sim-
plicity. The mapping method itself seems to have
worked well. Despite the extreme simplification of the
Gaussian approximation, the model showed quite good
agreement with multiparticle-tracking results. It is,
however, doubtful that a Gaussian approximation applies
similarly well to more general wake functions. In order
to extend the mapping method, we plan to use a Strato-
novich expansion of the phase-space distribution,® which
allows the introduction of higher-order moments of the
particle distribution, although the manipulation of ana-
lytic expressions may become very cumbersome.

We have studied a localized wake. As discussed in
Ref. 5, it is straightforward to extend this case to more
general cases, even to uniformly distributed cases. The
opposite is not true. We do so by introducing a periodi-
city N, and letting it go to infinity. The eigenvalue
analysis tells us that the period-1 fixed point is always
stable in this limit. The limit

lim o1}

—» 0o
s

corresponds to the solution of the PWD equation:? It is
consistent with the known fact® that the solution of the
PWD equation is always stable in the case of a constant
wake function. The localized case is shown to be com-
pletely different: The dependence of the asymptotic state
on the parameters is much more complicated. It is more
dynamical and allows period-doubling bifurcation and
bistability. For more general wake functions, we may
expect more complicated dynamical features: successive
period-doubling bifurcations and chaos, for example.'®
Localization effects become more important when v is
larger, T is smaller, and the wake force is stronger:
These are the directions of the future high-luminosity
storage rings.
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