SN &

Multi-threaded ATLAS Simulation on
Intel Knights Landing Processors

Steve Farrell, Paolo Calafiura, Charles Leggett, Vakho Tsulaia, Andrea Dotti,
on behalf of the ATLAS collaboration

CHEP 2016
San Francisco

N

f(reereer ‘m
crnesT OrLaNDS Lawnence Sep 30, 2016

Overview

* Many-integrated-core (MIC) architectures
* Intel Xeon Phi product family
* Knights Landing processors
* MIC-equipped supercomputers
* Atlas multi-threaded simulation
* Design and parallelism
* Performance measurements
* Throughput and memory scaling

* CPU profiling studies

Setting the stage

* The multi-core era is not news anymore, but we're seeing some significant
shifts in processor trends as time evolves

* Increasing number of cores with transistor scaling

* Less memory per core (in practice) due to RAM costs

» Slower, less-sophisticated cores due to power concerns

* Increasing capabilities (and importance) of vector processing
* Nvidia general-purpose GPUs are an “extreme” example

* Highly parallel, simple cores

* Requires highly adapted code and use of non-trivial libraries/APls (e.g.
CUDA)

* Intel’'s answer: a highly parallel many-core Linux device

* “A supercomputer on a chip” with a familiar programming model

Intel Many-Integrated-Core architecture

* A “supercomputer on a chip”

 Lots of threads, wide vector registers, with
low power footprint

 Particularly suited to highly-parallel, CPU-
bound applications

* The Xeon Phi product line:

Knights Corner (KNC) Knights Landing (KNL) Knights Hill (KNH)
previous generation current generation maybe 2017
57-61 Pentium cores (~1GHz) 72 Airmont cores (3x faster) 60-72 Silvermont cores
6-16 GB on-chip RAM 8-16 GB MCDRAM ?77?

coprocessor only up to 384 GB RAM

host or coprocessor
* Supercomputers:

« Tianhe-2 @ NSCC-GZ * Cori @ NERSC * Aurora @ ANL
« Stampede @ TACC « Theta @ ANL

Multi-threaded ATLAS simulation

G4Atlas G4AtlasMT

P N/

Geant4 Geant4MT AthenaMT

* The time is ripe for multi-threading
* Multi-threaded version of Gaudi being integrated into AthenaMT framework
* Multi-threaded version of Geant4 available and shown to perform well
* Overhaul of ATLAS simulation infrastructure with thread-safety in mind
« See Andrea Di Simone’s presentation this week
« Some challenges
« Marriage of dependencies with different models of concurrency
« Gaudi’s task-parallelism with Intel’'s Threading Building Block
« Geant4’s master-worker event-parallelism with pthreads and thread-local-storage
 Mechanisms needed to setup and manage thread-local Geant4 workspace
* Alot of legacy simulation and core code which needs thread-safety updates/rewrites

Thread-safe design

 Geant4 components vs. Athena components
* Thread-shared Athena components create and manage thread-local Geant4 components

SensitiveDetectorSvce PixelSDTool PixelSD

SD tools _— Thread-local SDs _— Hit coﬁection

 Thread setup/teardown mechanism

» ThreadPoolSvc supports ThreadlnitTools invoked simultaneously on all worker threads before and
after the event loop

» Used to initialize the Geant4 thread-local workspaces (geo, physics, etc.)
e Execution and scheduling
« Event-processing algorithms are cloned to execute concurrently on each worker thread
» G4AtlasAlg handles bulk of processing by passing one event to Geant4
« BeamEffectsAlg applies some corrections/smearing to the input generated event
* Two I/O algorithms are serialized due to thread-unsafe POOL layer: SGInputLoader, StreamHITS

Thread 1 SGinputlLoader _ _ StreamHITS SGiInputLoader

Thread 2 \ SGinputLoader --<:

StreamHITS

Status of the migration

e Multi-threaded full Geant4 simulation nearly complete
* Geometry, physics, most sensitive detectors were straight-forward
* including custom endcap calorimeter geometry

» User actions working, though design somewhat complicated by our requirements and could
possibly be simplified

* a lot of our customized event handling happens here
 Preliminary version of truth code works
 though we're in the progress of updating the implementation
* Magnetic field is working
* we use a thread-shared field service with thread-local caching
 Few missing features still in progress
* LAr sensitive detectors are highly complicated and not yet thread-safe
« Some of the filtering mechanisms not yet working in MT
* Frozen calorimeter showers implemented and in testing
* Additional things that will require more work
* Fast-simulations like FastCaloSim (AF2) and FATRAS
» Multi-threading in the Integrated Simulation Framework (ISF)
 Full validation of the multi-threaded simulation

Scaling on a Xeon - ttbar sample

Events /s

0.07

0.06

0.05

0.04

0.03

002

001

0.00¢%
0

Event Throughput

Data
Ideal scaling

|
/¢
|
|
|
I
I
I
I
|
|

16 physical cores

5 10

1
15 20 25 30
Number of threads

35

Memory [GB])

3.2

30

N
o]

N
=]

N
&

N
N

N
o

—
e o)

[
(=g}

14

Maximum memory consumption

p
L
L)

Linear approximation:
1.63 GB + 48.67 MB/thread

0

5

10 15 20 25 30
Number of threads

* Event throughput scales very well up to the physical number of cores, and

plateaus quite abruptly in hyper-threading regime

35

 Memory scales nicely, showing excellent savings from sharing across threads

» Unfortunately, this sample is difficult to test with on a KNL due to long event
processing times, so we switch to a faster single-muon simulated sample

Scaling on a Xeon - single-muon sample

Number of threads

Event Throughput Maximum memory consumption
25 28
L
e Data
- i . -
Ideal scaling K . . > 6 .
E
20 o ! ;
/ - .
, 2.4 .
.-
| ”

15 /" |) ..
n | o 22 /.’
— ‘ — ”
2 y P Y
c ,. ! o ’
> . : E 20 ®
“ 10 7 : g - .

,/. | .
. p
. ' 1.8 [
// I
5 P . o
‘, 1.6 .
; | 1.46 GB + 36.59 MB/thread
0 L 1.4
5 10 15 20 25 30 35 0 S 10 15 20 25 30 35

Number of threads

* As with the ttbar sample, the scaling with the single-muon sample is excellent

up to the physical number of cores
The memory scaling is also good again

The characteristics of these results reasonably agree with the ttbar sample,
which gives some confidence that we can continue making measurements
with the single-muon sample

Scaling on a Xeon Phi - single-muon sample

5 Event Throughput - Maximum memory consumption
e Data
- - ldeal scaling LA . *
r . o** 10 .'.
20 : . o s
o
L J
8 Fad

15) . '.
-)
:;_.3 e 6 '..'/..'..
9 £
> ‘.
w T)

10 .f s .’c

“ -
d
A
2
1.44 GB + 36.95 MB/thread
0 0

0 S0 100 150 200 0 S0 100 150 200 250 300
Number of threads Number of threads

» Throughput scaling is nearly perfect up to the physical number of cores, with a
lot of improvement gained in the hyper-threading regime

* Throughput maxes out around 170 threads, but starts to turn down above that
* Memory continues to scale very well over the entire thread scaling range

« Maximum throughput achieved on KNL is fairly consistent with maximum
throughput on the 16-core Xeon

10

Xeon vs. Xeon Phi performance

Threads Xeon throughput Xeon Phi throughput | Throughput ratio
[events/s] [events/s] (KNL slowdown)
1 1.38 0.24 5.78
4 4.88 0.91 5.39
6 8.24 1.47 5.62
8 10.54 1.78 5.91
12 15.17 2.76 5.50
16 20.50 3.68 5.57
24 22.51 5.16 4.36
32 24.24 7.24 3.35

* Per-core performance is about 5.5 times worse on KNL compared to lvy-

bridge Xeon.

11

Profiling the application

* Using VTune, we can start to understand the performance differences
between the Xeon and Xeon Phi architectures

* These results measured with a Zuy sample and a single worker thread

Architecture CPIl rate Front-end ICache Bad Back-end
bound misses speculation bound

KNL 3.0 60.2% 0.96 2.4% 18.6%

Haswell 0.9 31.5% 0.086 11.7% 27.6%

* On KNL, the application seems to be held up in the instruction front-end, with
a high clocks-per-instruction rate of 3.0!

* High rate of instruction cache misses
« Seems to be due to relatively poor handling of large ATLAS+G4 code size

12

Application hotspots

* Hotspots on a Haswell machine (Zup sample, single worker thread):

Clockticks Instructions Retired (PI Rate Front-End Bound(¥) Bad Speculation(¥) Back-End Bound(¥)

Function

G4PhysicsVector: :Value 132,160,198,240 107,000, 160,500 1.235 0.164 9.0% 0.557
~.Sin_avx 129,540,194 ,310 71,740,107,610 1.806 0.344 26.9% 0.197
sincos 118,360,177,540 44 ,420,066,630 2.665 0.414 27.6% 0.170
__Cos_avx 117,680,176,520 25,380,038,070 4.637 0.459 24.2% 0.203
LArWheelCalculator_Impl::DistanceCalculatorSaggingOff: : 110,760,166,140 196,640,294 ,960 0.563 9.051 8.8% @.355
_.leee754_log_avx 75,140,112,710 36,560,054, 840 2.055 0.338 22.5% 0.283
__leee754_atan2_avx 72,300,108,450 56,620,084 ,930 1.277 0.373 21.3% 0.185
G4Navigator: :LocateGlobalPointAndSetup 67,680,101,520 49,380,074,070 1.371 9.313 6.2% 0.471
LArWheelCalculator: :parameterized_sin 67,460,101,190 92,560,138,840 0.729 0.076 24.9% 0.284
MagField: :AtlasFieldSvc: :getField 58,240,087 ,360 57,800,086,700 1.008 0.144 19.5% 0.472

* Hotspots on a KNL machine (same config):

Function Clockticks Instructions Retired (PI Rate Front-End Bound(®) Bad Speculation(¥) Back-End Bound(%)
G4PhysicsVector: :Value 333,820,500,730 82,760,124,140 4.034 0.567 2.8% 0.270
LArWheelCalculator: :parameterized_sin 257,140,385,710 189,920,284 ,880 1.354 0.456 0.3% 0.125
LArWheelCalculator_Impl::DistanceCalculatorSagging0ff:: 235,160,352,740 127,340,191,010 1.847 0.161 4.1% 0.443
G4Navigator: :LocateGlobalPointAndSetup 194,320,291,480 42,160,063,240 4.609 0.620 1.2% 0.246
_.tls_get_addr 193,620,290,430 49,360,074,040 3.923 0.638 1.4% 0.207
G4SteppingManager: :DefinePhysicalSteplLength 189,300,283,950 64,240,096,360 2.947 0.658 2.2% 0.150
__sin_avx 174,540,261,810 58,140,087,210 3.002 0.441 1.3% 0.354
G4Navigator: : ComputeStep 166,540,249,810 41,240,061,860 4.038 0.767 0.3% 0.093
MagField: :AtlasFieldSvc::getField 158,660,237,990 55,860,083, 790 2.840 0.451 1.9% 0.333
BFieldCache::getB 156,520,234,780 106,760,160,140 1.466 9.159 0.7% 0.501

N I ——————————
* The lists are fairly similar

* The KNL slowdown doesn’'t seem to be due to any particular piece of code, but
rather a global slowdown of the entire codebase

Conclusion

 ATLAS can now run a nearly complete multi-threaded simulation setup in
AthenaMT

* Throughput and memory scaling performance look quite good so far

* Intel Xeon Phi architectures appear to be a reasonable target resource for
such an application

* The x86 compatibility promise from Intel has been fulfilled
* Knights Landing machines give throughput comparable to a 16-core lvy Bridge
* We seem to be limited by CPU front-end, probably due to poor code layout

* There’s still some room for improvement to improve scaling for certain
configurations beyond 180 threads on the KNL

* |t's clear that we’ll be able to utilize NERSC’s Cori Phase |l for ATLAS
simulation

* but to use it effectively we’ve still got some work to do

14

Summary slide

15

ATLAS MT simulation on KNL

* ATLAS simulation is being migrated to multi-threading

* Event-level parallelism based on Geant4 and AthenaMT
* Nearly complete full simulation configuration (G4AtlasMT) now ready

* Intel’'s new Knights Landing generation of Intel Xeon Phi processors is a good
target for this type of application

* Highly parallel architecture for CPU-heavy code

* G4AtlasMT shows good scaling performance on both Xeon and Xeon Phi
architectures

Event Throughput - Event Throughput

L] L]
e Data . e Data

. . L]

- - - Ideal scaling aoe e * - - - ldeal scaling LA
/ - o®e

L]

Xeon v g Xeon Phi

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

16

