ICHEP2016 Poster Session – Chicago, 6 August 2016

Performance of Monte Carlo Event Generators for the Production of Boson and Multi-Boson States ATLAS Analyses

Fully leptonic VV + jets

Baseline generators for Run 2:

SHERPA 2.1: multi-leg VV + 0j @ NLO + 1, 2, 3j @ LO $+ \ge 4j$ @ PS using OPENLOOPS, CT10NLO and authors' default tune, ZZ also with 1j @ NLO SHERPA 2.2: multi-leg VV + 0, 1j @ NLO + 2, 3j @ LO $+ \ge 4j$ @ PS using OPENLOOPS, NNPDF3.0NNLO and authors' (new) default tune POWHEG+PYTHIA8: NLO POWHEGBOX v2 (CT10NLO) showered with PYTHIA8 (CTEQ6L1) using AZNLO and EvtGen

► also dedicated calculations for electroweak *VVjj* and loop-induced *VV*

initial and

final state radiation

- calculate matrix elements at leading order (LO) or next-to-leading order (NLO)
- obtain additional multiplicities through parton shower (PS) or multi-leg formalisms
- avoid double counting using matching schemes (CKKW-L, MLM, FxFx, etc.)
- tune non-perturbative parameters for parton shower, hadronisation and the underlying event

V + jets

- powerful testing ground to study QCD aspects and for comparison to state-of-the art calculations
- important background in Higgs precision measurements and for many new physics searches
- Baseline generators for Run 2:

Simulating proton-proton collisions

hadron decays

SHERPA 2.1: multi-leg V + 0, 1, 2j @ NLO + 3, 4j @ LO + $\ge 5j$ @ PS using OPENLOOPS, CT10NLO and authors' default tune

SHERPA 2.2: multi-leg V + 0, 1, 2j @ NLO + 3, 4j @ LO + $\geq 5j$ @ PS using OPENLOOPS, NNPDF3.0NNLO and authors' (new) default tune

- generally good agreement between generators
- ► forward activity excess in SHERPA 2.1 problematic for VBS-sensitive analyses
- NLO+PS approach clearly insufficient to describe multi-jet configurations adequately
- 4–5% cross section uncertainty estimated using parton-level calculation (MCFM), explicit scale variations produced for SHERPA 2.1

Semileptonic VV + jets

Baseline generators for Run 2:

SHERPA 2.1: multi-leg VV + 0j @ NLO + 1,2,3j @ LO + $\geq 4j$ @ PS using OPENLOOPS, CT10NLO and authors' default tune, ZZ also with 1j @ NLO, no matrix-element b-quark for WW to exclude top contributions SHERPA 2.2: multi-leg VV + 0, 1j @ NLO + 2,3j @ LO + $\geq 4j$ @ PS using OPENLOOPS, NNPDF3.0NNLO and authors' (new) default tune, no matrix-element b-quark for WW to exclude top contributions POWHEG+PYTHIA8: NLO POWHEGBOX v2 (CT10NLO) showered with PYTHIA8 (CTEQ6L1) using AZNLO and EVTGEN

- MADGRAPH+PYTHIA8: Multi-leg $V + \leq 4j$ @ LO, $\geq 5j$ @ PS with CKKW-L matching to PYTHIA8 using A14-based tune variations with NNPDF2.3LO ('A') or NNPDF3.0NLO ('B')
- Investigate aMC@NLO matched to PYTHIA8 using the FxFx prescription and NNPDF2.3NLO to calculate V + 0, 1, 2j @ NLO
- also dedicated calculations for electroweak Vjj available

- forward activity excess in SHERPA 2.1; modelling improved in SHERPA 2.2
- SHERPA 2.1 slightly underpredicts rate of high-p_T b-jets; remedied in SHERPA 2.2

- generally good agreement between generators
- ► POWHEG+PYTHIA8 predictions mostly within SHERPA 2.1 scale variations
- mismodelling of jet p_T spectra visible for POWHEG+PYTHIA8, in particular third-jet p_T spectrum insufficiently described (problematic for VBS analyses applying third-jet veto)
- ► 6% cross section uncertainty estimated using MCFM; explicit scale variations for SHERPA 2.1

VVV + jets

- ► Baseline generators for Run 2:
 - SHERPA 2.1: multi-leg on-shell VVV + 0j @ NLO + 1, 2j @ LO + \geq 3j @ PS using OPENLOOPS, CT10NLO and authors' default tune, no matrix-element *b*-quarks to exclude top contributions
 - VBFNLO: LO VVV production using CTEQ6L1 including on-shell Higgs-strahlung production, showered with PYTHIA8 using A14 tune

WWW \rightarrow 3I+3v, \geq 3 lepton selection		WWW \rightarrow 3I+3v, \geq 3 lepton selection	
ATLAS Simulation Preliminary	vents	ATLAS Simulation	Preliminary
10	Ш	10	
VBFNLO 2.7.0 + PYTHIA8	=	Ē	→ VBFNLO 2.7.0 + PYTHIA8
☐ VBFNLO 2.7.0 + PYTHIA8 (H v	veto)	E	→ VBFNLO 2.7.0 + PYTHIA8 (H veto)

- b-jet p_T spectrum overestimated by MADGRAPH+PYTHIA8 predictions
- excellent description of jet multiplicities in early 13 TeV Z+jets data
- systematic uncertainties estimated using variations of the factorisation scale, the renormalisation scale, the resummation scale and the CKKW merging scale, each varied by factors of 2 and 0.5

- generally good agreement between generators once Higgs contribution is accounted for
- VBFNLO normalisation expected to be lower due to different accuracy
- ► jet multiplicity described better by multi-leg formalisam

Further documentation

- ► ATLAS Collaboration, Monte Carlo Generators for the Production of a W or Z/γ* Boson in Association with Jets at ATLAS in Run 2, ATL-PHYS-PUB-2016-003, and references therein
- ► ATLAS Collaboration, Multi-Boson Simulation for 13 TeV ATLAS Analyses, ATL-PHYS-PUB-2016-002, and references therein

Christian Gütschow (UCL), for the ATLAS Collaboration

