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single large-radius jet with substructure. The observed data are found to be consistent with
the expected backgrounds. Results are interpreted using a simplified model with a Z′ gauge
boson mediating the interaction between dark matter and the Standard Model as well as
a two-Higgs-doublet model containing an additional Z′ boson which decays to a Standard
Model Higgs boson and a new pseudoscalar Higgs boson, the latter decaying into a pair of
dark matter particles.
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1 Introduction

Although dark matter (DM) constitutes the dominant component of matter in the universe, little is known
about its properties and particle content [1]. The leading hypothesis suggests that most DM is in the form
of stable, electrically neutral, massive particles with cosmological constraints indicating that DM interac-
tions with Standard Model (SM) particles occur at a weak scale or below [2]. Collider-based searches for
the particle content of DM provide important information complementary to that from direct and indirect
detection experiments [3].

A traditional dark-matter signature at a proton–proton collider is one where one or more SM particles,
X, are produced and detected, recoiling against missing transverse momentum – with magnitude Emiss

T –
associated with the non-interacting DM candidate. A number of searches at the Large Hadron Collider
(LHC) [4] have been performed recently, where X is considered to be a hadronic jet [5, 6], b− or t−
quarks [7–9], a photon [10–13], or a W/Z boson [14–17]. The discovery of a Higgs boson, h [18, 19],
provides a new opportunity to search for DM production via the h + Emiss

T signature [20–22]. In con-
trast to most of the aforementioned probes, Higgs boson radiation from an initial-state quark is Yukawa-
suppressed. As a result, in a potential signal the Higgs boson would be part of the interaction producing
the DM, providing unique insight into the structure of the DM coupling to SM particles. Recently, the
ATLAS Collaboration has published such searches using 20.3 fb−1 of proton–proton collision data at
√

s = 8 TeV, exploiting the Higgs boson decays to two photons or a pair of bottom quarks [23, 24].

This Letter presents an update on the search for h+Emiss
T , where the Higgs boson decays to a pair of bottom

quarks (h→ bb̄), using 3.2 fb−1 of pp collision data collected by the ATLAS detector at a centre-of-mass
energy of 13 TeV during 2015. The results are interpreted in the context of simplified models of DM,
characterised by a minimal particle content and the corresponding renormalisable interactions [25].

Many simplified models of DM production contain a massive particle which can be a vector, an axial-
vector, a scalar or a pseudoscalar, and mediates the interaction between DM and Standard Model particles.
In this search, simplified models involving a vector mediator are considered following the recommenda-
tion in Ref. [26].

In the first model [21], a vector mediator, Z′, is exchanged in the s-channel, radiates the Higgs boson and
decays into two DM particles. A diagram for this process is shown in Figure 1(a). The vector mediator
has an associated baryon number B , which is assumed to be gauge invariant under U(1)B thus allowing
it to couple to quarks [27]. This symmetry is spontaneously broken to generate the Z′ mass. However,
there is no Z′ coupling to leptons as such couplings are tightly constrained by dilepton searches. Finally,
the dark-matter candidate carries a baryon number, which allows it to couple to quarks through the Z′.
The parameters of this model are as follows: the coupling of Z′ to dark matter (gχ); the coupling of Z′

to quarks (gq); the coupling of Z′ to the SM Higgs boson (gZ′); the mixing angle between the baryonic
Higgs boson, introduced in the model to generate the Z′ mass, and the SM Higgs boson (sin θ); the
Z′ mass (mZ′); and the DM particle mass (mχ).

In the second model, apart from the vector mediator, the SM is extended by an additional Higgs field
doublet, resulting in five physical Higgs bosons [22]: a light scalar h associated with the observed Higgs
boson, a heavy scalar H, a pseudoscalar A, and two charged scalars H±. The vector mediator is produced
resonantly and decays as Z′ → hA in a Type-II two-Higgs-doublet model (2HDM) [28]. The pseudoscalar
A subsequently decays into two DM particles with a large branching ratio. A diagram for this process
is shown in Figure 1(b). To define the model, the ratio of the up– and down–type vacuum expectation
values, tan β, must be specified along with the Z′ gauge coupling, gZ , the DM particle mass, mχ, and the
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Z′ and A masses, mZ′ and mA, respectively. The results presented are for the alignment limit, in which
the h–H mixing angle α is related to β by α = β − π/2. Only regions of parameter space consistent with
precision electroweak constraints [29] and with constraints from direct searches for dijet resonances [30–
32] are considered. As the A boson is produced on-shell and decays into DM, the mass of the DM particle
does not affect the kinematic properties or cross-section of the signal process if it is below half of the A
boson mass. Hence, the Z′-2HDM model is interpreted in the parameter spaces of Z′ mass (mZ′), A mass
(mA) and tan β.
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Figure 1: Diagrams showing the simplified models where (a) a Z′ decays to a pair of DM candidates χχ̄ after
emitting a Higgs boson h, and where (b) a Z′ decays to a Higgs boson h and the pseudoscalar A of a two–Higgs–
doublet model, and the latter decays to a pair of DM candidates χχ̄.

2 ATLAS detector

ATLAS is a multi-purpose particle physics detector [33] at the LHC, with an approximately forward-
backward symmetric and hermetic cylindrical geometry.1 At its innermost part lies the inner detector (ID),
immersed in a 2 T axial magnetic field provided by a thin superconducting solenoid, consisting of silicon
pixel and microstrip detectors, which provide precision tracking in the pseudorapidity range |η| < 2.5. It is
complemented by a transition radiation tracker providing tracking and particle identification information
for |η| < 2.0. Between Run 1 and Run 2 of the LHC, the pixel detector was upgraded by the addition
of a new innermost layer [34] that significantly improves the identification of heavy-flavour jets [35,
36]. The solenoid is surrounded by sampling calorimeters: a lead/liquid-argon (LAr) electromagnetic
calorimeter for |η| < 3.2 and a steel/scintillator tile hadronic calorimeter for |η| < 1.7. Additional LAr
calorimeters with copper and tungsten absorbers provide coverage up to |η| = 4.9. In the outermost
part, air-core toroids provide the magnetic field for the muon spectrometer. The latter consists of three
layers of gaseous detectors: monitored drift tubes and cathode strip chambers for muon identification and
momentum measurements for |η| < 2.7, and resistive-plate and thin-gap chambers for triggering up to
|η| = 2.4. A two-level trigger system, custom hardware followed by a software-based level, is used to
reduce the event rate to about 1 kHz for offline storage.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points towards the centre of the LHC ring, and the y-axis points upwards. Cyl-
indrical coordinates (r, φ) are used in the transverse plane, φ is the azimuthal angle around the beam pipe. The pseudorapidity
η is defined as η = − ln[tan(θ/2)], where θ is the polar angle. Finally, the angular distance ∆R is defined as

√
(∆φ)2 + (∆η)2.
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3 Data and simulation samples

The data sample used in this search, collected during normal operation of the detector, corresponds to an
integrated luminosity of 3.2 fb−1. The primary data sample is selected using a calorimeter-based Emiss

T
trigger with a threshold of 70 GeV. The trigger efficiency for signal events selected by the offline analysis
is about 90% for events with Emiss

T of 150 GeV and reaches 100% for events with Emiss
T larger than

200 GeV.

Signal samples are generated at tree level with MadGraph5_aMC@NLO 2.2.3 [37], interfaced to Py-
thia 8.186 [38] using the NNPDF2.3 parton distribution function (PDF) set [39] and the A14 parameter
tune [40] for parton showering, hadronisation, underlying-event simulation, and for simulation of the
Higgs boson decay to a pair of bottom quarks. For the vector-mediator simplified models, signals are gen-
erated with mediator mass between 10 and 2000 GeV and DM particle mass between 1 and 1000 GeV.
The event kinematics are largely independent of the other parameters of the model, and thus the same
values of these parameters are chosen following the recommendations in Ref. [26]: gχ = 1.0, gq = 1/3,
gZ′ = mZ′ , sin θ = 0.3. For the Z′-2HDM model, pp → Z′ → Ah → χχ̄h samples are produced with Z′

mass values between 600 and 1000 GeV, A mass values between 300 and 800 GeV (where kinematically
allowed), and a DM mass value of 100 GeV. The other parameters chosen for this model are taken to be
tan β = 1.0 and gZ = 0.8.

Higgs boson production in association with a W or Z vector boson, Vh, is modelled using Pythia 8.186
and the NNPDF2.3 PDF set. The samples are normalised using the SM total cross-sections calculated at
next-to-leading order (NLO) [41] and next-to-next-to-leading order (NNLO) [42] in QCD for Wh and Zh,
respectively, and include NLO electroweak corrections [43]. In all cases, the Higgs boson mass is set to
125 GeV.

Simulated samples of vector boson production in association with jets, W/Z+jets, where the W or Z bosons
decay in all leptonic decay modes, are generated using Sherpa 2.1.1 [44], including b- and c-quark mass
effects, and the CT10 PDF set [45]. Matrix elements are calculated for up to two partons at NLO and four
partons at LO using the Comix [46] and OpenLoops [47] matrix element generators and merged with the
Sherpa parton shower [48] using the ME+PS@NLO prescription [49]. The cross-sections are determined
at NNLO [50] in QCD. Furthermore, these backgrounds are split into different components according
to the true flavour of the two jets that are used to identify the flavor of the reconstructed Higgs boson
candidate, as described in Section 5: l denotes a light quark (u, d, s) or a gluon and the heavy quarks are
denoted by c and b. This division is performed to allow accurate modelling of the W/Z+ heavy-flavour
backgrounds in the combined fit described in Section 8.

Diboson production modes, including ZZ, WW, and WZ processes, with one boson decaying hadronic-
ally and the other leptonically are simulated using the Sherpa 2.1.1 generator with the CT10 PDF set.
They are calculated for up to one (ZZ) or zero (WW/WZ) additional partons at NLO and up to three ad-
ditional partons at LO using the Comix and OpenLoops matrix element generators and merged with the
Sherpa parton shower using the ME+PS@NLO prescription. Their cross-sections are determined by the
generator at NLO.

The tt̄ and single-top-quark backgrounds are generated with PowhegBox [51] using the CT10 PDF set.
It is interfaced with Pythia 6.428 [52] to simulate parton showering, fragmentation, and the underlying
event, for which the CTEQ6L1 PDF set [53] and the Perugia 2012 parameter tune [54] are used. The
tt̄ cross-section is determined at NNLO in QCD and next-to-next-to-leading logarithms (NNLL) for soft
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gluon radiation [55], while the single-top-quark cross-sections are fixed to those in Refs. [56–58]. A
top-quark mass of 172.5 GeV is used throughout.

The simulated event samples are processed with the detailed ATLAS detector simulation [59] based
on Geant4 [60]. Effects of multiple proton–proton interactions (pile-up) as a function of the instant-
aneous luminosity are taken into account by overlaying simulated minimum-bias events generated with
Pythia8.186 with the A2 tune [61] and MSTW2008LO PDF set [62] onto the hard-scattering process,
such that the distribution of the average number of interactions per bunch crossing in the simulated event
samples matches that in the data.

4 Object reconstruction

Proton–proton collision vertices are reconstructed using ID tracks with pT > 0.4 GeV. The primary
vertex is defined as the vertex with the highest Σ(ptrack

T )2. Each event is required to have at least one
vertex reconstructed from at least two tracks.

Muon candidates are identified by matching tracks found in the ID to either full tracks or track segments
reconstructed in the muon spectrometer, and are required to satisfy the loose muon identification qual-
ity criteria [63]. Electron candidates are identified as ID tracks that are matched to a cluster of energy
in the electromagnetic calorimeter. Electron candidates must satisfy a likelihood-based identification
requirement [64] based on shower shape and track selection criteria, and are selected using the loose
working point. Both the muons and electrons are required to originate from the primary vertex, to have
pT > 7 GeV, and to lie within |η| < 2.5 for muons and |η| < 2.47 for electrons. They are further required
to be isolated using requirements on the sum of pT of the tracks within a cone around the lepton direc-
tion. The cone size and the requirements are varied as a function of the lepton pT to obtain an efficiency
that is fixed as a function of pT such that a 99% efficiency for prompt leptons is retained across a broad
kinematic range.

Jets are reconstructed in two categories, small-radius (small-R) and large-radius (large-R) jets. In both
cases, the jets are reconstructed from topological clusters of calorimeter cells using the anti-kt jet clus-
tering algorithm [65]. In the case of small-R jets, a radius parameter of R = 0.4 is used and the effects
of pile-up are corrected for by a technique based on jet area [66]. In the case of large-R jets, a radius
parameter of R = 1.0 is used and the jet trimming algorithm [67, 68] is applied to minimise the impact
of energy depositions due to pile-up and the underlying event. This algorithm reconstructs subjets within
the large-R jet using the kt algorithm [69] with radius parameter Rsub = 0.2 and removes any subjet with
pT less than 5% of the large-R jet pT. The jet energy scale, and also in the case of large-R jets the jet
mass scale, is calibrated using pT- and η-dependent factors determined from simulation, with small-R
jets receiving further calibrations using in situ measurements [70]. Small-R jets within the ID accept-
ance, |η| < 2.5, are called central in the following and are required to satisfy pT > 20 GeV. Those with
2.5 < |η| < 4.5 are called forward and are required to satisfy pT > 30 GeV. To reduce the effects of
pile-up in small-R jets with pT < 50 GeV and |η| < 2.5, a significant fraction of the tracks associated with
each jet must have an origin compatible with the primary vertex, as defined by the jet vertex tagger [71].
Furthermore, small-R jets are removed if they are within a ∆R = 0.2 cone around an electron candidate.
Large-R jets are required to satisfy pT > 250 GeV and |η| < 2.0.

Track jets are built from tracks using the anti-kt algorithm with R = 0.2. Track jets with pT > 10 GeV
and |η| < 2.5 are selected and are matched by ghost-association [72] to large-R jets. Small-R jets and
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track jets containing b-hadrons are identified–“b-tagged”–using a boosted decision tree that combines
information about the impact parameter and reconstructed secondary vertices of the tracks associated with
these jets [35, 36, 73]. A working point is used which achieves an average efficiency of 70% in identifying
small-R calorimeter jet (track jet) containing a b-hadron with misidentification probabilities of ∼ 12
(18)% for charm-quark jets and ∼ 0.2 (0.6)% for light-flavour jets, as determined in a simulated sample
of tt̄ events. Track jets have higher misidentification probabilities due to the smaller radius parameter
used.

The missing transverse momentum, ~Emiss
T , is defined as the negative vector sum of the transverse momenta

of the calibrated physics objects (electrons, muons, small-R jets), with unassociated energy depositions,
referred to as the soft-term, accounted for using ID tracks with pT > 0.5 GeV [74, 75]. Furthermore, a
track-based missing transverse momentum vector, ~p miss

T , is calculated as the negative vector sum of the
transverse momenta of tracks with |η| < 2.5, consistent with originating from the primary vertex.2

5 Event selection

For an event to be considered in the search, it is required to have Emiss
T > 150 GeV, pmiss

T > 30 GeV, and
no identified, isolated muons or electrons. This is referred to as the zero-lepton region.

Events with Emiss
T less than 500 GeV are considered in the resolved region. First, this set of events is

required to have at least two central small-R jets. Following this selection, the reconstructed small-R jets
are ranked as follows. First, the central jets are divided into two categories, those that are b-tagged and
those that are not. Each of these samples of jets are ordered in decreasing pT. The ordered set of b-tagged
jets is considered with the highest priority, while those that are central but not b-tagged are considered
with second priority, and finally any forward jets, ordered in decreasing pT, are considered last. The
two most highly ranked jets are used to reconstruct the Higgs boson candidate, hr, and therefore cannot
contain forward jets. Furthermore, at least one of the jets constituting hr must satisfy pT > 45 GeV.
Finally, events are divided into three categories based on the number of central jets that are b-tagged
being either zero, one, or two b-tagged central jets. To achieve a high Emiss

T trigger efficiency, events are
retained if the scalar sum of the pT of the three leading jets is greater than 150 GeV. This requirement is
lowered to 120 GeV if only two central small-R jets are present.

Additional selections are applied to further suppress the multijet background. Specifically, to reject events
with Emiss

T due to mismeasured jets a requirement is placed on the minimum azimuthal angle between the
direction of the Emiss

T and each of the jets, min
(
∆φ

(
~Emiss

T , jets
))
> 20◦, for the three highest-ranked jets.

Furthermore, the azimuthal angle between the ~Emiss
T and the ~p miss

T , ∆φ
(
~Emiss

T , ~p miss
T

)
, is required to be

less than 90◦, to suppress events with misreconstructed missing transverse momentum. The Higgs boson
candidate is required to be well separated in azimuth from the missing transverse momentum by requiring
∆φ

(
~Emiss

T , hr
)
> 120◦. Finally, to reject back-to-back dijet production, the azimuthal opening angle of the

two jets forming the Higgs boson candidate is required to be ∆φ
(

j1hr
, j2hr

)
< 140◦.

The DM signal is expected to have large Emiss
T , whereas the background is expected to be most prominent

at low Emiss
T . Therefore, to retain signal efficiency while preserving the increased sensitivity of the high

2 Throughout this search, the magnitude of ~Emiss
T is referred to as Emiss

T and the magnitude of ~p miss
T is referred to as pmiss

T . Only
when the directionality is necessary does the notation use the vector symbol.
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Emiss
T region, events in the resolved region are separated into three categories based on the reconstructed

Emiss
T : 150–200 GeV, 200–350 GeV, and 350–500 GeV.

In the merged region–composed of events with Emiss
T in excess of 500 GeV–the presence of at least one

large-R jet is required, associated with at least two track jets [76], and the highest pT large-R jet is taken
as the reconstructed Higgs candidate. In an analogous way to the resolved region, the events are classified
based on the number of b-tagged track jets associated with the large-R jet into three categories with zero,
one, and two or more b-tags.

The combined selection of both the resolved and merged selections in the signal region with two or more
b-tags yields a signal acceptance times efficiency ranging between 5 and 30%. The primary change in the
signal acceptance is due to the choice of masses (e.g. mZ′ and mA) in the point of parameter space being
probed.

The search is performed by implementing a shape fit of the reconstructed dijet mass (mjj) or single large-R
jet mass (mJ) distribution. After event selection, the energy calibration of the b-tagged jets is improved
as follows. The invariant mass of the candidate is corrected [77] if a muon is identified within ∆R = 0.4
of a b-tagged small-R jet, or within ∆R = 1.0 of the large-R jet. The four-momentum of the closest muon
in ∆R within a jet is added to the calorimeter-based jet energy after removing the energy deposited in
the calorimeter by the muon (muon-in-jet correction). Additionally, a simulation-based jet-pT-dependent
correction [77] is applied in the case of b-tagged small-R jets to improve the signal resolution of the
reconstructed Higgs mass peak. Events consistent with a DM signal would have a reconstructed mass
near the Higgs boson mass, thereby allowing the sidebands to act as a natural control region to further
constrain the backgrounds estimated from dedicated W/Z + jets and tt̄ control regions and the multijet
estimates described in Section 6.

6 Background estimation

The background is mainly composed of SM W/Z + jets and tt̄ events, which constitute 15–65% and
45–80% of the total background, respectively, depending on the Emiss

T value. The model for these back-
grounds is constrained using two dedicated control regions. Other backgrounds, including diboson, Vh,
and single top-quark production, constitute less than 15% of the total background and the estimation
is modelled using simulated event samples. The contribution from multijet events arises mainly from
events containing jets containing semi-muonic decays of b-hadrons. It constitutes less than 2% of the
background in the resolved region and is negligibly small in the merged region, and is estimated using a
data-driven technique.

In addition to the zero-lepton region, which serves as a control region to constrain the Z + jets background
in the zero-b-tag case and via the reconstructed mass sidebands that enter in the fit as described in Sec-
tion 8, two dedicated control regions are used to constrain the main W/Z + jets and tt̄ backgrounds. These
control regions are defined based on the number of leptons and b-tags in the event and are orthogonal to
each other and to the signal region.

The one-muon control region is designed to constrain the W + jets and tt̄ backgrounds. Events are selected
using the Emiss

T trigger and are required to have exactly one muon candidate and no electron candidates.
Furthermore, the full signal region selection is applied after modifying the Emiss

T observable to mimic the
behaviour of such events that contaminate the signal region by adding the pT of the reconstructed muon
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to the Emiss
T . As in the signal region, these events are divided into exclusive regions based on the number

of b-tags. This division naturally separates tt̄ from W + jet events.

The two-lepton control region is used to constrain the Z + jets background contribution. Events are
collected using a single-electron or single-muon trigger and selected by requiring exactly one electron
pair or muon pair. Of these two leptons, one is required to have pT > 25 GeV. The electron (muon) pair
must have an invariant mass 83 < m`` < 99 GeV (71 < m`` < 106 GeV). In the muon channel, where
a larger mass window is used, an opposite-charge requirement is also applied. Furthermore, the missing
transverse momentum significance, defined as the ratio of Emiss

T to the square root of the scalar sum of
lepton and jet pT in the event, is required to be less than 3.5 GeV1/2 in order to reject tt̄ background.
In this control region, the transverse momentum of the dilepton system, pV

T , is used–instead of Emiss
T –to

match the division of the resolved and merged regions and the categorisation of the resolved events. Other
than the above, the event selection and Higgs boson candidate requirements are the same as in the signal
region.

The multijet background for the resolved analysis is determined using a data-driven method. A sample
of events selected to satisfy the analysis trigger, pmiss

T requirement, and inverted min(∆φ(~Emiss
T , jets)) re-

quirement, is used to provide multijet templates of all the distributions relevant to the analysis. These
templates are normalised by a fit to the distribution of the number of small-R jets that contain a muon in
the nominal selection. The fit is performed separately for each b-tag category. Since agreement is found
between the categories the average normalisation scale factor is used. In the merged region, it was found
that the requirement of high Emiss

T suppresses the multijet background to a negligible level. Therefore it
is not included as a background in the search.

7 Systematic uncertainties

The most important experimental systematic uncertainties arise from the determination of the b-tagging
efficiency and mistag rate, the luminosity determination and uncertainties associated with the calibration
of the scale and resolution of the jet energy and mass. The uncertainties in the small-R jet energy scale
have contributions from in situ calibration studies, from the dependence on pile-up activity and on flavour
composition of jets, and from the changes of the detector and run conditions between Run 1 and Run 2 [78,
79]. The uncertainty in the scale and resolution of large-R jet energy and mass are evaluated by comparing
the ratio of calorimeter-based to track-based measurements in dijet data and simulation [80]. The b-
tagging efficiency uncertainty arises mainly from the uncertainty in the measurement of the efficiency in
tt̄ events [73, 81].

Other experimental systematic uncertainties with a smaller impact are those in the lepton energy and
momentum scales, and lepton identification and trigger efficiencies [63, 82, 83]. An uncertainty in the
Emiss

T soft-term resolution and scale is taken into account [74], and uncertainties due to the lepton energy
scales and resolutions, as well as reconstruction and identification efficiencies, are also considered, al-
though they are negligible. The uncertainty in the integrated luminosity amounts to 2.1%, and is derived
following a methodology similar to that detailed in Ref. [84].

Uncertainties are also taken into account for possible differences between data and the simulation mod-
elling used for each process. The Sherpa W + jets and Z + jets background modelling is studied in the
one and two lepton control regions, respectively, as a function of pT of the vector boson, the mass mjj
or mJ and the azimuthal angle difference ∆φjj between the small-R jets used to reconstruct the Higgs in
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the resolved region. The shape of the data distributions is described by the simulation with no indic-
ation that a correction is needed. A shape uncertainty in these variables is derived, encompassing the
data/simulation differences. An uncertainty in the Sherpa description of the flavour composition of the
jets in these backgrounds is derived by comparing to MadGraph. The top-quark background modelling is
studied in the dedicated one lepton control region, and in a two lepton control region using eµ pairs. Both
the pT and mass of the two small-R jet system are studied. A systematic uncertainty is derived based on
the data/simulation comparison in these regions.

The normalisations of the W + bb̄, Z + bb̄, and tt̄ contributions are determined directly from the data by
leaving them as free parameters in the combined fit. The normalisations of the other W/Z + jets back-
ground contributions are obtained from theory predictions, with assigned normalisation uncertainties of
10% for W/Z + l, 30% for W/Z + cl and a 30% uncertainty is applied to the relative normalisation between
W/Z + bc/bl/cc to W/Z + bb̄. In addition, the following normalisation uncertainties are assigned to the
background processes: 4% for single-top in the s- and t- channels, 7% for single-top in the Wt- chan-
nel [85, 86], and 50% for associated (W/Z)h [77, 87] production. The sources of uncertainty considered
for the cross-sections for the diboson production (WW, WZ and ZZ) are the renormalisation and factor-
isation scales, the choice of PDFs and parton-shower and hadronisation model. The multijet contribution
is estimated from data and is assigned a 50% uncertainty. Uncertainties arising from the size of the
simulated event sample are also taken into account.

Uncertainties in the signal acceptance from the choice of PDFs, from the choice of factorisation and
renormalisation scales, and from the choice of parton-shower and underlying-event tune have been taken
into account in the analysis. These are typically < 10% each, although they can be larger for regions with
low acceptance at either low or high Emiss

T depending on the model and the choice of masses. In addition,
uncertainties arising from the limited number of simulated events have been taken into account.

The contribution of the various sources of uncertainty for an example production scenario is given in
Table 1.

8 Results

Results are extracted by means of a profile likelihood fit to the reconstructed invariant mass distribution of
the dijet system or single-large-R-jet simultaneously in all signal and control regions. The normalisations
of the major backgrounds are contrained by the data in both the signal and control regions. The shapes
of the background distributions are taken from Monte Carlo simulations but can be modified within the
systematic errors listed in Section 7. The spectra entering the fit are those from the three selections
associated with the number of leptons with each of these regions divided into three categories based on
the number of b-tags and four kinematic regions. In the zero-lepton region, this division is based on
Emiss

T while in the one- and two-lepton regions, it is based on pT(µ, Emiss
T ) and pT(`, `), respectively. The

shape information is not used in the zero-b-tag distributions in order to simplify the fit. This division
is designed to isolate, and more effectively constrain, different backgrounds. In particular, the Z + jets
background normalisation is constrained both by the sample of events containing two leptons and those
containing zero leptons and zero b-tags. In addition, the set of events containing one lepton and zero
b-tags constrains the W + jets normalisation while those containing one or two b-tags constrain both
the W + jets and tt̄ normalisations. The parameter of interest in the fit is the signal yield, while all
parameters describing the systematic uncertainties and their correlations are included in the likelihood
function as nuisance parameters, with Gaussian constraints, implemented using the framework described
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Source of Uncertainty Impact [%]
Total 23.0
Statistical 20.5
Systematic 10.3

Experimental Uncertainties
b-tagging 6.6
Luminosity 4.4
Jets+Emiss

T 2.8
Leptons 0.4
Theoretical and Modelling Uncertainties
Top 5.1
Z+jets 3.4
Signal 2.6
W+jets 1.5
Diboson 0.6
Multijet 0.5
Vh (h→ bb) 0.4

Table 1: The percentage impact of the various sources of uncertainty on the expected production cross-section for
the signal in the vector-mediator model with mZ′ = 2000 GeV and mχ = 1 GeV, normalised to a cross section of 0.1
pb.

in Refs. [88, 89]. The nuisance parameters with the largest effect on the determination of the parameter
of interest are the flavour-tagging and jet systematic uncertainties, together with the normalisation of the
tt̄ and W + bb̄ backgrounds. The reconstructed Higgs boson candidate mass distribution is shown in
Figure 2 in each of the Emiss

T categories for the set of events with two b-tags with the integrated event
yields shown in Table 2. Furthermore, shown in Figure 3 is the Emiss

T distribution in the signal region,
noting that in the two portions of the spectrum, below and above Emiss

T = 500 GeV, the requirements on
the hadronic activity are taken from the small-R and large-R jets, respectively. No significant excess of
events is observed above the background, with the global significance of the deviation of the data from
the background-only prediction being 0.056.

Upper limits on the production cross-section for the process times branching ratio of the Higgs boson
decaying to two bottom quarks (σ(pp → hχχ) × BR(h → bb)) are set at 95% confidence level using
the CLs modified frequentist formalism [90] with the profile-likelihood-ratio test statistic [91]. For the
Z′-2HDM model, these limits range from 191.3 fb for a Z′ mass of 600 GeV and an A mass of 300
GeV to 6.72 fb for a Z′ mass of 1600 GeV and an A mass of 600 GeV. For the vector mediator model
interpretation, the limits range from 1.01 pb for a mediator mass of 50 GeV and a dark matter mass of 1
GeV to 40.3 fb for a mediator mass of 800 GeV and a dark matter mass of 500 GeV. These are further
interpreted as lower limits on the mass parameters of interest in the specific model. In Figure 4(a) the
Z′-2HDM exclusion contour in the (mZ′ ,mA) plane for tan β = 1, mχ = 100 GeV is presented, with limits
more stringent than obtained in Run 1, excluding Z′ masses up to 1950 GeV and A masses up to 500
GeV. In Figure 4(b), the exclusion contour is shown in the (mZ′ ,mχ) plane for the vector mediator model
described in Section 3. This interpretation was not performed in Run 1 and the mass reach for this choice
of couplings excludes Z′ masses below 700 GeV for low DM mass.
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Figure 2: The reconstructed dijet and single jet invariant mass distribution in the resolved and the merged signal
regions for the case where two b-tags have been identified for the four kinematic regions. The Standard Model
background expectation is shown before (after) the profile likelihood fit by the dashed blue line (solid histograms)
with the bottom panel showing the ratio of the data to the predicted background after the combined fit with no signal
included. For visual clarity the various components of the W/Z + jets (bb̄, bc, bl, cc̄, cl, ll) backgrounds have been
merged and labelled W + jets and Z + jets. The expected signal in the vector-mediator model with mZ′ = 2 TeV and
mχ = 1 GeV, normalised with a cross-section of 0.1 pb, is also shown.
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Figure 3: The reconstructed Emiss
T distribution in the combined resolved and merged two-b-tag signal regions. The

Standard Model prediction is shown before (after) the profile likelihood fit by the dashed blue line (solid histograms)
with the bottom panel showing the ratio of the data to the predicted background after the combined fit with no signal
included. For visual clarity the various components of the W/Z + jets (bb, bc, bl, cc, cl, ll) backgrounds have been
merged and labelled W + jets and Z + jets. The multijet background is found to be negligible in the merged region.
The expected signal in the vector-mediator model with mZ′ = 2 TeV and mχ = 1 GeV, normalised with a cross-
section of 0.1 pb, is also shown.

Emiss
T Resolved Merged

[GeV] 150–200 200–350 350–500 >500

Z + jets 259 ± 27 171 ± 13 14.6 ± 1.2 3.80 ± 0.44
W + jets 95 ± 28 70 ± 22 7.5 ± 2.4 2.48 ± 0.71
tt̄ & Single top 1444 ± 44 656 ± 25 30.8 ± 1.4 4.9 ± 0.9
Multijet 21 ± 10 11.0 ± 5.0 0.58 ± 0.27 –
Diboson 17.8 ± 1.6 18.7 ± 1.0 2.53 ± 0.22 1.20 ± 0.12
SM Vh 2.8 ± 1.3 2.8 ± 1.4 0.46 ± 0.23 0.15 ± 0.08
Total Bkg. 1840 ± 33 930 ± 20 56.5 ± 2.1 12.5 ± 1.3
Data 1830 942 56 20
Exp. Signal 8.0 ± 0.8 24.5 ± 1.8 16.1 ± 1.2 14.9 ± 3.4

Table 2: The numbers of predicted background events following the profile likelihood fit for each background pro-
cess, the sum of all background components, and observed data yields in the two b-tag signal region of the resolved
and merged channels for each Emiss

T region. Statistical and systematic uncertainties are combined. The uncertainties
in the total background take into account the correlation of systematic uncertainties among different background
processes. The expected signal in the vector-mediator model with mZ′ = 2000 GeV and mχ = 1 GeV.
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Figure 4: Exclusion contours for (a) the Z′-2HDM in the (mZ′ ,mA) plane for tan β = 1 and mχ = 100 GeV and (b)
the vector-mediator model in the (mZ′ ,mχ) plane for sin θ = 0.3, gχ = 1, gq = 1/3 and gZ′ = mZ′ . The expected
limits are given by the dashed lines, while the green and yellow bands indicate the ±1σ and ±2σ uncertainty bands,
respectively. The observed limits are given by the solid lines. The parameter space below the limit contours are
excluded at 95% confidence level. Shown for the Z′-2HDM exclusion is the observed limit from the Run 1 search
while no such exclusion is shown from Run 1 for the vector-mediator model as it was not used for interpretation in
the Run 1 ATLAS search.
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9 Conclusion

A search is presented for dark-matter pair production in association with a Higgs boson decaying into
two b-quarks, using 3.2 fb−1 of pp collisions collected at

√
s = 13 TeV by the ATLAS detector at the

LHC. Two regions are considered, a low-Emiss
T region where the two b-quark jets from the Higgs boson

decay are reconstructed separately and a high-Emiss
T region where they are reconstructed inside a single

large-radius trimmed jet.

The data are found to be consistent with the background expectation and the results are interpreted for
two simplified models involving a massive vector mediator. In the Z′-two-Higgs-doublet, constraints are
placed on the (mZ′ ,mA) space and found to exclude a wide range of Z′ masses with the pseudo-scalar
Higgs mass exclusion reaching up to 500 GeV. In the context of the vector mediator model, constraints
are placed in the two-dimensional space of (mZ′ ,mχ) and found to exclude vector mediators with masses
up to 700 GeV.
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