W and Z precise measurements at 13 TeV with the ATLAS and CMS experiments

XXXVI Physics in Collisions, Quy Nhon, September 2016

Kristof Schmieden, on behalf of the ATLAS & CMS collaborations

Motivation

Precision measurements at hadron colliders?

- Precise measurements using weak gauge Bosons:
 - Huge statistic, clean signature
 - Experimental uncertainties: ~1% (sometimes better!)
 - excellent calibration and control of systematics
 - low pileup environment preferable!

- Luminosity uncertainty:
 - 2% 3% => most precise measurements are ratios

Precision measurements at hadron colliders?

Precise measurements using weak gauge Bosons:

- Huge statistic, clean signature
- Experimental uncertainties: ~1% (sometimes better!)
 Luminosity uncertainty:
 - excellent calibration and control of systematics
 - low pileup environment preferable!

• 2% - 3% => most precise measurements are ratios

Achieved precision in inclusive x-section measurement:

Precision measurements at hadron colliders?

Precise measurements using weak gauge Bosons:

Huge statistic, clean signature

- excellent calibration and control of systematics
- low pileup environment preferable!

• 2% - 3% => most precise measurements are ratios

Achieved precision in inclusive x-section measurement:

• Differential measurements: 10s - 100s of bins stat. unc. dominating!

At present: most precise measurements released from 8 TeV data! precision of 8 TeV run might no be reached any time soon with 13 TeV data

Overview

• 13 TeV analyses:

- Single boson cross section measurements
- Ratio measurements
- Associated jets

Recent highlights from 8 TeV data:

- Z-Boson transverse momentum measurement
- Drell-Yan x-section measurements
- Study of Angular coefficients in pp $\rightarrow Z/\gamma^* \rightarrow II$

Naturally this represents a selection of few of the many results from the ATLAS and CMS collaborations. For a complete list, please refer to the collaboration websites:

Results at $\sqrt{s} = 13$ TeV

Typical Selection of W,Z Events

ATLAS

- Data collected during 2015
 √s = 13 TeV, 81 pb⁻¹
- Fiducial Volume, ee and $\mu\mu$ channels $p_T > 25 \text{ GeV}$ $|\eta| < 2.5$ W: $E_T^{miss} > 25 \text{ GeV}$ $m_T > 50 \text{ GeV}$

 $\mathsf{Z:}66\,\mathrm{GeV} < m_Z < 116\,\mathrm{GeV}$

- Signal Simulation:
 - Powheg + Pythia8
- Backgrounds:
 - EW & ttbar from MC
 - QCD multijet: data-driven

CMS

- Data collected during 2015
 √s = 13 TeV, 2.3 fb⁻¹
- Fiducial volume of $\mu\mu$ channel $p_T > 25 \text{ GeV}$ $|\eta| < 2.4$ W: $m_T > 50 \text{ GeV}$

Z: 60 GeV < $m_Z < 120$ GeV

- Signal Simulation:
 MG5 aMC@NLO + Pythia8
- Backgrounds:
 - EW & ttbar from MC
 - QCD multijet: data-driven

Phys. Lett. B 759 (2016) 601

CMS-PAS-SMP-15-011

Measured distributions

- Control distributions: invariant mass (transverse mass)
 - Signal process, Electroweak and top backgrounds simulated
 - Multijet background estimated from data (negligible in Z analysis)

Simulation and measurement agree very well!

Systematic uncertainties

• Main sources:

- Jet energy scale (W only)
 - Propagated to uncertainty on MET

- Uncertainty estimation:
 - Calibration derived from the data
 - Largely based on 2012 calibration
 - Uncertainties are derived in calibration
 - Efficiency scale factors account for data / simulation discrepancy. Varied within uncertainties.

A	TLAS						CMS: Ζ -> μμ	
5C/C [%]	$Z \rightarrow e^+ e^-$	$W^+ \rightarrow e^+ v$	$W^- \rightarrow e^- \overline{\nu}$	$Z \rightarrow \mu^+ \mu^-$	$W^+ \to \mu^+ \nu$	$W^- \to \mu^- \overline{\nu}$	Lepton reco. & id. [%]	1.3
Lepton trigger	0.1	0.3	0.3	0.2	0.6	0.6	Bkg. subtraction / modeling [%]	0.1
Lepton reconstruction, identification	0.9	0.5	0.6	0.9	0.4	0.4	Total experimental [%]	1.3
Lepton isolation	0.3	0.1	0.1	0.5	0.3	0.3	PDF [%]	07
Lepton scale and resolution	0.2	0.4	0.4	0.1	0.1	0.1		0.7
Charge identification	0.1	0.1	0.1	-	_	_	QCD corrections [%]	1.1
ES and JER	-	1.7	1.7	-	1.6	1.7	EW corrections [%]	0.4
^{zmiss}	_	0.1	0.1	_	0.1	0.1	T_{1}	1 /
Pile-up modelling	< 0.1	0.4	0.3	< 0.1	0.2	0.2	Theoretical Uncertainty [%]	1.4
PDF	0.1	0.1	0.1	< 0.1	0.1	0.1	Lumi [%]	2.7
Fotal	1.0	1.9	1.9	1.1	1.8	1.8	Total [%]	3.3

Lepton reco & id (W & Z)
Lepton isolation (Z)

Results - Differer

• Low range dominated by:

Non perturbative effects Soft gluon resummation

FEWZ doesn't calculate that

 High pT range: dominated by hard parton emission

 Rapidity spectrum well described small deviations at large |Y|

XXXVI Physics in Collision - Sep 2016 - Quy Nhon, Vietnam

Results - Ratios and impact on PDFs

- Luminosity uncertainty cancels in ratios!
- Sensitivity to PDFs
 - Predictions and measurement disagree systematically by ~ 1 standard deviation

Results - Lepton Universality

- Ratio of cross sections in different lepton final states
- W,Z: 2 independent processes
- Precise test of lepton universality

In agreement with standard model predictions

XXXVI Physics in Collision - Sep 2016 - Quy Nhon, Vietnam

Z + jet cross section measurements

- Sensitive to
 - Parton shower, matrix element & PS matching
- Standard Z selection + requirement on jets
- Jet definition:
 - Anti-kt algorithm, radius 0.4
 - p_T > 30 GeV && |y| < 2.5 (2.4)
 - Jets overlapping with leptons are removed
- Measurement differentially in several variables, compared to various simulations
- Very sensitive probe of different MC approaches, tuning, ...
- Alpgen + Py6 & MG5_aMC + Py8 CKKWL
 - discrepancy for large jet pT (> 200 GeV)

ATLAS-CONF-2016-046

Z + jet cross section measurements: Systematics

Systematics dominated by

Other large contributions depend on variable of interest

• Jet Energy Scale

• Jet energy resolution, Luminosity, Background, ...

XXXVI Physics in Collision - Sep 2016 - Quy Nhon, Vietnam

Z + jet cross section measurements

• Z + jet measurement vs. number of jets

Different generators describe different features well

 $Z/\gamma^* (\rightarrow I^+\Gamma) + jets$

SHERPA 2.1

BLACKHAT + SHERPA

🔶 Data

ATLAS-CONF-2016-046

W + jet cross section measurements

• Same observables of interest as for Z+jet measurement

• Dominant uncertainty: jet energy scale

CMS-PAS-SMP-16-005

Selected precision results from 8 TeV data set

Measurement of p_{T}^{ll} and ϕ_{η}^{*}

ATLAS

- Data collected during 2012
 √s = 8 TeV, 20.3 fb⁻¹
- Fiducial Volume (ee and µµ channels)

 $\begin{array}{l} p_{\mathrm{T}} > 20\,\mathrm{GeV} \\ |\eta| < 2.4 \end{array}$

- •MC signal:
 - POWHEG+PYTHIA
- Backgrounds:
 - EW & ttbar from MC
 - QCD multijet: data-driven

Eur. Phys. J. C 76(5), 1-61 (2016)

CMS

- Data collected during 2012
 - $\sqrt{s} = 8 \text{ TeV}, 18.4 \text{ pb}^{-1} (W, Z p_T)$
 - $\sqrt{s} = 8 \text{ TeV}, 19.7 \text{ fb}^{-1} (\phi^*)$

Fiducial volume of ee (µµ) channels

 $p_T > 25(20) \,\mathrm{GeV}$ $|\eta| < 2.5(2.1)$

- •MC signal:
 - POWHEG+PYTHIA

• Backgrounds:

- EW & ttbar from MC
- QCD multijet: data-driven

<u>arXiv:1606.05864,</u> CMS-PAS-SMP-15-002

Measurement of p_T^{ll} and ϕ_{η}^*

• Depends only on measured angles

 Better resolution compared to momentum measurements

• $\sqrt{2}m_Z\phi_n^* \approx p_T^{ll}$

x-axes in Plots are aligned

Kristof Schmieden

XXXVI Physics in Collision - Sep 2016 - Quy Nhon, Vietnam

Measurement of $p_{\rm T}^{ll}$ and ϕ_{η}^{*}

- High range dominated by:
 - Emission of hard partons

Kristof Schmieden

ResBos predictions not consistent with data

Comparison to different ME generators

CMS-PAS-SMP-15-002

• Powheg:

- Disagreement with measurement
- most pronounced in low / high phi* region

Resbos:

- Uses resummation technique
- Optimized for describing low momentum tail
- Madgraph:
 - Describes high momentum tail very well

- Comparison in 3 regions of m_{II}
- 2 individual Pythia tunes:
 - AZNLO done on 7 TeV data at Zpeak
 AU2
- Significant disagreement between simulation & data in peak region
- Also significant disagreement between PowHeg and Sherpa
 - Particularly for large ϕ^* values

W Boson pT measurement

 Resbos and Powheg show deviation from measurement at high p_T

• FEWZ shows some disagreement in mid p_T range

Ratio of Z / W p_T well modeled

by all generators!

Drell - Yan cross section measurements

- Comparison to predictions from:
 - aMC@NLO: provides automated PS matching to ME, NLO accuracy
 - FEWZ: full spin correlation, NNLO QCD accuracy, NLO EWK

- Statistically limited at large invariant masses
- Uncertainties > 20% @ 500 GeV
- More precise measurement with 8 TeV dataset

Drell-Yan measurements @ 8 TeV

• Uncertainties at few % level, compared to 20% at 13 TeV analysis

Agreement with SM over 3 orders of magnitude in mass!

High mass DY measurement @ 8 TeV

- Only masses above Z-peak considered
 - Comparison to various PDFs
 - Rapidity distribution very sensitive
 - Significant deviations observed

XXXVI Physics in Collision - Sep 2016 - Quy Nhon, Vietnam

ATLAS

Theory/Data

1

0.9

1.

- High mass Drell-Yan data included in NNPDF2.3
 - Significant constraint of photon PDF

Angular Coefficients A_i

A bit of Theory

Differential cross section for

$$pp \to Z/\gamma^* + X \to l^+l^- + X$$

 $\frac{d\sigma}{dp_T^Z \, dy^Z \, dm^Z \, d\cos\theta \, d\phi} = \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T^Z \, dy^Z \, dm^Z}$

$$\left\{ (1 + \cos^2 \theta) + \frac{1}{2} A_0 (1 - 3\cos^2 \theta) + A_1 \sin 2\theta \cos \phi + \frac{1}{2} A_2 \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta + A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi \right\}$$

Angular distributions parametrized by coefficients Ai

- \bullet Test QCD predictions to all orders of α_s
- Includes Spin-correlations of all particles

Angles in **Collins-Soper** Frame:

• Rest frame of di-lepton system

• z-axis bisecting directions of incoming proton momenta

• Direction of z-axis defined by longitudinal boost of di-lepton system

• Sensitive to various SM parameters

A bit of Theory

Orthogonal polynomials used to A_i are neither input to theory parametrize angular distribution: calculations, nor simulations! $\left\langle P(\cos\theta,\phi)\right\rangle = \frac{\int P(\cos\theta,\phi)d\sigma(\cos\theta,\phi)d\cos\theta\,d\phi}{\int d\sigma(\cos\theta,\phi)d\cos\theta\,d\phi} \qquad \qquad <\frac{1}{2}(1-3\cos^2\theta) > = \frac{3}{20}(A_0 - \frac{2}{3}) \\ <\sin 2\theta \,\cos\phi > = \frac{1}{4}A_0$ $<\sin 2\theta \cos \phi >= \frac{1}{5}A_1$ normalization of unpolarized cross section, also applied to all other P $<\sin\theta \cos\phi >= \frac{1}{4}A_3$ $< 1 + \cos^2 \theta >$ $<\frac{1}{2}(1-3\cos^2\theta)>=\frac{3}{20}(A_0-\frac{2}{3})$ longitudinal polarization interference term: $\sin^2\theta \sin 2\phi \ge \frac{1}{5}A_5$ $<\sin 2\theta \ \cos \phi >= \frac{1}{5}A_1$ longitudinal^{*} fransværse $<\sin\theta\sin\phi>=\frac{1}{4}A_7$ $<\sin^2\theta \cos 2\phi >= \frac{1}{10}A_2$ transverse polarization $<\sin\theta\cos\phi>=\frac{1}{4}A_3$ product of v-a couplings, sensitive to Weinberg angle $<\cos\theta>=\frac{1}{4}A_4$ 8/3 * forward backward asymmetry A_{FB}, sensitive to Weinberg angle non-zero already at LO $q\bar{q} \rightarrow Z/\gamma^* \rightarrow l^+ l^ <\sin^2\theta$ $\sin 2\phi >= \frac{1}{5}A_5$ Predicted to be 0 @ NLO $<\sin 2\theta \sin \phi>=\frac{1}{5}A_6$ Non zero contributions @ NNLO for large $p_T(Z)$ $<\sin\theta\sin\phi>=\frac{1}{4}A_7$ Measured by ATLAS - Set to 0 in CMS analysis

Kristof Schmieden

XXXVI Physics in Collision - Sep 2016 - Quy Nhon, Vietnam

Impact of higher order QCD corrections

10²

 p_{τ}^{Z} [GeV]

The Measurement - Lepton Selection

Phys. Lett. B 750 (2015) 154

CMS • $\sqrt{s} = 8$ TeV, 19.7 fb⁻¹ • Fiducial Volume: (muons only)

J. High Energ. Phys. (2016) 2016: 159

ATLAS • √s = 8 TeV, 20.3 fb⁻¹

- Measurement performed in 3 independent channels:
 - Muons
 - Electrons: central central
 - Electrons: central-forward

• Fiducial Volume:

- CC & $\mu\mu$: $p_{\rm T} > 25 \,{
 m GeV} \, |\eta| < 2.4$
- CF: $p_{\rm T} > 20 \, {\rm GeV} \, 2.5 < |\eta| < 4.9$
- OS di-leptons $80 < m_{ll} < 100 \,\mathrm{GeV}$

Kristof Schmieden

XXXVI Physics in Collision - Sep 2016 - Quy Nhon, Vietnam

Analysis strategy

Angular distributions sculpted by fiducial acceptance

- Polynomials are "folded" into reconstruction space
 - Simulation used to model acceptance, efficiencies & resolution
 - 3D folding in $\cos\theta, \varphi, p^{II}$
- Folded polynomials (templates) fitted to measured angular distributions
- Angular coefficients A_i normalize the templates relative to each other
 - A_i extracted from fit
- Overall normalization done in $p_T(Z)$
- Fit implemented as maximum likelihood fit
 - Nuisance parameter for each systematic uncertainty incorporated
 - Background templates included

Template value / 0.25

A glance at Uncertainties

Total uncertainties

Very similar shape for all A_i

Kristof Schmieden

XXXVI Physics in Collision - Sep 2016 - Quy Nhon, Vietnam

Measurement Results

Measurement Results

- Equal to 0 @ NLO
- Higher order effects become visible

• Small discrepancy between measurement and simulation:

• Limitations of current simulations

Comparison of various Generators

- A0 A2 (< Lam-Tung relation)
- Compatible results in different rapidity regions
- Significant differences between simulations

Comparison of various Generators

• Significant differences between simulations!

- Sherpa & PowHegBox show statistical unc. only
- DYNNLO gives best description of measured A₀
- No generator describes A0-A2
 (Best: Sherpa 2.1)
- Improvement from Sherpa 1.4 to
 2.1

Conclusions & Outlook

Conclusions & Outlook

- Study of weak vector bosons provide a wealth of information
 - Partonshower modeling
 - Higher order matrix element calculations
 - PDFs, alpha_s, weak mixing angle, new physics
- 13 TeV results have been provided by ATLAS and CMS in short time!
 - First precise results appearing
 - Inclusive and differential cross section, V+jets
- Precision domain dominated by study of 8 TeV data (2012)
 - Differential measurements with %-level uncertainties!
 - Very sensitive tools!
- Several further measurements in progress
 - Addition of heavy flavor jets
 - Multidifferential x-section measurements
 - Large impact on PDFs expected!

Stay tuned for what still is to come :-)

Z Polarisation measurement - results

XXXVI Physics in Collision - Sep 2016 - Quy Nhon, Vietnam

Multijet Background estimation in detail

• MJ fit regions:

• full event selection removing **mT** or **MET** requirement

- •MJ enriched samples in fit region:
 - Mutually exclusive isolation cuts
 - Statistically independent sample
- Similar samples for signal and other backgrounds created from simulation
- Normalization of MJ sample and Signal template extracted in ML fit
- Linear extrapolation to signal region
- Average of all MJ estimations used as central value (4% µ channel, 10% e channel)
- 0.5 * difference between average and single estimations used as uncertainty
- (20%-30%) Kristof Schmieden

Drell-Yan Measurements - low & high masses

CMS-PAS-SMP-16-009

- Reaction: $pp \rightarrow \mu^+\mu^- + X$
 - Large statistics allow to go to high invariant masses
 - Sensitivity to new physics

Z Polarisation measurement

Analysis Acceptance * Efficiency for 3 considered channels

Z Polarisation measurement

• Folding of phi projected polynomials

Z Polarisation measurement

Kristof Schmieden

XXXVI Physics in Collision - Sep 2016 - Quy Nhon, Vietnam

Electroweak corrections

- Predictions low by ~15% in all m_{II} bins
- No significant impact of NLO EWK corrections

Expected due to softgluon emissions

The Measurement - Lepton Selection

Kristof Schmieden

- Data collected during 2012 • $\sqrt{s} = 8$ TeV, 20.3 fb⁻¹
- Measurement performed in 3 independent channels:
 - Muons
 - Electrons: central central
 - Electrons: central-forward
- Fiducial Volume:
 - CC & $\mu\mu$: $p_{\rm T} > 25 \,{
 m GeV} \, |\eta| < 2.4$
 - CF: $p_{\rm T} > 20 \, {\rm GeV} \, 2.5 < |\eta| < 4.9$
 - OS di-leptons $80 < m_{ll} < 100 \,\mathrm{GeV}$
- Backgrounds:
 - EW & ttbar from simulation
 - QCD multi-jet: data driven
- Signal simulation:
 POWHEG + Pythia

Measurement Results - Compatibility ee / µµ

• Electron and Muon channels give consistent results

- Similar for all A_i
- Regularization:

ATLAS

⁻8 TeV, 20.3 fb⁻¹

 $ee_{CC}^{}$, $\mu\mu_{CC}^{}$: y^Z-integrated

• Smooth fluctuations in results & uncertainties

10

• Increase correlation between bins

Unregularised

10²

Regularised

Kristof Schmieden

-0.05

 $A_4^{\mu\mu}$ - A_4^{ee}

0.15

0.1

0.05

0

XXXVI Physics in Collision - Sep 2016 - Quy Nhon, Vietnam

p_T^Z [GeV]

Impact of higher order QCD corrections

- Only small impact in A_{1,3,4}
- No sensitivity with current measurement

Kristof Schmieden

Measurement Results

• A₀ well described by fixed order calculations

• A₂ predicted too high for large $p^{Z_{T}}$

► A₀ - A₂ predictions also off w.r.t. measurement

 Impact of higher order effects not covered in simulation