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The very beginning

Prog. Theor. Phys. Vol. 46 (1971), No. 5 Namber o
wk X Projection Y Projection

A Possible Decay in Flight wof
of a New Type Particle X

Kiyoshi NIU, Eiko MIKUMO
and Yasuko MAEDA¥*

Institute for Nuclear Study
University of Tokyo
*¥Yokohama National University

August 9, 1971
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® Cosmic showers

® Observed in emulsion chambers

® 500 hours aboard a cargo plane

Assumed
decay mode M, GeV T sec
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Spectroscopy

BABAR, PRL 90 (2003) 242001
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50 E 135, 1—— D* D=
=2 ST SN S TR T SN T SR T SN S SR S TR NN T S T
0 2.1 2.2 2{3 2.4 2.5 11P 1+- D1(2420) Ds1(2536)*
) . 13Py 0+ D} (2400) D, (2317)%1
® Strange peaks started appearing in 2003/04 = b | Do
. . . L 3P, ++ 3 1, (2573)*
® Matching with quark model predictions e DRD | Pat
. . 1°D; 17— Dz, (2860)*
still difficult
13Dy 3~ D?5(2860)*
= Many gaps in possible states 2% 0 D(zs50)
238, 1 D1 (2700)*1
= Some observed states may be exotics 2P 1+
o . . 2 S.POJ’Q pt+ 1++ ot++
® Different production mechanisms T

C.Amsler et al.in PDG2015

= Prompt vs B decays
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® VWhat are they? *

L

= Different things

® Study various indicators
- JPC, mass, width, production, decay

® /.(3900) was hot topic at Manchester

® Pentaquark with ccC followed last year

® New insights on X(4140) will be _ il 606:075895
discussed here

120F

100F

Candidates/(10 MeV)

8oF

= |t was seen, then not, and again,
and so on T

20F

My e [Me
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Cazzoli et al./PRL 34 (1975) 1125 - )

® Ground state singly-charmed baryons
known

= | ifetimes between 3% and | 7%
uncertainties

® No established doubly-charmed baryon

C.G.Wohl in PDG2014

= Not to mention ().

® What level of CPV should we expect!?
8
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i isi +f Chauvat et al., PLB 199 (1987) 2
® Charm production as precision measurements | ratvar et e (1987)

= Constrain PDFs and QCD processes

= (Still) searching for intrinsic charm

= Puts direct constraints on charm
production in atmosphere Prompt Neutrino Flux (21

s Gauld etal., 1511.06346
> 10_4- e R
%E 1.x10% ";‘__:;.’-:;'-';-;'_'L'j'_:: .........

§5.x107° o
F B . GRRST
M . o o o - IXIO_SE— —ERS
® Production rates in different collisions are saos |-
crucial input in identifying exotica T I i
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Theumversityofhester P ro d u Cti O n Monday afternoon

Thu+Fri morning
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i isi +f Chauvat et al., PLB 199 (1987) 2
® Charm production as precision measurements | ratvar et e (1987)

= Constrain PDFs and QCD processes

IC@IC,
Laha et al
arXiv:1607.08240

< = (Still) searching for intrinsic charm

= Puts direct constraints on charm
production in atmosphere Prompt Neutrino Flux (21

s Gauld etal., 1511.06346
> 10_4- e R
%?Z 1.x107* _,;._--;;‘f':;:;::'f—':: ‘‘‘‘‘‘‘‘‘

§5.x107° "
F B — . GRRST
. . : . . = 1x107% — ERS
® Production rates in different collisions are 5.x10°
crucial input in identifying exotica YRTS E S S
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= Many limits are very old, some >20 years
® No sign yet of non-resonant FCNC component

® Keep searching also for LFV/LNV processes

® Some recent progress



@ (Semi-)leptonic |
decays

® M . 20:_ BELLE
eas u re E 0 - CLEO-c untagged
15:— Dome'v CLEO-c tagged
- [\ BaBar (prelim )
= Decay constants o || s
- v B sverae
S
= CKM elements E
_55_ NNN ;
g FO m facto I'S _105_
- > Fall 2014
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® Also potential for O |

= Mixing (requires loads of data, Ry~3x%10~)

= | epton universality tests
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Mixing discovery

BABAR, PRL 98 (2007) 211802
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Mixing discovery

BABAR, arXiv:hep-ex/0607090
L1000 1)t BagR ]
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BABAR, PRL 98 (2007) 211802
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HFAG WA May 2014 w/o WS Kpi
0.01

0.005
Adding Yep
mostly
constrains vy

X & y measured directly
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World average decoded

0015 e 0015 e I I
e | | HFAG WA May 2014, KShh only > _
- ) - HFAG WA May 2014, WS Kpi only .
HFAG WA May 2014 w/o WS Kpi
0.01 001F -
0.005 0.005 m -
Addi ng Yep i i
0 mostly or B
constrains vy
_0.0(2? . | : | . | .
-0.005 0 0.005 0.01 0.015

X & y measured directly

Xp

X2+y? measures a ring
v’ mostly adds information
on y (8kr near O)



MANCHESTER
1824

The University of Manchester

World
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0.01} =
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Xp intersection of
contours



Mixing howadays
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Mixing evolution

BaBar 2010
Kshh analysis
full dataset
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CP violation

B D)2)=p|D°%q|D°

3 CP violation:
nz=mi)/T |q/p|#0
2-r|)/2r P=arg(q/p)*0,TT

irect CP violation:
cp™ = -a, y cos® - x sing
with am = £(|9p|*-1)




Contributions

© [ HFAGWAMay2014,KShhonly ]
191 HRAG WA May 2014 w/o WS Kpi 7
Precise
constraints
if x and vy
provided,
mostly from
Ar
Direct
access to
la/pl and @
from Kshh
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i HFAG WA May 2014, KShh only
171 HFAG WA May 2014 w/o WS Kpi

Direct
access to

la/pl and @
from Kshh

Precise
constraints
if x and vy
provided,
mostly from

Ar

Contributions

T | T T T I T T T I T T T I T T T l

HFAG WA May 2014, WS Kpi only

WS Krr:
symmetric in @,

good sensitivity to
lq/pl for small @
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Precise
constraints
if x and vy
provided,

Direct
access to

la/pl and @
from Kshh

mostly from

Contributions

T l T T T I T T T I T T T I T T T I T 1 T I

HFAG WA May 2014, WS Kpi only

T ' T

| [ HFAG WA May 2014, WS Kpi only
[ HFAG WA May 2014

- 1 HFAG WA May 2014 w/o WS Kpi -

WS Krr:
symmetric in @,

good sensitivity to
lq/pl for small @

Full average

following
intersection
of contours
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® Give access to full set of mixing and CP violation
observables

= |n particular: sensitivity to x

= Require amplitude models

= Or quantum-correlated measurements

® |n last ten years time-dependent measurements
. 0
almost only in D™= KsTTTT

= A missed opportunity!?

= Recent work by BABAR

® Can provide powerful input to CKM Y measurements

|18
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® No sign of CP violation

o
Q
©
Red
_—
5
o
S
<

Asymmetry in mixing rate

HFAG-charm

CHARM 2015

CP violation overview

CP violating weak phase

No CP violation

—IIITIIITIIITIII.IIIIIII|II

I | | 1 I | | 1 I | | 1 l | 1 | l | | | l |

0.6 0.8 1 1.2 1.4 1.6
la/pl




Can we do better?

CP violating weak phase

No CP violation

® Superweak constraint

= Assumes no new weak phase
= Cuichini et al. (2007)
= Kagan, Sokoloff (2009)

CHARM 2015

60 _ .................................. ................................ ................... 3 o

Arg(q/p) [deg.]

® Reducing to 3 parameters

IR

- -
bl .

= tan® = (|-|q/p|)x/y

LY

(ETTRTTTRTOIY T S, cresacenssneateebfqreseatsncettatestentasettnsnsnsdersnnnee

® Consider WS measurement with =0

+ +| -40Q
= v’ =|q/p| (Y cos® F X sin®)

® Different parametrisation

—IIITIIITIIITIIIIII:I 'III

I | | 1 I | | 1 I | | 1 l | 1 | l | | | l |

0.6 0.8 1 1.2 1.4 1.6
- XIZ’YIZ’CDIZ ol
q

e Current sensitivity already very good

=» g(P,,) =1.7° Asymmetry in mixing rate

20



Can we do better?

~
jab)
~
|4

® Superweak constraint 6

= Assumes no new weak phase

= Cuichini et al. (2007)
= Kagan, Sokoloff (2009)

® Reducing to 3 parameters

— CPV allowed

= tan® = (I-|q/p|)xly = 9 .
 F e No direct CPV

|IIII|IIII|I
+@

S

<

<
II|IIII

® Consider WS measurement with ®=0 4
+

£
= vy’ =|q/p| (Y cos® F x sin®P)

® Different parametrisation

- XI2’)'I2’CDI2

® Current sensitivity already very good

= (D, = 1.7° PRL |11 (2013) 251801

20



Can we do better?

Superweak constraint

= Assumes no new weak phase

= Cuichini et al. (2007)

= Kagan, Sokoloff (2009)

Reducing to 3 parameters

= tan® = (|-|q/p|)x/y

Consider WS measurement with ®=0
- y’i=|q/p|i|(y’ cos® F x’ sin®)
Different parametrisation

= X2 Y12 Pi2

Current sensitivity already very good

=» g(P,,) =1.7°

¢, [deg]

z
20 b CHARM 2015
15 :_ ...................................................................................................................... NO direct CPV
10/~ | |

5
0
-5
-1 O[_ ..........................................................................................................................................................................................
| o
-1 ......................................................................................................................................... Py
-2 ............................... e s 30
| | | | | | | I | | | l | | | 1 | | | I | 4 o

0.2 0.4 0.6 0.8 1 1.2

20
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CPV evolution

LHCb 2011 & CLEO
— WS K1 analyses,

. 10| —
< — <« .
O —

-10— —
—20F— —
~40— —

A 4 Q® Co) o Q Q A v ) %) D )
QQ QQ QQ QQ %Q Q‘\ Q\ A N RS @’\ Q’\ @’\
O & @ & Q O 3 N (@)

21

CDF DACP
Belle & BaBar AGamma

LHCb & CDF 2012
WS Km analyses,
LHCb 2011
AT analysis
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LHCb 2011 & CLEO
_ WS K1 analyses,

¢. 10 —
= F < - CDF DACP
OF -
- ] Belle & BaBar AGamma
10— =
20 =
_30f- \ LHCb & CDF 2012
- . WS K1 analyses
40 - ’
i S\ s ® ® ® O N AN PR AD A A2 ) LHCb 2011
& ¢ &£ & &£ & & & &S &S .
¢ & & N AR R A AT analysis
& 15 s
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LHCb 2011 & CLEO
_ WS K1 analyses,

£ 70 — E CDF DACP
i o E Belle & BaBar AGamma
c — ]
= S =
x 4;_ _i
33— _E
j: T~ LHCb & CDF 2012
E E WS Km analyses,
R I O T TP I R R LHCb 2011
A - AR R S > RO R D R .
¢ & & ¢ ¥ AN A AT analysis
& 15[ =
e_ﬁ B .
10 -
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o -
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& CPV evolution

15

o [

10
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® Stunning precision on @),
= How long will it last?
® |mpact of SM direct CPV may become relevant

® Should compare measurements from singly Cabibbo-
suppressed and doubly CS decays

= DCS should be free of new weak phases
22
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Direct CP violation

act CP violation:
[(DO—f)+I(D°—f)
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CPV in decay

BaBar,
PRL 112 (2014) 211601

LHCDb,

PLB 740 (2015) 158
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® Once upon a time, it looked like there was...

= Updates at this conference

® A growing number of decay modes explored

= Phase-space integrated vs resonance structures

® A number of methods explored

= Model-(in)dependent, (un)binned, triple products, ...

24

m(rc+n®) [GeVZ/ct]

w

r

[y

Thursday afternoon

Significance







Outline

® Part |l

= \Vhereto next!

26



Echoes from the past

A: 1 would think it worthwhile to study the spectroscopy,
decay modes, and production mechanisms of the charmed
particles, assuming their masses are within reach at Fer-
milab, Super CERN and ISR, or at the next generation of
accelerators like PEP, etc., even though I personally am not
convinced of their existence.

B: Thanks, that’s precisely what I am working on now.?

From a fictitious dialogue between two researchers
—an enthusiast and a devil's advocate.

(Gaillard, Lee, Rosner 1975)

27
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particles, assuming their masses are within reach at Fer-
milab, Super CERN and ISR, or at the next generation of
accelerators like PEP, etc., even though I personally am not
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B: Thanks, that’s precisely what I am working on now.?

From a fictitious dialogue between two researchers
—an enthusiast and a devil's advocate.

(Gaillard, Lee, Rosner 1975) Pléidoyel‘ fUI‘ Supel‘-CERN

Wer bezahlt den neuen Beschleuniger?

4. Dezember 1970, 7:00 Uhr DIE ZEIT

e — —eemSeGE
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Echoes from the past

A: 1 would think it worthwhile to study the spectroscopy,
decay modes, and production mechanisms of the charmed
particles, assuming their masses are within reach at Fer-
milab, Super CERN and ISR, or at the next generation of
accelerators like PEP, etc., even though I personally am not
convinced of their existence.

B: Thanks, that’s precisely what I am working on now.?

From a fictitious dialogue between two researchers
—an enthusiast and a devil's advocate.

(Gaillard, Lee, Rosner 1975) P|ad0yel‘ fu r Su pe I‘-C ERN
Wer bezahlt den neuen Beschleuniger?
4. Dezember 1970, 7:00 Uhr DIE ZEIT
—————
NOVEMBER 1, 2015-7:57AM  exopolitikschweiz ;

China baut ein Super-CERN

27




Where to now?

o /oltan: “While the central value of Aacp is much larger
than what was expected in the SM, we cannot yet
exclude that it may be due to a huge hadronic
enhancement in the SM”

# Yuval: “While the central value of Aacp fits nicely in the
SM, we cannot yet exclude that it may be due to NP”

s lopologically the above two statements are
equivalent

» Just like a bagel and a mug are

» Yet, to emphasize, whether Zoltan, me, or anyone
else is the bagel is not the issue

The issue Is how can we keep on checking

Yuval Grossman, Experimental Summary, CHARM 2012
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Where to now?

o /oltan: “While the central value of Aacp is much larger
than what was expected in the SM, we cannot yet
exclude that it may be due to a huge hadronic
enhancement in the SM”

# Yuval: “While the central value of Aacp fits nicely in the
SM, we cannot yet exclude that it may be due to NP .

Topologically the above two statements are
equivalent

» Just like a bagel and a mug are | \?%

Detroit

s Yet, to emphasize, whether Zoltan, me, or anyone | e
else is the bagel is not the issue

s The issue is how can we keep on checking e ,,

Yuval Grossman, Experimental Summary, CHARM 2012
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® Safe bets "

= Belle Il, BESII,
LHCb upgrade,
PANDA

= Expect also
contributions from ATLAS and CMS

® \What else?
= | HCb @ HL-LHC

= Super CERN (whether in China or
around Saleve)

= | inear Collider
= Tau-charm

® Will hear more on Friday
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More than enough?

® O(Pp—¢€C) 4TeV,LHCb acc.~3Mb
= [5%]0'" cE per year in Run 3 (assuming 5fb'|/y)
= 0.6x10 " D —KTT per year in Run 3

= Fven accounting for reconstructlon/selectlon efficiency
and tagging still get up to 10” candidates per year

= |ncreasing luminosity at LHCb by a further order of
magnitude being discussed
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ST Charm the challenge champion

x10°

F LHCb Preliminary
— 2011+12+15 data
C D' —Kwn

" Signal: 633 million

® Charm among the
most abundant
particles produced

= At LHC and
e’e” running at Y (45)

Candidates per 19 keV/c*
—_— [\ W BN W @)
|

0 ] " " " h
1850 1900

LHCb-CONF-2016-005 Kt mass [MeV/c?]

® Technical challenges therefore driven by charm
= Data selection/reconstruction/storage
= Simulation

= Data analysis

31



Data processing

® High rates of low pt particles require complex decisions early
on in trigger chain

= Coarse decisions come with heavy penalties
= Need to avoid burning detectors for little gain

® Minimise repetition in reconstruction steps to reduce CPU
footprint

= Repeated reconstruction is very expensive
® Can we afford storing reduced sets of information for analyses!?

= We have to if we want to exploit the full samples
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® Simulation used to extract efficiencies

= Need particular detail for phase-space dependent
analyses

® Want to simulate at least as many events as in data
sample

= Record with up to 100 Hz

= Simulation can take up to O(100)s

® Need to cut corners without sacrificing precision
= Need to maintain investment

® Some approaches surely applicable across
experiments

= E.g. parallelisation techniques

33
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Data analysis

® Fitting large data sets is a growing challenge
= Will need more and more sophisticated models
= Unbinned fits likely to become impossible

® Data analysis is a perfect playground for parallelisation
= Some analyses already run on GPUs

® In general will need to write efficient code

= Training on this front will be
increasingly important
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Data analysis

® Fitting large data sets is a growing challenge
= Will need more and more sophisticated models
= Unbinned fits likely to become impossible

® Data analysis is a perfect playground for parallelisation
= Some analyses already run on GPUs

® In general will need to write efficient code

= Training on this front will be

increasingly important LHCb Starterkit
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Thinking ahead

® Need to ensure to have highly efficient selections for most
sensitive analyses

= |In mixing/CPYV, is there more to be had from yet-
unexplored multi-body modes!?

® Are there unexplored areas for charm?

= What can LHCDb say 105

=9 :‘i’\ Focus
about H—cc! o 1p* PLB 537 (2002) 192
S
3
= Do we need new 5 10
D lifetime measurements? g 107
| 1 | | I | 1 | 1 | | | | I*-‘ | j-
= |s there a chance to access 0 : 2 3 4

Reduced proper time (ps)

intrinsic charm?

® Make sure to exploit complementarity optimally across
experiments

35



S22 Future collaborations

® |dentify areas where inter-experiment
collaboration is better than the independent/
competitive approach

= Development of amplitude models

= Exploit complementarity of quantum-

correlated measurements (BESIII) with
high statistics samples (Belle || & LHCDb)

= Measurement of effective CP content, ...
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® Charm was discovered over 40 years ago

= Spectroscopy evolved a lot, but still leaves open questions
® Mixing discovery almost |10 years ago

= But can D° mesons change into D° mesons?
® Now:

= LHCb in full swing but also other facilities delivering many results
® Next:

= New facilities: Belle Il, LHCb upgrade, PANDA, ...
® What will they bring?

= Charm baryon spectrum!?

= More exotic states!

= CP violation!?
® Challenges ahead

= Both technical and physics-related

= Exploit synergies wherever possible

® |ots to discuss here in Bologna!
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