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ATLAS and Supercomputers 

u  Current pace of research and discovery is limited by ability of the ATLAS 
computing Grid to generate Monte-Carlo events - ”Grid luminosity limit” 

u  Currently O(100k) cores available to ATLAS worldwide, ¾ dedicated to MC 
production.  

u  Still not enough CPU power ! 

u  Many physics simulation requests have to wait for many months  

u  Supercomputers are rich source of CPUs 

u  ATLAS initiated R&D project aimed at integration of supercomputing and HPC 
resources into ATLAS distributed computing 

u  DOE ASCR supported project aimed at integration of PanDA WMS with Titan 
supercomputer at OLCF is part of this effort 
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ATLAS Production System 

u  Production system is a layer which connects 
distributed computing and physicists in a user 
friendly way 

u  Database Engine for Tasks (DEFT): is responsible 
for definition of the tasks, chains of tasks and also 
task groups (production request), complete with 
all necessary parameters 

u  It also keeps track of the state of production 
requests, chains and their constituent tasks 

u  Job Execution and Definition Interface (JEDI): is an 
intelligent component in the PanDA server to have 
capability for task-level workload management. 

u  Key part of it is ‘Dynamic’ job definition, which 
optimizes usage of resources. 

u  Dynamic job definition in JEDI is also crucial for 
use of multi-core nodes, HPC's, etc 

u  PanDA WMS is job execution layer for the Production 
System 

u  Resource brokerage 

u  Job submissions and resubmissions 
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Task Request Layer: Web UI  

Task Definition Layer: DEFT  

Job Definition Layer: JEDI 

Job Execution Layer: PanDA 



n  ATLAS uses PanDA Workload Management System (WMS) to run jobs on 
WLCG 

n  PanDA   - Production and Data Analysis WMS 

n  Goal: An automated yet flexible WMS which can optimally make  
distributed resources accessible to all users 
n  Adopted as the ATLAS wide WMS in 2008 (first LHC data in 2009) for all 

computing applications 
n  Modular, extensible design, Pilot based WMS 

n  Currently PanDA successfully manages O(10E2) sites, O(10E5) cores, 
O(10E8) jobs per year, serving O(10E3) users per year 

n  Current scale:  ~25M jobs completed per month 

n  PanDA is exascale WMS now -  since 2013 more than Exabyte of data is 
being processed every year. 

 

PanDA WMS in ATLAS 

Sergey Panitkin 5 

For more details about PanDA see talk by T. Maeno – “PANDA for ATLAS Distributed Computing in the Next Decade” 



PanDA Workload Management System  
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#3 
27 PFlops (Peak theoretical performance). Cray XK-7 
18,688 compute nodes with GPUs 

 299,008 CPU cores 

 AMD Opteron 6200 @2.2 GHz (16 cores per node) 

 32 GB RAM per node 

 NVidia TESLA K20x GPU per node 

 32 PB disk storage (center-wide Luster file system) 

 >1TB/s aggregate FS throughput  

29 PB HPSS tape archive 
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Some Titan features that affect integration 
with PanDA 

u  Highly restricted access. One-time password interactive authentication 
u  No portals, gatekeepers, VO boxes. Pilot needs to run on Titan’s interactive 

nodes – login nodes or data transfer nodes  

u  No network connectivity from worker nodes to the outside world 
u  Pilot can not run on worker nodes, needs a new mechanism for batch 

workload management 

u  Limit on number of submitted jobs in batch queue per user and limit on 
number of running jobs per user 

u  Sequential submissions of single node jobs is not an option  

u  Have to use MPI in some form! 

u  Specialized OS (SUSE based CNL) and software stack  
u  Highly competitive time allocation. Geared toward leadership class projects 

and very big jobs 
u  Creates opportunity for backfill. Estimated backfill capacity ~300M hours/year 
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PanDA setup on Titan 

u  Main idea - try to reuse existing PanDA components and workflow 
logic as much as possible 

u  Modified PanDA  pilot runs on Titan’s front end nodes, in user space  
u  All connections to PanDA servers at CERN or Amazon EC2 are 

initiated from the front end nodes by PanDA Pilot over HTTPS 
u  For local HPC batch interface use SAGA-Python (Simple API for Grid 

Applications) framework by Rutgers U. group 
u  http://saga-project.github.io/saga-python/ 

u  Custom light-weight Python MPI wrapper scripts for running (single 
node) workloads in parallel on multiple multi-core WN 

u  Software is installed/ported in advance on Titan’s shared file system 
u  Added capability to PanDA pilot to collect unused resources 

(backfill) on Titan.  
u  Our project is running without allocation on Titan since November 2015 
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PanDA setup on Titan 
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ATLAS production running on Titan in 2016 
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Pure opportunistic backfill mode, no project allocation, ATLAS Geant4 simulations 



ATLAS simulations on Titan 
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Number of events produced per month 



ATLAS CPU consumption vs backfill on Titan 
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•  CSC108 – BigPanDA project on Titan for ATLAS and ALICE 

S          O            N           D           J            F          M          A            M          J            J            A 

From Sep. 2015 to Aug. 2016 



Backfill Utilization Efficiency 
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•  Fraction of otherwise unused resources on Titan utilized by ATLAS from Sep 2015 to Sep 2016 
•  CSC108 – BigPanDA project on Titan for ATLAS and ALICE 

•  ~10% average efficiency 
•  ~27% utilization efficiency  
     reached in August 2016 
•  Up to 2% of total Titan  
     capacity 



u  We completed integration of Titan supercomputer at OLCF with PanDA and ATLAS 
production system in 2015, as a part of US DOE ASCR funded research project - 
“BigPanDA” 

u  Tasks are submitted via ATLAS Production System. Job submission and data movement 
are fully automatic, with transparent data stage-in/out from/to ATLAS Grid 

u  In 2015 Titan was officially validated by the ATLAS to run Geant4 simulations  

u  Since June 2015 we are running ATLAS production tasks on Titan continuously 

u  Average Titan core hours collection per month: ~4M hours 

u  Pure backfill operation, running multiple multi-job pilots (currently up to 76800 cores) 

u  From September 2015 to September 2016, ATLAS project consumed ~52M Titan core 
hours, ~1.5M detector simulation jobs were completed, ~114M events processed 

u  We have shown that we can improve overall Titan utilization by ~2%, while consuming 
up to  ~27% of otherwise unutilized resources, all without negatively impacting Titan’s 
operation and other users on Titan 

u  ALICE is working on integration of Titan with their production system via PanDA 

u  In July 2016 DOE ASCR has funded BigPanDA for another 2 years, to expand 
operations on Titan 
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Summary 



Backup Slides 
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Key Features of PanDA  

u  Pilot based job execution system 
u  Pilot manages job execution on local resources, as well as data movement 

for the job 
u  Payload is sent only after pilot execution begins on CE 
u  Minimize latency, reduce error rates 

u  Modular design 
u  Central job queue 

u  Unified treatment of distributed resources 
u  SQL DB keeps state - critical component 

u  Automatic error handling  and recovery 
u  Extensive monitoring 
u  HTTP/S RESTful communications 
u  GSI authentication 
u  Use of Open Source components  
u  Workflow is maximally asynchronous 
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Backfill Enabled Pilot 

u  Typical LCF facility is ran on average at ~90% occupancy 
u  On a machine of the scale of Titan that translates into ~300M unused 

core hours per year 

u  Anything that helps to improve this number is very useful 
u  We added to PanDA Pilot a capability to collect, in near real time, 

information about current free resources on Titan 
u  Both number of free worker nodes and time of their availability 

u  Based on that information Pilot can define job submission parameters 
when forming PBS script for Titan, thus tailoring the submission to the 
available resource. 

u  Takes into account Titan’s scheduling policies 

u  Can also take into account other limitations, such as workload output 
size, etc 

u  Modular architecture, adaptable to other HPC facilities 
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MPI wrapper for workloads 

u  In order to use Titan efficiently we have to use MPI 
u  We utilize light-weight Python MPI wrapper, specific to each workload type 

u  Uses mpi4py Python module 

u  The wrapper is launched on Titan by PanDA Pilot as MPI job of arbitrary size  
u  Then each wrapper instance knows its MPI rank and serves as “mini-Pilot” 

u  Sets up Titan specific environment – like loading appropriate modules, environment, etc 

u  Sets up workload specific environment 

u  Creates working directory, copies necessary files to $PWD, creates symlinks, etc 

u  Manipulates necessary input files for each rank to ensure uniqueness of every job 
output (random seeds, input file lists, etc) 

u  Launches actual workload as sub-process and waits until it finishes 

u  Performs necessary clean up of working directory or post-processing, if needed 

u  The wrapper allows to run simultaneously, arbitrary single-threaded or multi-
threaded, non-MPI workloads on multiple multi-core worker nodes on Titan 
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