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M. Peters,19 M. Petrič,36 L. E. Piilonen,107 A. Poluektov,5, 70 K. Prasanth,28 M. Prim,38

K. Prothmann,53, 94 C. Pulvermacher,20 M. V. Purohit,88 J. Rauch,95 B. Reisert,53 E. Ribežl,36
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S. Stanič,69 M. Starič,36 M. Steder,10 J. F. Strube,73 J. Stypula,66 S. Sugihara,100

A. Sugiyama,82 M. Sumihama,14 K. Sumisawa,20, 16 T. Sumiyoshi,102 K. Suzuki,59 K. Suzuki,89

S. Suzuki,82 S. Y. Suzuki,20 Z. Suzuki,98 H. Takeichi,59 M. Takizawa,86, 21, 80 U. Tamponi,34, 104

M. Tanaka,20, 16 S. Tanaka,20, 16 K. Tanida,35 N. Taniguchi,20 G. N. Taylor,54 F. Tenchini,54

Y. Teramoto,71 I. Tikhomirov,57 K. Trabelsi,20, 16 V. Trusov,38 T. Tsuboyama,20, 16

M. Uchida,101 T. Uchida,20 S. Uehara,20, 16 K. Ueno,65 T. Uglov,48, 58 Y. Unno,18

S. Uno,20, 16 S. Uozumi,46 P. Urquijo,54 Y. Ushiroda,20, 16 Y. Usov,5, 70 S. E. Vahsen,19

C. Van Hulse,2 P. Vanhoefer,53 G. Varner,19 K. E. Varvell,91 K. Vervink,47 A. Vinokurova,5, 70

V. Vorobyev,5, 70 A. Vossen,29 M. N. Wagner,13 E. Waheed,54 C. H. Wang,64 J. Wang,75

M.-Z. Wang,65 P. Wang,30 X. L. Wang,73, 20 M. Watanabe,68 Y. Watanabe,37 R. Wedd,54

S. Wehle,10 E. White,9 E. Widmann,89 J. Wiechczynski,66 K. M. Williams,107 E. Won,44

B. D. Yabsley,91 S. Yamada,20 H. Yamamoto,98 J. Yamaoka,73 Y. Yamashita,67

M. Yamauchi,20, 16 S. Yashchenko,10 H. Ye,10 J. Yelton,11 Y. Yook,110 C. Z. Yuan,30

Y. Yusa,68 C. C. Zhang,30 L. M. Zhang,83 Z. P. Zhang,83 L. Zhao,83 V. Zhilich,5, 70

V. Zhukova,57 V. Zhulanov,5, 70 M. Ziegler,38 T. Zivko,36 A. Zupanc,49, 36 and N. Zwahlen47

(The Belle Collaboration)
1Aligarh Muslim University, Aligarh 202002

2University of the Basque Country UPV/EHU, 48080 Bilbao
3Beihang University, Beijing 100191
4University of Bonn, 53115 Bonn

5Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
6Faculty of Mathematics and Physics, Charles University, 121 16 Prague

7Chiba University, Chiba 263-8522
8Chonnam National University, Kwangju 660-701
9University of Cincinnati, Cincinnati, Ohio 45221

10Deutsches Elektronen–Synchrotron, 22607 Hamburg
11University of Florida, Gainesville, Florida 32611

12Department of Physics, Fu Jen Catholic University, Taipei 24205
13Justus-Liebig-Universität Gießen, 35392 Gießen

14Gifu University, Gifu 501-1193
15II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
16SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193

17Gyeongsang National University, Chinju 660-701

2



18Hanyang University, Seoul 133-791
19University of Hawaii, Honolulu, Hawaii 96822

20High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
21J-PARC Branch, KEK Theory Center,

High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
22Hiroshima Institute of Technology, Hiroshima 731-5193

23IKERBASQUE, Basque Foundation for Science, 48013 Bilbao
24University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

25Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306
26Indian Institute of Technology Bhubaneswar, Satya Nagar 751007

27Indian Institute of Technology Guwahati, Assam 781039
28Indian Institute of Technology Madras, Chennai 600036

29Indiana University, Bloomington, Indiana 47408
30Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049

31Institute of High Energy Physics, Vienna 1050
32Institute for High Energy Physics, Protvino 142281
33Institute of Mathematical Sciences, Chennai 600113

34INFN - Sezione di Torino, 10125 Torino
35Advanced Science Research Center,

Japan Atomic Energy Agency, Naka 319-1195
36J. Stefan Institute, 1000 Ljubljana

37Kanagawa University, Yokohama 221-8686
38Institut für Experimentelle Kernphysik,

Karlsruher Institut für Technologie, 76131 Karlsruhe
39Kavli Institute for the Physics and Mathematics of the Universe (WPI),

University of Tokyo, Kashiwa 277-8583
40Kennesaw State University, Kennesaw, Georgia 30144

41King Abdulaziz City for Science and Technology, Riyadh 11442
42Department of Physics, Faculty of Science,
King Abdulaziz University, Jeddah 21589

43Korea Institute of Science and Technology Information, Daejeon 305-806
44Korea University, Seoul 136-713

45Kyoto University, Kyoto 606-8502
46Kyungpook National University, Daegu 702-701

47École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
48P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991

49Faculty of Mathematics and Physics,
University of Ljubljana, 1000 Ljubljana

50Ludwig Maximilians University, 80539 Munich
51Luther College, Decorah, Iowa 52101
52University of Maribor, 2000 Maribor

53Max-Planck-Institut für Physik, 80805 München
54School of Physics, University of Melbourne, Victoria 3010

55Middle East Technical University, 06531 Ankara
56University of Miyazaki, Miyazaki 889-2192

57Moscow Physical Engineering Institute, Moscow 115409
58Moscow Institute of Physics and Technology, Moscow Region 141700
59Graduate School of Science, Nagoya University, Nagoya 464-8602

60Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602
61Nara University of Education, Nara 630-8528

62Nara Women’s University, Nara 630-8506

3



63National Central University, Chung-li 32054
64National United University, Miao Li 36003

65Department of Physics, National Taiwan University, Taipei 10617
66H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342

67Nippon Dental University, Niigata 951-8580
68Niigata University, Niigata 950-2181

69University of Nova Gorica, 5000 Nova Gorica
70Novosibirsk State University, Novosibirsk 630090

71Osaka City University, Osaka 558-8585
72Osaka University, Osaka 565-0871

73Pacific Northwest National Laboratory, Richland, Washington 99352
74Panjab University, Chandigarh 160014

75Peking University, Beijing 100871
76University of Pittsburgh, Pittsburgh, Pennsylvania 15260

77Punjab Agricultural University, Ludhiana 141004
78Research Center for Electron Photon Science,

Tohoku University, Sendai 980-8578
79Research Center for Nuclear Physics, Osaka University, Osaka 567-0047

80Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198
81RIKEN BNL Research Center, Upton, New York 11973

82Saga University, Saga 840-8502
83University of Science and Technology of China, Hefei 230026

84Seoul National University, Seoul 151-742
85Shinshu University, Nagano 390-8621

86Showa Pharmaceutical University, Tokyo 194-8543
87Soongsil University, Seoul 156-743

88University of South Carolina, Columbia, South Carolina 29208
89Stefan Meyer Institute for Subatomic Physics, Vienna 1090

90Sungkyunkwan University, Suwon 440-746
91School of Physics, University of Sydney, New South Wales 2006

92Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451
93Tata Institute of Fundamental Research, Mumbai 400005

94Excellence Cluster Universe, Technische Universität München, 85748 Garching
95Department of Physics, Technische Universität München, 85748 Garching

96Toho University, Funabashi 274-8510
97Tohoku Gakuin University, Tagajo 985-8537

98Department of Physics, Tohoku University, Sendai 980-8578
99Earthquake Research Institute, University of Tokyo, Tokyo 113-0032

100Department of Physics, University of Tokyo, Tokyo 113-0033
101Tokyo Institute of Technology, Tokyo 152-8550
102Tokyo Metropolitan University, Tokyo 192-0397

103Tokyo University of Agriculture and Technology, Tokyo 184-8588
104University of Torino, 10124 Torino

105Toyama National College of Maritime Technology, Toyama 933-0293
106Utkal University, Bhubaneswar 751004

107Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
108Wayne State University, Detroit, Michigan 48202

109Yamagata University, Yamagata 990-8560
110Yonsei University, Seoul 120-749

4



Abstract
We present the first measurement of the Michel parameters η̄ and ξκ in the radiative leptonic decay

of the τ lepton using 703 fb−1 of data collected with the Belle detector at the KEKB e+e− collider. The

Michel parameters are measured by an unbinned maximum likelihood fit to the kinematic information

of e+e− → τ+τ− → (π+π0ν̄)(l−νν̄γ) (l = e or µ). The preliminary values of the measured Michel

parameters are η̄ = −2.0 ± 1.5 ± 0.8 and ξκ = 0.6 ± 0.4 ± 0.2, where the first error is statistical and

the second is systematic.

PACS numbers: 12.60Cn, 13.35Dx, 13.66.De, 13.66.Jn, 14.60.Fg
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INTRODUCTION

In the Standard Model (SM), there are three flavors of charged leptons: e, µ and τ . The
SM has proven to be the most powerful theory in describing the physics of leptons; neverthe-
less, precision tests of the SM may reveal the presence of New Physics (NP). In particular,
measurement of the Michel parameters in τ decay is a powerful probe for NP.

The most general Lorentz-invariant derivative-free matrix element of leptonic τ decay
τ− → l−νν̄γ [∗] is represented as [1]

M =

τ

ντ νl

l

=
4GF√

2

∑

N=S,V,T
i,j=L,R

gNij
[
ui(l)Γ

Nvn(νl)
]
[um(ντ )ΓNuj(τ)] ,

(1)

where GF is the Fermi constant, i and j are the chirality indices for the charged leptons, n
and m are the chirality indices of the neutrinos, l is e or µ, ΓS = 1, ΓV = γµ and ΓT =
i (γµγν − γνγµ) /2

√
2 are, respectively, the scalar, vector and tensor Lorentz structures in

terms of the Dirac matrices γµ, ui and vi are the four-component spinors of a particle and an
antiparticle, respectively and gNij are the corresponding dimensionless couplings. In the SM,
τ− decays into l− via the W− vector boson with a right-handed antineutrino, i.e., the only
non-zero coupling is gVLL = 1. Experimentally, only the squared matrix element is observable
and so bilinear combinations of the gNij are accessible. Of all such combinations, four Michel
parameters, η, ρ, δ and ξ, can be measured by the leptonic decay of the τ when the final state
neutrinos are not observed [2]:

ρ =
3

4
− 3

4

(∣∣gVLR
∣∣2 +

∣∣gVRL

∣∣2 + 2
∣∣gTLR

∣∣2 + 2
∣∣gTRL

∣∣2 + ℜ
(
gSLRg

T∗
LR + gSRLg

T∗
RL

))
, (2)

η =
1

2
ℜ
(
6gVRLg

T∗
LR + 6gVLRg

T∗
RL + gSRRg

V ∗
LL + gSRLg

V ∗
LR + gSLRg

V ∗
RL + gSLLg

V ∗
RR

)
, (3)

ξ = 4ℜ
(
gSLRg

T∗
LR − gSRLg

T∗
RL

)
+
∣∣gVLL

∣∣2 + 3
∣∣gVLR

∣∣2 − 3
∣∣gVRL

∣∣2 −
∣∣gVRR

∣∣2

+5
∣∣gTLR

∣∣2 − 5
∣∣gTRL

∣∣2 + 1

4

(∣∣gSLL
∣∣2 −

∣∣gSLR
∣∣2 +

∣∣gSRL

∣∣2 −
∣∣gSRR

∣∣2
)
, (4)

ξδ =
3

16

(∣∣gSLL
∣∣2 −

∣∣gSLR
∣∣2 +

∣∣gSRL

∣∣2 −
∣∣gSRR

∣∣2
)

−3

4

(∣∣gTLR
∣∣2 −

∣∣gTRL

∣∣2 −
∣∣gVLL

∣∣2 +
∣∣gVRR

∣∣2 − ℜ
(
gSLRg

T∗
LR + gSRLg

T∗
RL

))
. (5)

The Feynman diagrams describing the radiative leptonic decay of the τ are presented in Fig. 1.
As shown in Refs. [3, 4], the presence of a radiative photon in the final state (radiative leptonic
decay or inner bremsstrahlung) exposes three more Michel parameters, η̄, η′′ and ξκ:

η̄ =
∣∣gVRL

∣∣2 +
∣∣gVLR

∣∣2 + 1

8

(∣∣gSRL + 2gTRL

∣∣2 +
∣∣gSLR + 2gTLR

∣∣2
)
+ 2

(∣∣gTRL

∣∣2 +
∣∣gTLR

∣∣2
)
, (6)

[∗] Unless otherwise stated, use of charge-conjugate modes is implied throughout the paper.
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τ

ντ

γ

l

νl

τ

ντ

γ

l

νl

FIG. 1: Feynman diagram of the radiative leptonic decay of the τ lepton.

TABLE I: Michel parameters of the τ lepton

Name SM Spin Experimental Comments and Ref.

value correlation result † [7]

η 0 no 0.013± 0.020 [8]

ρ 3/4 no 0.745± 0.008 [9]

ξδ 3/4 yes 0.746± 0.021 [9]

ξ 1 yes 0.995± 0.007 measured in hadronic decays [8]

η 0 no not measured from radiative decay (RD)

ξκ 0 yes not measured from RD

η′′ 0 no not measured from RD, suppressed by m2
l /m

2
τ

ξ′ 1 yes - induced from ξ′ = −ξ − 4ξκ+ 8ξδ/3.

† Experimental results represent average values obtained by PDG [7]. The most precise results are

referenced here.

η′′ = ℜ
{
24gVRL(g

S∗
LR + 6gT∗

LR) + 24gVLR(g
S∗
RL + 6gT∗

RL)− 8(gVRRg
S∗
LL + gVLLg

S∗
RR)
}
, (7)

ξκ =
∣∣gVRL

∣∣2 −
∣∣gVLR

∣∣2 + 1

8

(∣∣gSRL + 2gTRL

∣∣2 −
∣∣gSLR + 2gTLR

∣∣2
)
+ 2

(∣∣gTRL

∣∣2 −
∣∣gTLR

∣∣2
)
. (8)

Both η̄ and η′′ appear as spin-independent terms in the differential decay width. Since all terms
in Eq. 6 are strictly non-negative, the upper limit on η̄ provides a constraint on each coupling
constant. The effect of the nonzero value of η′′ is suppressed by a factor of m2

l /m
2
τ ∼ 10−7 for

an electron daughter and ∼ 0.4% for a muon daughter and so proves to be difficult to measure
with the available statistics of the Belle experiment. In this study, we use the SM value η′′ = 0.

To measure ξκ, which appears in the spin-dependent part of the differential decay width, we
must determine the spin direction of the τ . This spin dependence is extracted using the spin-
spin correlation with the partner τ in the event. According to Ref. [5], ξκ is related to another
Michel-like parameter ξ′ = −ξ− 4ξκ+8ξδ/3. Because the normalized probability that the τ−

decays into the right-handed charged daughter lepton Qτ
R is given by Qτ

R = (1− ξ′)/2 [6], the
measurement of ξκ provides a further constraint on the V − A structure of the weak current.
The information on these parameters is summarized in Table I.

Using the statistically abundant data set of ordinary leptonic decays, previous measure-
ments [8, 9] had determined the Michel parameters η, ρ, δ and ξ to an accuracy of a few
percent and in agreement with the SM prediction. Taking into account this measured agree-
ment, the smaller data set of the radiative decay and its limited sensitivity, we focus in this
analysis only on the extraction of η̄ and ξκ by fixing η, ρ, δ and ξ to the SM values. This
represents the first measurement of the η̄ and ξκ parameters of the τ lepton.
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METHOD

Hereafter, we use an italic character to represent the four-vector p while its time and spatial
components are denoted by capital letters as p = (E,P ). The magnitude of P is denoted as
P .

The differential decay width for the radiative leptonic decay of τ− with a definite spin
direction Sτ− is given by

dΓ(τ− → l−νν̄γ)

dE∗
l dΩ

∗
l dE

∗
γdΩ

∗
γ

=
(
A−

0 + η̄ A−
1

)
+
(
B

−
0 + ξκB−

1

)
· Sτ− , (9)

where A−
i and B

−
i are known functions of the kinematics of the decay products with indices

i = 0, 1 (i simply denotes the name of function), Ωa stands for a set of {cosθa, φa} for a particle
type a and the asterisk means that the variable is defined in the τ rest frame. The detailed
formula is given in Appendix A. Equation 9 shows that ξκ appears in the spin-dependent
part of the decay width. This product can be measured by utilizing the well-known spin-spin
correlation of the τ pair in the e−e+ → τ+τ− reaction:

dσ
(
e−e+ → τ−(S−)τ+(S+)

)

dΩτ

=
α2βτ
64E2

τ

(D0 +
∑

i,jDijS
−
i S

+
j ), (10)

where α is the fine structure constant, βτ and Eτ are the velocity and energy of the τ , respec-
tively, D0 is a form factor for the spin-independent part of the reaction and Dij (i, j = 0, 1, 2)
is a tensor describing the spin-spin correlation [10]:

D0 = 1 + cos2 θ +
1

γ2τ
sin2 θ, (11)

Dij =



(1 + 1

γ2
τ

) sin2 θ 0 1
γτ

sin 2θ

0 −β2
τ sin

2 θ 0
1
γτ

sin 2θ 0 1 + cos2 θ − 1
γ2
τ

sin2 θ


 ; (12)

here, θ is the polar angle of the τ− and γτ is its gamma factor 1/
√
1− β2

τ .
The spin information on the partner τ+ is extracted using the two-body decay τ+ → ρ+ν̄ →

π+π0ν̄ whose differential decay width is

dΓ(τ+ → π+π0ν̄)

dΩ∗
ρdm

2dΩ̃π

= A+ +B
+ · Sτ+ ; (13)

A+ and B
+ are the form factors for the spin-independent and spin-dependent parts, respec-

tively, while the tilde indicates the variables defined in the ρ rest frame and m is an in-
variant mass of the two-body system of pions which is defined as m2 = (pπ + pπ0)2. The
formulae of A+ and B

+ are given in Appendix B. Thus, the total differential cross section of
e+e− → τ−τ+ → (l−νν̄γ)(π+π0ν̄) (or, briefly, (l−γ, π+π0)) can be written as:

dσ(l−γ, π+π0)

dE∗
l dΩ

∗
l dE

∗
γdΩ

∗
γdΩ

∗
ρdm

2dΩ̃πdΩτ

∝ βτ
E2

τ

[
D0

(
A−

0 + A−
1 ·η̄
)
A+ +

∑
i,jDij

(
B

−
0 +B

−
1 ·ξκ

)
i
·B+

j

]
.

(14)
To extract the visible differential cross section, we transform the differential variables into ones
defined in the center-of-mass system (CMS) using the Jacobian J (dE∗

l dΩ
∗
l dE

∗
γdΩ

∗
γdΩ

∗
ρdΩτ →
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dΦdPldΩldPγdΩγdPρdΩρ):

J = J1J2J3, (15)

J1 =

∣∣∣∣
∂(E∗

l ,Ω
∗
l )

∂(Pl,Ωl)

∣∣∣∣ =
P 2
l

ElP ∗
l

, (16)

J2 =

∣∣∣∣
∂(E∗

γ ,Ω
∗
γ)

∂(Pγ ,Ωγ)

∣∣∣∣ =
Eγ

E∗
γ

, (17)

J3 =

∣∣∣∣
∂(Ω∗

ρ,Ωτ )

∂(Pρ,Ωρ,Φ)

∣∣∣∣ =
mτPρ

EρP ∗
ρPτ

, (18)

where the parameter Φ denotes the angle along the arc illustrated in Fig. 2. On the assumption
that the neutrino is massless and the invariant mass of the neutrino pair is greater than or
equal to zero, we obtain

0 = p2ν̄ = (pτ − pρ)
2 = m2

τ +m2 − 2EτEρ + 2PτPρcosθτρ, (19)

0 ≤ p2νν̄ = (pτ − plγ)
2 = m2

τ +m2
lγ − 2EτElγ + 2PτPlγcosθτ(lγ). (20)

⇐⇒
cosθτρ =

2EτEρ −m2
τ −m2

2PτPρ

, (21)

cosθτ(lγ) ≥
2EτElγ −m2

τ −m2
lγ

2PτPlγ

. (22)

In the back-to-back topology of the τ+τ− pair, these two conditions constrain the τ+ direction
to the arc, with the angle Φ defined along this arc. The visible differential cross section is,
therefore, obtained by integration over Φ:

dσ(l−γ, π+π0)

dPldΩldPγdΩγdPρdΩρdm2dΩ̃π

=

∫ Φ2

Φ1

dΦ
dσ(l−γ, π+π0)

dΦdPldΩldPγdΩγdPρdΩρdm2dΩ̃π

(23)

=

∫ Φ2

Φ1

dΦ
dσ(l−γ, π+π0)

dE∗
l dΩ

∗
l dE

∗
γdΩ

∗
γdΩ

∗
ρdm

2dΩ̃πdΩτ

J (24)

≡ S(x), (25)

where S(x) is proportional to the probability density function (PDF) of the signal and x

denotes the set of twelve measured variables: x = {Pl,Ωl, Pγ,Ωγ, Pρ,Ωρ, m
2, Ω̃π}.

In general, the normalization of the PDF depends on the Michel parameters. Since S(x) is
a linear combination of the Michel parameters S(x) = A0(x) +A1(x)η̄+A2(x)ξκ, the PDF is
normalized according to

S(x)∫
dxS(x)

=
A0(x) + A1(x)η̄ + A2(x)ξκ∫

dx (A0(x) + A1(x)η̄ + A2(x)ξκ)
≡ A0(x) + A1(x)η̄ + A2(x)ξκ

N0 +N1η̄ +N2ξκ
, (26)

where Ni (i = 0, 1, 2) is a normalization coefficient defined by Ni =
∫
dxAi(x). This integration

is performed using the Monte Carlo (MC) method. Since MC events are distributed according
to the SM distribution (η̄ = ξκ = 0), the denominator of Eq. 26 is

∫
dx (A0(x) + A1(x)η̄ + A2(x)ξκ) = N0

∫
dx

(
A0(x)

N0

)
· A0(x) + A1(x)η̄ + A2(x)ξκ

A0(x)
(27)

=
N0

Ngen

∑

i:gen

A0(x
i) + A1(x

i)η̄ + A2(x
i)ξκ

A0(xi)
(28)
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FIG. 2: Kinematics of τ+τ− → (ρ+ν̄)(l−νν̄γ) decay. Cones A and B are the surfaces that
satisfy the conditions (pτ− − pl−γ)

2 = 0 and (pτ+ − pρ+)
2 = 0 in the CMS frame. The

direction of τ+ is constrained to lie on an arc defined by the intersection of the reversal (i.e.,
mirror) cone A and cone B. The arc (shown in red) is parametrized by an angle Φ ∈ [Φ1,Φ2].

= N0

[
1 +

〈
A1

A0

〉
η̄ +

〈
A2

A0

〉
ξκ

]
, (29)

where x
i represents a set of variables for ith generated event out of total Ngen events and the

bracket <> means an average with respect to the SM distribution. We refer to N0 and 〈Ai/A0〉
(i = 1, 2) as absolute and relative normalizations, respectively.

KEKB ACCELERATOR

The KEKB accelerator, located at KEK in Tsukuba, Ibaraki, Japan, is an energy-
asymmetric e+e− collider with beam energies of 3.5 GeV and 8.0 GeV for e+ and e−, re-
spectively. Most of the data taking was in operation at the CMS energy of 10.58 GeV, a mass
of the Υ(4S), where a huge number of τ+τ− as well as BB pairs were produced. The KEKB
was operated from 1999 to 2010 and accumulated 1 ab−1 of e+e− collision data with Belle
detector. The achieved instantaneous luminosity of 2.11 × 1034 cm−2/s is the world-largest
record. For this reason, the KEKB is often called B-factory but it is worth considering also
as τ -factory, where O(109) events of τ pair have been produced. The large number of the τ
leptons and the dedicated detector provide a beautiful laboratory for the test of the nature of
the rare decay τ− → l−νν̄γ. The KEKB is described in detail in Refs. [11].

BELLE DETECTOR

The Belle detector is a large-solid-angle magnetic spectrometer that consists of a silicon
vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold
Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters
(TOF), and an electromagnetic calorimeter comprised of CsI(Tl) crystals (ECL) located inside
a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux return located
outside of the coil is instrumented to detect K0

L mesons and to identify muons (KLM). The

10



detector is described in detail elsewhere [12].

EVENT SELECTION

The selection proceeds in two stages. At the preselection, τ+τ− candidates are selected
efficiently while suppressing the beam background and other physics processes like Bhabha
scattering, two-photon interaction and µ+µ− pair production. The preselected events are then
required to satisfy final selection criteria to enhance the purity of the radiative events.

Preselection

• There must be exactly two oppositely charged tracks in the event. The impact parameters
of these tracks relative to the interaction point are required to be within ±2.5 cm along
the beam axis and ±0.5 cm in the transverse plane. The transverse momentum of two
tracks must exceed 0.1 GeV/c and that of one track must exceed 0.5 GeV/c.

• Total energy deposition of ECL in the laboratory frame must be lower than 9 GeV.

• The opening angle ψ of the two tracks must satisfy 20◦ < ψ < 175◦.

• The number of photons whose energy exceeds 80 MeV in the CMS frame must be fewer
than five.

• For the four-vector of missing momentum defined by pmiss = pbeam − pobs, the missing
mass Mmiss defined asM2

miss = p2miss must lie in the range 1 GeV/c2 ≤Mmiss ≤ 7 GeV/c2,
where pbeam and pobs are the four-momentum of the beam and all detected particles,
respectively.

• The missing-momentum’s polar angle must satisfy 30◦ ≤ θmiss ≤ 150◦.

Final selection

The candidates of the daughter particles of τ+τ− → (π+π0ν̄)(l−νν̄γ), i.e., the lepton,
photon, and charged and neutral pions, are assigned in each of the preselected events.

• The lepton candidate is selected using likelihood-ratio values. The electron selection
uses Pe = Le/(Le + Lx) > 0.9, where Le and Lx are the track’s likelihood values for the
electron and non-electron hypotheses, respectively. These values are determined using
specific ionization (dE/dx) in the CDC, the ratio of ECL energy and CDC momentum
E/P , the transverse shape of the cluster in the ECL, the matching of the track with the
ECL cluster and the light yield in the ACC [13]. The muon selection uses the likelihood
ratio Pµ = Lµ/(Lµ + Lπ + LK) > 0.9, where the likelihood values are determined by
the measured vs expected range for the µ hypothesis and transverse scattering of the
track in the KLM [14]. The reductions of the signal efficiencies with lepton selections are
approximately 2% and 3% for the electron and muon, respectively. The pion candidates
are distinguished from kaons using Pπ = Lπ/(Lπ+LK) > 0.4, where the likelihood values
are determined by the ACC response, the timing information from the TOF and dE/dx
in the CDC. The reduction of the efficiency with pion selection is approximately 5%.

• The π0 candidate is formed from two photon candidates, where each photon satisfies
Eγ > 80 MeV, with an invariant mass of 115 MeV/c2 < Mγγ < 150 MeV/c2. Figure 3
shows the distribution of the invariant mass of the π0 candidates. The reduction of the
signal efficiency is approximately 24%.
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• The ρ candidate is formed from a π and a π0 candidate, with an invariant mass of
0.5 GeV/c2 < Mππ0 < 1.5 GeV/c2. Figure 4 shows the distribution of the invariant mass
of the ρ candidates. The reduction of the signal efficiency is approximately 3%.

• The signal photon candidate’s energy must exceed 80 MeV if within the ECL barrel
(31.4◦ < θγ < 131.5◦) or 100 MeV if within the ECL endcaps (12.0◦ < θγ < 31.4◦ or
131.5◦ < θγ < 157.1◦). As shown in Fig. 5, this photon must lie in a cone determined by
the lepton-candidate direction that is defined by cosθeγ > 0.9848 and cosθµγ > 0.9700 for
the electron and muon mode, respectively. The reductions of the signal efficiencies for
the requirement on this photon direction are approximately 11% and 27% for electron
and muon mode, respectively. Furthermore, if the photon candidate and either of the
photons from the π0, which is a daughter of the ρ candidate, form an invariant mass
of the π0 (115 MeV/c2 < Mγγ < 150 MeV/c2), the event is rejected. The additional
selection reduces the signal efficiencies by 1%.

• The direction of the combined momentum of the lepton and photon in the CMS frame
must not enter the hemisphere determined by the ρ candidate: event should satisfy
θ(lγ)ρ > 90◦. This selection reduces the signal efficiency by 0.4%.

• There must be no additional photons in the aforementioned cone around the lepton
candidate; the sum of the energy in the laboratory frame of all additional photons that
are not associated with the π0 or the signal photon (denoted as ELAB

extraγ) should not exceed
0.2 GeV and 0.3 GeV for the electron and muon mode, respectively. The reductions of
the signal efficiencies for the requirement on the ELAB

extraγ are approximately 14% and 6%
for electron and muon mode, respectively.

These selection criteria are optimized using a MC method where e+e− → τ+τ− pair pro-
duction and the successive decay of the τ are simulated by KKMC [15] and TAUOLA [16, 17]
generators, respectively. The detector effects are simulated based on the GEANT3 package [18].

The selection criteria suppress background while retaining efficiency for signal events. A
characteristic feature of the radiative decay is that the photon tends to be produced nearly
collinear with the final-state lepton. Distributions of the photon energy Eγ and the angle
between the lepton and photon θlγ for the selected events are shown in Figs. 6 and 7 for
τ− → e−νν̄γ and τ− → µ−νν̄γ candidates, respectively.

In the electron mode, the fraction of the signal decay in the selected sample is about 30%
due to the large external bremsstrahlung rate in the non-radiative leptonic τ decay events.
In the muon mode, the fraction of the signal decay is about 60%; here, the main background
arises from ordinary leptonic decay (τ− → l−νν̄) events where either an additional photon is
reconstructed from a beam background in the ECL or a photon is emitted by the initial-state
e+e−.

With the described selection criteria, the average efficiencies of signal events are evaluated
by MC. The selection information is summarized in Table II.

ANALYSIS

Accounting for the event-selection criteria and the contamination from identified back-
grounds, the total visible (properly normalized) PDF for the observable x in each event is
given by

P (x) = (1−
∑

i

λi)
S(x)ε(x)∫
dxS(x)ε(x)

+
∑

i

λi
Bi(x)ε(x)∫
dxBi(x)ε(x)

, (30)

where S(x) is the signal distribution given by Eq. 14, Bi(x) is the distribution of the ith

category of background (i runs 1, 2, 3 and 1, 2, . . . , 6 for electron and muon modes, respectively
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FIG. 3: Distribution of Mγγ . Dots with error bars are experimental data and histograms are
MC distributions. The MC histograms are scaled to that of experimental one based on the
numbers just after the preselection. The red arrows indicate the selection window
115 MeV/c2 < Mγγ < 150 MeV/c2. The reduction of the efficiency is approximately 24% for
both electron and muon modes.
(a) τ → eνν̄γ candidates: the open histogram corresponds to the signal, the yellow and green
histograms represent ordinary leptonic decay plus bremsstrahlung and radiative leptonic
decay plus bremsstrahlung, respectively, and the blue histogram represents other processes.
(b) τ → µνν̄γ candidates: the open histogram corresponds to signal, the magenta histogram
represents ordinary leptonic decay plus beam background, the water-blue histogram
represents ordinary leptonic decay plus ISR/FSR processes, the purple histogram represents
three-pion events where τ+ → π+π0π0ν̄ is misreconstructed as a tagging τ+ → π+π0ν̄
candidate, the green histogram represents ρ-ρ background where τ− → π−π0ν is selected due
to misidentification of pion as muon, the red histogram represents 3π-ρ events where
τ− → π−π0π0ν is selected by misidentification similarly to the ρ-ρ case and the orange
histogram represents other processes.

TABLE II: Summary of event selection

Item (e−νν̄γ)(π+π0ν̄) (e+νν̄γ)(π−π0ν) (µ−νν̄γ)(π+π0ν̄) (µ+νν̄γ)(π−π0ν)

Nsel 420005 412639 35984 36784

ε† (%) 4.45± 0.19 4.43± 0.19 3.42± 0.15 3.39± 0.15

Purity (%) 28.9 56.5

† The signal is defined by the photon energy threshold in the τ -rest frame with E∗
γ > 10 MeV.

and this index indicates each category filled with a color in Figs. 6 and 7), λi is the fraction
of this background and ε(x) is the selection efficiency of signal distribution. In general, the
ε(x) is not common between the signal and backgrounds, the difference, however, is included
in the definition of Bi(x). The PDFs of the major background modes are basically described
using their theoretical formulae while other minor contributions are treated as one category
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FIG. 4: Distribution of Mππ0: (a) τ → eνν̄γ candidates and (b) τ → µνν̄γ candidates. Dots
with error bars are experimental data and histograms are MC distributions. The color of
each histogram is explained in Fig. 3. The red arrows indicate the selection window
0.5 GeV/c2 < Mππ0 < 1.5 MeV/c2. The reduction of the efficiency is approximately 3% both
for electron and muon modes.
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FIG. 5: Distribution of cos θlγ: (a) τ → eνν̄γ candidates and (b) τ → µνν̄γ candidates. Dots
with error bars are experimental data and histograms are MC distributions. The color of
each histogram is explained in Fig. 3. The red arrows indicate the selection condition
cosθeγ > 0.9848 and cosθµγ > 0.9700 for the electron and muon mode, respectively. The
reduction of the efficiency is approximately 11% and 27% for electron and muon modes.
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FIG. 7: Final distribution of (a) photon energy Eγ and (b)
θµγ for the τ+τ− → (π+π0ν̄)(µ−νν̄γ) decay candidates. Dots with error bars are experimental
data and histograms are MC distributions. The color of each histogram is explained in Fig. 3.

and described based on the MC simulation.
In the integration of the differential cross section over the Φ in Eq. 24, we randomly generate

integration variables and calculate an average of the integrand. Moreover, an unfolding of the
detector resolution is also performed in this integration, where the distortion of the momenta
of the charged tracks and photon energies due to the finite accuracy of the detector is taken
into account as a convolution with its resolution function determined from an MC simulation
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of the detector. When the generated kinematic variables are outside allowed phase space of the
signal distribution, we assign zero to the integrand rather than using its unphysical (negative)
value. This means that we discard trials which have negative-mass neutrinos. If such discarded
trials in the integration exceed 20% of the total number of iterations, we further reject the
event. This happens for events which lie around the kinematical boundary of the signal phase
space. The corresponding reduction of the efficiency is 2% and 3% for the electron and muon
mode, respectively. This additional decrease of the efficiency is not reflected on the values of
Table II.

From P (x), the negative logarithmic likelihood function (NLL) is constructed and the
best estimators of the Michel parameters, η̄ and ξκ, are obtained by minimizing the NLL. The
efficiency ε(x) is a common multiplier in Eq. 30 and does not depend on the Michel parameters.
This is one of the essential features of the unbinned maximum likelihood method that we use.
We validated our fitter and procedures using a MC sample generated according to the SM
distribution. The fitted results are consistent with the SM predictions within 1σ statistical
deviation of the experimental result.

Analysis of experimental data

The analysis of experimental data is performed in the same way as MC simulation. The
difference between real data and MC simulation is represented by the measured correction
factor R(x) = εex(x)/εMC(x) that is close to unity; its extraction is described below. With
this correction, Eq. 30 is modified to

P ex(x) = (1−
∑

i

λi) ·
S(x)εMC(x)R(x)∫
dxS(x)εMC(x)R(x)

+
∑

i

λi
Bi(x)εMC(x)R(x)∫
dxBi(x)εMC(x)R(x)

. (31)

The presence of R(x) in the numerator does not affect the NLL minimization, but its presence
in the denominator does.

We evaluate R(x) as the product of the measured corrections for the trigger, particle iden-
tifications and track reconstruction efficiencies:

R(x) = RtrgRl(Pl, cos θl)Rγ(Pγ, cos θγ)Rπ(Pπ, cos θπ)Rπ0(Pπ0, cos θπ0), (32)

Rl(Pl, cos θl) = Rrec.(Pl, cos θl)RLID(Pl, cos θl), (33)

Rπ(Pπ, cos θπ) = Rrec.(Pπ, cos θπ)RπID(Pπ, cos θπ). (34)

The lepton identification efficiency correction is estimated using the two-photon processes
e+e− → e+e−l+l− (l = e or µ). Since the momentum of the lepton from the two-photon process
ranges from 0 to approximately 4 GeV/c in the laboratory frame, the efficiency correction factor
can be evaluated for our signal process as a function of Pl and cos θl.

The track reconstruction efficiency correction is extracted from τ+τ− → (l+νν̄)(π−π+π−ν)
events. Here, we count the number of events N4 (N3) in which four (three) charged tracks are
reconstructed. The three-charged-track event is required to have a negative net charge (π+

is missing). Since the charged track reconstruction efficiency ε is included as, respectively, ε4

and ε3(1− ε) in N4 and N3, the value of ε can be obtained by ε = N4/(N4 +N3).
The π0 reconstruction efficiency correction is obtained by comparing the ratio of the number

of selected events of τ+τ− → (π+π0ν̄)(π−π0ν) and τ+τ− → (π+π0ν̄)(π−ν) between experiment
and MC simulation. If we ignore one of the photon daughters from the π0, the γ reconstruction
efficiency correction can be also extracted in the same manner.

The trigger efficiency correction has the largest impact among these factors. In particular,
for the electron mode, because of the similar structure of our signal events and Bhabha events
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FIG. 8: Distribution of (a)(c) momentum and (b)(d) cosine of the lepton direction for (a)(b)
τ → eνν̄γ and (c)(d) τ → µνν̄γ candidates. Blue points with error bars represent the
experimental data. The black and red lines represent the distributions of the original and
corrected MC, respectively.

(back-to-back topology of two-track events), many signal events are rejected by the Bhabha
veto in the trigger. The veto of the trigger results in a spectral distortion and a large systematic
uncertainty. The correction factor from trigger is tabulated using the charged and neutral
triggers (denoted as Z and N), which provide completely independent signals. Since the trigger
is fired when both signals are not inactive, its efficiency is given by εtrg = 1− (1− εZ)(1− εN),
where εZ and εN are, respectively, the efficiencies of the charged and neutral triggers. Here,
each efficiency is extracted by a comparison of the numbers NZ&N/NN or NZ&N/NZ . Thus
Rtrg is obtained as a ratio of εtrg between the experiment and MC simulation. Through the
Rtrg, we incorporate this systematic bias and its uncertainty into our results.

Figure 8 shows the distribution of the momentum and the cosine of the polar angle of
electron and muon events. In the figure, the effects of all corrections are seen mainly at
cosθe < −0.6 and cosθµ < −0.6.

17



TABLE III: List of systematic uncertainty contributions

Item σe
η̄ σe

ξκ σµ
η̄ σµ

ξκ

Relative normalizations 4.2 0.94 0.15 0.04

Absolute normalizations 1.0 0.01 0.03 0.001

Description of the background PDF 2.5 0.24 0.67 0.22

Input of branching ratio 3.8 0.05 0.25 0.01

Effect of cluster merge in ECL 2.2 0.46 0.02 0.06

Detector resolution 0.74 0.20 0.22 0.02

Correction factor R 1.9 0.14 0.04 0.04

Beam energy spread negligible negligible negligible negligible

Total 7.0 1.1 0.76 0.24

Evaluation of systematic uncertainties

In Table III, we summarize the contributions of various sources of systematic uncertainties.
The dominant systematic source for the electron mode is the calculation of the relative normal-
izations. Due to the peculiarity of the signal PDF when ml → 0, the convergence of the factor
is quite slow and results in a notable effect. The uncertainty of the relative normalization is
evaluated using the central limit theorem. For a given number of MC events N , the errors
of the relative normalizations 〈Ai/A0〉 (i = 1, 2) are evaluated by σ2 = Var(Ai/A0)/N , where
Var(X) represents the variance of a random variable X . The resulting systematic effect on
the Michel parameter is estimated by varying the normalizations. The effect of the absolute
normalization is estimated in the same way.

The largest systematic uncertainty for the muon mode is due to the limited precision of the
description of the background PDF that appears in Eq. 31. As mentioned before, the set of
minor sources is treated as one additional category that is based on MC distributions. This
effective description can generally discard information about correlations in the phase space
and thereby give significant bias. The residuals of the fitted Michel parameters from the SM
prediction obtained by the fit to the MC distribution are taken as the corresponding systematic
uncertainties.

Other notable uncertainties come from the limited knowledge of the measured branching
ratios. In particular, the uncertainties of the branching ratio of the radiative decay τ− → l−νν̄γ
dominate the contribution. The systematic effects of the cluster-merge algorithm in the ECL
are evaluated as a function of the angle between the photon and lepton clusters at the ECL’s
front face (θECL

lγ ). The limit θECL
lγ → 0 represents the merger of the two clusters and the

comparison of the distribution between experiment and MC gives us the corresponding bias.
Detector resolutions of the photon energies and track momenta are evaluated by comparing
the results obtained with and without the unfolding of the measured values. The error of
the tabulated correction factor R is estimated by varying the central values based on the
uncertainty in each bin. The effect of the beam-energy spread is estimated by varying the
input of this value for the calculation of PDF with respect to run-dependent uncertainties.

RESULTS

Based on the PDF in Eq. 31, we construct the NLL function, minimize it and obtain the
Michel parameters η̄ and ξ κ. Since the sensitivity to η̄ is suppressed by the factor of ml/mτ ,
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we extract it from the muon mode only. Using 832644 and 72768 selected events, respectively,
for τ+τ− → (π+π0ν̄)(e−νν̄γ) and τ+τ− → (π+π0ν̄)(µ−νν̄γ) candidates, we obtain

(ξκ)(e) = −0.5± 0.8± 1.1, (35)

η̄µ = −2.0± 1.5± 0.8, (36)

(ξκ)(µ) = 0.8± 0.5± 0.2, (37)

where the first error is statistical and the second is systematic. The results of ξκ are combined
to give

ξκ = 0.6± 0.4± 0.2. (38)

Figure 9 shows the contour the likelihood for τ → µνν̄γ events. As the shape suggests, a
correlation between η̄ and ξκ is small. The magnitude of the correlation coefficient determined
by the error matrix is approximately 7%.

SUMMARY

We present preliminary results of a measurement of the Michel parameters η̄ and ξκ of the
τ using 703 fb−1 of data collected with the Belle detector at the KEKB e+e− collider. These
parameters are extracted from the radiative leptonic decay τ− → l−νν̄γ and the tagging ρ decay
τ+ → ρ+(→ π+π0)ν̄ of the partner τ+ to exploit the spin-spin correlation in e+e− → τ+τ−.
Due to the poor sensitivity to η̄ in the electron mode, this parameter is extracted only from
τ− → µ−νν̄γ to give η̄ = −2.0 ± 1.5 ± 0.8. The product ξκ is measured using both decays
τ− → l−νν̄γ (l = e and µ) to be ξκ = 0.6 ± 0.4 ± 0.2. The first error is statistical and the
second is systematic. This is the first measurement of both parameters for the τ lepton. These
values are consistent with the SM expectation within the errors.
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Appendix A: Differential decay width of τ → lνν̄γ

The general differential cross section of τ → lνν̄γ decay is expressed as a sum of the two
terms:

dΓ(τ∓ → l∓ντ ν̄lγ)

dE∗
l dΩ

∗
l dE

∗
γdΩ

∗
γ

= A∓B · Sτ∓, (39)

where A and B represent spin-independent and spin-dependent terms. These terms are func-
tions of dimensionless kinematic parameters x, y and d defined as:

r =
ml

mτ

, (40)

x =
2E∗

l

mτ

, (2r < x < 1 + r2) (41)

y =
2E∗

γ

mτ

, (0 < y < 1− r) (42)

d = 1− β∗
l cos θ

∗
lγ , (43)

y <
2(1 + r2 − x)

2− x+ cos θ∗lγ
√
x2 − 4r2

. (44)

A and B are parametrized by the Michel parameters ρ, η, ξ, ξδ, η̄, η′′ and ξκ.
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A(x, y, d) =
4αG2

Fm
3
τ

3(4π)6
· βl

∑

i=0,1...5

Fir
i, (45)

B(x, y, d) =
4αG2

Fm
3
τ

3(4π)6
· βl

∑

i=0,1...5

(β∗
l Gin

∗
l +Hin

∗
γ)r

i, (46)

where n
∗
l and n

∗
γ are normalized directions of lepton and photon in the τ rest frame, respec-

tively. The Fi, Gi and Hi (i = 0, 1 . . . 5) are functions of x, y, d and r and their explicit
formulae are given in the Appendix of Ref. [4].

Appendix B: Differential decay width of τ → ρν

We use the CLEO model to define the differential decay width of τ± → ρ±ν decay. This is
expressed as a sum of the spin-independent and spin-dependent parts [19, 20]:

dΓ(τ± →π±π0ν)

dΩ∗
ρdm

2dΩ̃π

= A′ ∓B
′ · S

τ
± , (47)

A′ =
G2

F |Vud|2
(4π)5

·
[
2(E∗

π −E∗
π0)(pν · q)− E∗

νq
2
]
· BPS, (48)

B
′ =

G2
F |Vud|2
(4π)5

·
[
P

∗
π {(q · q) + 2(pν · q)}+ P

∗
π0 {(q · q)− 2(pν · q)}

]
· BPS, (49)

where Vud is the corresponding element of the Cabibbo-Kobayashi-Maskawa matrix and q is a
four-vector defined by q = pπ − pπ0 . The factor BPS stands for a square of a relativistic Breit-
Wigner function and a Lorentz-invariant phase space and it is calculated from the following
formulae.

BPS =
∣∣BW(m2)

∣∣2
(
2P ∗

ρ (m
2)

mτ

)(
2P̃π(m

2)

mρ

)
, BW(m2) =

BWρ + βBWρ′

1 + β
, (50)

BWρ

(
m2
)
=

m2
ρ0

m2
ρ0 −m2 − imρ0Γρ (m2)

, Γρ

(
m2
)
= Γρ0

mρ0√
m2

(
P̃π (m

2)

P̃π

(
m2

ρ0

)
)3

, (51)

BWρ′

(
m2
)
=

m2
ρ′0

m2
ρ′0 −m2 − imρ′0Γρ′ (m2)

, Γρ′

(
m2
)
= Γρ′0

mρ′0√
m2

(
P̃π (m

2)

P̃π

(
m2

ρ′0

)
)3

, (52)

P̃ ∗
ρ (m

2) =
m2

τ −m2

2mτ

(53)

P̃π(m
2) =

√
[m2 − (mπ −mπ0)2] [m2 − (mπ +mπ0)2]

2m
. (54)

A factor BWa (a = ρ or ρ′) represents the Breit-Wigner function associated with a ρ or a ρ′

resonance mass shape and the parameter β specifies their relative coupling. mρ0 and mρ′0 are
nominal masses of two resonance states and Γρ0 and Γρ′0 are their nominal total decay widths.
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