
C. Leggett 2016-10-12
1

AthenaMTAthenaMT: Upgrading the ATLAS
Software Framework for the Many-Core

World with Multi-Threading

John Baines, Tomasz Bold, Paolo Calafiura, Steven Farrell,
Charles Leggett, David Malon, Elmar Ritsch, Graeme Stewart,

Scott Snyder, Vakhtang Tsulaia, Benjamin Wynne, Peter Van
Gemmeren

for the ATLAS Collaboration

CHEP 2016

C. Leggett 2016-10-12
2

Future Computing Challenges

► Gaudi/Athena was developed in an era
of regularly increasing computing
performance

► This is no longer the case
• clock speed stalled a decade ago due to

thermal power density limitations

2000 2005 2010 2015

0

10

20

30

40

CPU Core and Hardware Thread Count

Threads

Cores

Date

1980 1985 1990 1995 2000 2005 2010 2015

0

0.01

0.1

1

10

100

1000

10000

Historical Memory Prices

Date

$
U

S
 p

e
r

M
B

yt
e

► ATLAS reconstruction uses
upwards of 3 GB of
memory, more with high
luminosity runs

► Memory prices have
plateaued

► Cost to equip all grid
compute nodes with full
memory requirements is
more than US$ 6 Million

1970 1980 1990 2000 2010

0.01

0.05

0.5

5

50

500

5000

Processor Scaling Trends

Clock Speed (MHz)

Transistors (millions)

Power (W)

SpecFp2006

Date

Gaudi
original design and

development

Moore's Law

reality

► Manufacturers have
tried to compensate by
increasing core counts,
and features like wide
vector registers

C. Leggett 2016-10-12
3

Migration of ATLAS Software to AthenaMT

► Aggressive schedule
• many migrations steps are not parallelizable

► On track for most milestones
• but not all!

Date Framework Algorithms

2015 Event Store access via Data Handles; Event View design
completed; Updated Configuration design; Re-integration
of Hive features into Gaudi trunk

Few Algorithms as concurrent prototypes,
concentrate on high inherent parallelism; general
clean-up of code

2016 Q2 Event Views implemented; IO Layer redesigned; Core
Gaudi service migration starts

Wider set, prototype CPU expensive Algs with
internal parallelism

2016 Q4 Parallel Algorithm support; Detector/Condition Store re-
implementation; Schedulable Incidents; Main Athena
development branch moved to Gaudi trunk

First trigger chains running with Event Views;
limited reconstruction

2017 All Athena and Gaudi Services made thread safe; Support
for re-entrant Algorithms

Serious migration with select groups; Core of
useful Algorithms to allow for framework
optimization

2018 Framework optimization, and tuning for different hardware Bulk of Algorithm migration

2019 Integration and Readiness for Run 3

► Will focus on what we've
accomplished in 2016

C. Leggett 2016-10-12
4

Enabling Concurrency for Core Services
► Majority of hard work in migrating ATLAS code to AthenaMT is in making shared

Services thread safe or able to handle multiple concurrent events.

► Some Services can be made concurrent / thread safe with simple mutexes or thread
safe data structures

► Some need more modifications to handle state information of multiple concurrent
events
• MagFieldSvc: carry event specific cache along with each request
• THistSvc: users can choose whether to share or clone histograms

• lock access on shared histograms via locking handles

► Some need complete redesign
• Conditions / Interval of Validity Service / Detector Alignment
• IncidentSvc

C. Leggett 2016-10-12
5

Concurrent Processing of Asynchronous Data
► Conditions

• eg high voltages, calibrations, etc

► Detector Geometry and Alignments
• eg position changes

► Requirement: Minimize changes to client code
• there's lots and lots of it!
• avoid forcing Users to implement fully thread-safe code by handling most thread-safety

issues at the framework / Services level

► Requirement: All access to Event data is via smart DataHandles, which also declare
data dependency relationship to the framework
• we can use this by forcing migration to ConditionHandles as well

C. Leggett 2016-10-12
6

Serial Processing with Conditions

Alg_A ConditionStore

c1

c2

c3Alg_B
c1

Alg_C
c2

IOVSvc

c1

c2

CF1

CF2

c1

BeginEvent

Event 1

► All framework elements process
data from the same IOV

► Algorithms are blind to the IOV,
retrieve data from
ConditionStore

► At the start of every Event,
IOVSvc checks IOVs, and
triggers any necessary updates
• handled by the Callback Functions
• Callback Functions are shared

instances

► Only one copy of any
Conditions object is maintained
in the Store

Serial

C. Leggett 2016-10-12
7

Concurrent Processing with Conditions

Alg_A

Alg_B
c1

Alg_C
c2

Event 1

IOVSvc

c1

c2

CF1

CF2

c1

BeginEvent

ConditionStore

c1

c2

c3

Alg_A

Alg_B
c1

Alg_C
c2

Event 2

c1

BeginEvent

IOVSvc, Callback Functions
and ConditionStore are

shared between all Events

Concurrent

C. Leggett 2016-10-12
8

Concurrent Processing with Conditions

Alg_A

Alg_B
c1

Alg_C
c2

Event 1

IOVSvc

c1

c2

CF1

CF2

c1

BeginEvent

ConditionStore

c1

c2

c3

Alg_A

Alg_B
c1

Alg_C
c2

Event 2

c1

BeginEvent

IOVSvc, and Callback
Functions are shared

between all Events

ISSUESISSUES

► The current callback functions
are NOTNOT thread-safe

► Even if they were made thread-
safe, could NOTNOT run with
multiple concurrent Events
from different IOVs due to the
single ConditionStore

► IOV infrastructure needs to be
significantlysignificantly modified for MT

ISSUESISSUES

► The current callback functions
are NOTNOT thread-safe

► Even if they were made thread-
safe, could NOTNOT run with
multiple concurrent Events
from different IOVs due to the
single ConditionStore

► IOV infrastructure needs to be
significantlysignificantly modified for MT

Concurrent

C. Leggett 2016-10-12
9

Concurrent: Single Multi-Cache Condition Store

Event 1 Event 2 Event 3

Event 5 Event 6 Event 7

➔ One ConditionStore,
shared by all Events.
➔ no wasted memory
➔ no duplicate calls
➔ Store elements are

ConditionContainers,
with one entry per IOV

➔ Data access via
ConditionHandles
that point to
appropriate entry

➔ Callback Functions
become Algorithms,
scheduled by framework

C. Leggett 2016-10-12
10

Geometry Alignments in AthenaMT

DD CC

PVPV

PVPVTFTF ATFATF FPVFPV

TFTF PVPV

Detector
Element

Client

Serial

TFTF

ATFATF

Physical
Volume

Full Physical
Volume

Transform

Alignable
Transform

DD Delta TransformCC Cached
Position

PVPV

FPVFPV

► Detector Element position cached in Full Physical Volume
• built from a Physical Volume description, a Transform, and a time dependent

Alignable Transform that reads a Delta from a database

► Not functional with concurrent events that have different Deltas and associated caches

C. Leggett 2016-10-12
11

Geometry Alignments in AthenaMT

► Instead of associating the Alignment deltas and cached positions of the Detector
objects with the fixed objects, move them to the ConditionStore, and access via
ConditionHandles

► Clients of DetectorElements are completely unaware of migration

ConditionStore

DD

CC

PVPV

PVPVTFTF ATFATF FPVFPV

TFTF PVPV

Detector
Element

Client

DD

CC

DD

CC

DD

CC Alignment
Object

GeoAlignAlg

Concurrent

TFTF

ATFATF

Physical
Volume

Full Physical
Volume

Transform

Alignable
Transform

DD Delta TransformCC Cached
Position

PVPV

FPVFPV

C. Leggett 2016-10-12
12

IncidentSvc in AthenaMT
► IncidentSvc: manages asynchronous callbacks for clients using an Observer pattern
► Study: design more flexible than actual usage

• mostly fired outside of the Algorithm processing loop
► Solution: limit scope of IncidentSvc: Incidents can be re-classified as discrete state

changes
• Incidents become schedulable, managed by framework
• Incident handlers / observers become discrete Algorithms, that interact with Services which are

aware of the EventContext

EventLoopMgr

IP_Alg

Alg_1

Alg_3 Alg_4Alg_2

Alg_5

IncidentSvc

Svc_ASvc_A Svc_B

schedules incidents

OpenFile, etc

gets incidents

calls handlers

query Svc w/ EventContext

schedules

Concurrent

OpenFile
observers

Alg_1

Alg_2

Alg_3

Alg_4

IncidentSvc

Alg_1

Alg_5

Svc_A

Alg_5

Svc_B

fire OpenFile

Serial

C. Leggett 2016-10-12
13

Event Views and DataHandles
► For performance reasons, the High Level Trigger operates on geometrical Regions of

Interest (ROI)
► Since all Algorithms access Event data via smart DataHandles, they can be run

unmodified in a ROI simply by having the framework modify the DataHandle itself
► Implemented an "EventView" class that can be used interchangeably with the whole

event store. Each View is populated with data corresponding to a single ROI
• Each EventView has the same interface as the whole event store
• Contain DataObjects that describe the corresponding ROI
• Allow for potential alternative use-cases

ROI infoROI info

DATADATA

DATADATA

DATADATA

View 1 View 2

E
ve

nt
 S

to
re

see presentation by
Ben Wynne on Tuesday
at 2PM for further details

C. Leggett 2016-10-12
14

Re-Entrant Algorithms
► Cloning of Algorithms in GaudiHive allows us to avoid most thread safety issues

• clones can run concurrently with different Event Contexts without interference
• have to avoid "thread hostile" behaviour

• global statics
• back channel communications

• some Algorithms can't be cloned

► Downside is increased memory use
• can limit number of clones, at the expense of limiting possible concurrency

► Added support for re-entrant Algorithms
• only one instance
• can be executed simultaneously in multiple threads in different Events
• MUST be thread safe

• enforced with new base class and Algorithm::execute_r() const signature

• envision only limited usage for special purpose tasks, written by experts

C. Leggett 2016-10-12
15

Conclusions
► ATLAS has begun the migration of framework elements that require the most

significant design changes beyond mere thread safety
• sometimes by re-evaluating Service functionality and limiting design to actual

use cases

► We have made design choices that minimized alterations to client code
• leverage existing features of AthenaMT, eg DataHandles and the Scheduler

► Changes to client code that use these Services are also underway
• relatively straight forward

► Anticipate on-schedule finalization of design, and essential implementation of
core Services by end of 2016, with full support of concurrency by end of 2017

► Broad migration of Algorithm code to use these features will take place in 2017

C. Leggett 2016-10-12
16

Extras

C. Leggett 2016-10-12
17

AthenaMT / Gaudi Hive
► AthenaMT: based on Gaudi Hive: multi-threaded, concurrent extension to Gaudi
► Data Flow driven

• Algorithms declare their data dependencies
• Scheduler automatically executes Algorithms as data becomes available.

• optimal traversal of graph possible if avg. Algorithm runtimes known

► Multi-threaded
• Algorithms process events in their own thread, from a shared Thread Pool.

► Pipelining: multiple algorithms and events can be executed
concurrently
• some Algorithms are long, and produce data that many others need (eg track

fitting). instead of waiting for it to finish, and idling processor, start a new event.

► Algorithm Cloning
• multiple instances of the same Algorithm may exist, and be executed

concurrently, each with different Event Context.
• legacy : one instance, non-concurrent
• cloneable : one or more instances, in its own thread
• re-entrant : once instance, executed concurrently by multiple threads

► Thread Safety
• Only shared Services and re-entrant Algorithms need to be thread safe
• Algorithms must avoid thread-hostile behaviour

• global statics, etc

A1

A3

A2

A4

A5

A1

A3

A2

A4

A5

A1

A3

A2

A4

A5

event 1

event 2

event 3

time

C. Leggett 2016-10-12
18

Concurrent: Scheduling Barrier

Event 1 Event 2 Event 3

Event 4

Event 5 Event 6

one ConditionStore
shared by all Events

Scheduler can only
concurrently process
events which have allall
Conditions in the same

IOV

NO changes
required in User code
and minimal changes

in IOV code

C. Leggett 2016-10-12
19

Concurrent: Scheduling Barrier

Event 1 Event 2 Event 3

Event 4

Event 5 Event 6

one ConditionStore
shared by all Events

Scheduler can only
concurrently process
events which have allall
Conditions in the same

IOV

ISSUESISSUES

► loss of Concurrency when Scheduler
is drained at a barrier
• barrier is at intersectionintersection of all IOVs
• significant impact on Event

throughput if IOVs change often

► Events must be processed in order,
or reshuffled by the Scheduler to
avoid bouncing back and forth

C. Leggett 2016-10-12
20

Alg_A
 In:
 Out: a, b

ConditionHandles

a

b

x

CondDbSvc

w

Alg_B
 In: a
 Out:

Alg_C
 In: b, x
 Out:

CondAlg_X
 In:
 Out: x

ConditionStore

x1 x2 x3

y1 y2

z1 z2 z3

CondSvc
regHandle(x)

EventStoresEventStoresEventStores

a

b

c

