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Overview

• Many-integrated-core (MIC) architectures 
• Intel Xeon Phi product family 
• Knights Landing processors 
• MIC-equipped supercomputers 

• Atlas multi-threaded simulation 
• Design and parallelism 

• Performance measurements 
• Throughput and memory scaling 
• CPU profiling studies
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Setting the stage

• The multi-core era is not news anymore, but we’re seeing some significant 
shifts in processor trends as time evolves 
• Increasing number of cores with transistor scaling 
• Less memory per core (in practice) due to RAM costs 
• Slower, less-sophisticated cores due to power concerns 
• Increasing capabilities (and importance) of vector processing 

• Nvidia general-purpose GPUs are an “extreme” example 
• Highly parallel, simple cores 
• Requires highly adapted code and use of non-trivial libraries/APIs (e.g. 

CUDA) 
• Intel’s answer: a highly parallel many-core Linux device 

• “A supercomputer on a chip” with a familiar programming model
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• A “supercomputer on a chip” 
• Lots of threads, wide vector registers, with 

low power footprint 
• Particularly suited to highly-parallel, CPU-

bound applications 

• The Xeon Phi product line: 

• Supercomputers:

Intel Many-Integrated-Core architecture
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Knights Corner (KNC) 
previous generation 

57-61 Pentium cores (~1GHz) 
6-16 GB on-chip RAM 

coprocessor only

Knights Landing (KNL) 
current generation 

72 Airmont cores (3x faster) 
8-16 GB MCDRAM 
up to 384 GB RAM 
host or coprocessor

Knights Hill (KNH) 
maybe 2017 

60-72 Silvermont cores 
???

• Tianhe-2 @ NSCC-GZ 
• Stampede @ TACC

• Cori @ NERSC 
• Theta @ ANL

• Aurora @ ANL



Multi-threaded ATLAS simulation

• The time is ripe for multi-threading 
• Multi-threaded version of Gaudi being integrated into AthenaMT framework 
• Multi-threaded version of Geant4 available and shown to perform well 
• Overhaul of ATLAS simulation infrastructure with thread-safety in mind 

• See Andrea Di Simone’s presentation this week 
• Some challenges 

• Marriage of dependencies with different models of concurrency 
• Gaudi’s task-parallelism with Intel’s Threading Building Block 
• Geant4’s master-worker event-parallelism with pthreads and thread-local-storage 

• Mechanisms needed to setup and manage thread-local Geant4 workspace 
• A lot of legacy simulation and core code which needs thread-safety updates/rewrites
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Thread-safe design
• Geant4 components vs. Athena components 

• Thread-shared Athena components create and manage thread-local Geant4 components 

• Thread setup/teardown mechanism 
• ThreadPoolSvc supports ThreadInitTools invoked simultaneously on all worker threads before and 

after the event loop 
• Used to initialize the Geant4 thread-local workspaces (geo, physics, etc.) 

• Execution and scheduling 
• Event-processing algorithms are cloned to execute concurrently on each worker thread 

• G4AtlasAlg handles bulk of processing by passing one event to Geant4 
• BeamEffectsAlg applies some corrections/smearing to the input generated event 

• Two I/O algorithms are serialized due to thread-unsafe POOL layer: SGInputLoader, StreamHITS
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Status of the migration
• Multi-threaded full Geant4 simulation nearly complete 

• Geometry, physics, most sensitive detectors were straight-forward 
• including custom endcap calorimeter geometry 

• User actions working, though design somewhat complicated by our requirements and could 
possibly be simplified 

• a lot of our customized event handling happens here 
• Preliminary version of truth code works 

• though we’re in the progress of updating the implementation 
• Magnetic field is working 

• we use a thread-shared field service with thread-local caching 
• Few missing features still in progress 

• LAr sensitive detectors are highly complicated and not yet thread-safe 
• Some of the filtering mechanisms not yet working in MT 
• Frozen calorimeter showers implemented and in testing 

• Additional things that will require more work 
• Fast-simulations like FastCaloSim (AF2) and FATRAS 
• Multi-threading in the Integrated Simulation Framework (ISF) 
• Full validation of the multi-threaded simulation 7



Scaling on a Xeon - ttbar sample

• Event throughput scales very well up to the physical number of cores, and 
plateaus quite abruptly in hyper-threading regime 

• Memory scales nicely, showing excellent savings from sharing across threads 
• Unfortunately, this sample is difficult to test with on a KNL due to long event 

processing times, so we switch to a faster single-muon simulated sample

8

Linear approximation: 
1.63 GB + 48.67 MB/thread

16 physical cores



Scaling on a Xeon - single-muon sample

• As with the ttbar sample, the scaling with the single-muon sample is excellent 
up to the physical number of cores 

• The memory scaling is also good again 
• The characteristics of these results reasonably agree with the ttbar sample, 

which gives some confidence that we can continue making measurements 
with the single-muon sample
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1.46 GB + 36.59 MB/thread



Scaling on a Xeon Phi - single-muon sample

• Throughput scaling is nearly perfect up to the physical number of cores, with a 
lot of improvement gained in the hyper-threading regime 

• Throughput maxes out around 170 threads, but starts to turn down above that 
• Memory continues to scale very well over the entire thread scaling range 
• Maximum throughput achieved on KNL is fairly consistent with maximum 

throughput on the 16-core Xeon
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Xeon vs. Xeon Phi performance

• Per-core performance is about 5.5 times worse on KNL compared to Ivy-
bridge Xeon.
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Profiling the application

• Using VTune, we can start to understand the performance differences 
between the Xeon and Xeon Phi architectures 
• These results measured with a Zµµ sample and a single worker thread 

• On KNL, the application seems to be held up in the instruction front-end, with 
a high clocks-per-instruction rate of 3.0! 
• High rate of instruction cache misses 
• Seems to be due to relatively poor handling of large ATLAS+G4 code size

12



Application hotspots

• Hotspots on a Haswell machine (Zµµ sample, single worker thread): 

• Hotspots on a KNL machine (same config): 

• The lists are fairly similar 
• The KNL slowdown doesn’t seem to be due to any particular piece of code, but 

rather a global slowdown of the entire codebase
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Conclusion

• ATLAS can now run a nearly complete multi-threaded simulation setup in 
AthenaMT 
• Throughput and memory scaling performance look quite good so far 

• Intel Xeon Phi architectures appear to be a reasonable target resource for 
such an application 
• The x86 compatibility promise from Intel has been fulfilled 

• Knights Landing machines give throughput comparable to a 16-core Ivy Bridge 
• We seem to be limited by CPU front-end, probably due to poor code layout 
• There’s still some room for improvement to improve scaling for certain 

configurations beyond 180 threads on the KNL 
• It’s clear that we’ll be able to utilize NERSC’s Cori Phase II for ATLAS 

simulation 
• but to use it effectively we’ve still got some work to do
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Summary slide
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ATLAS MT simulation on KNL

• ATLAS simulation is being migrated to multi-threading 
• Event-level parallelism based on Geant4 and AthenaMT 
• Nearly complete full simulation configuration (G4AtlasMT) now ready 

• Intel’s new Knights Landing generation of Intel Xeon Phi processors is a good 
target for this type of application 
• Highly parallel architecture for CPU-heavy code 

• G4AtlasMT shows good scaling performance on both Xeon and Xeon Phi 
architectures
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