Molecular components in $D_{s0}^{\ast}(2317)$ and $D_{s1}(2460)$ mesons

DIDURTION IDENTIFY and SET UP: The production of the $D_{s0}^*(2317)$ and $D_{s1}(2460)$ mesons of the discovery in 2003 of the $D_{s0}^*(2317)$ and $D_{s1}(2460)$ mesons are very analysis of the $D_{s0}^*(2317)$ and $D_{s1}(2460)$ mesons are very narrow states located, respectively, below the *DK* and *D's* threshold this is markedly in contrast with the expectations of naive quark models and heavy quar symmetry. We address the mass shifts of the *c*s ground states with quantum number $J^P = 0^+$ ($D_{s0}^*(2317)$) and $J^P = 1^+$ ($D_{s1}(2460)$) using a nonrelativistic constituent quar model in which quark-antiquark and meson-meson degrees of freedom are incorporate the quark model has been applied to a wide range of hadronic observables and thus the discovery quark symmetry. We address the mass hifts of the *c*s ground states with quantum number $J^P = 0^+$ ($D_{s0}^*(2317)$) and $J^P = 1^+$ ($D_{s1}(2460)$) using a nonrelativistic constituent quar model in which quark-antiquark and meson-meson degrees of freedom are incorporate. The quark model has been applied to a wide range of hadronic observables and thus the model parameters are completely constrained. We observe that the coupling of the 0'' (I'' meson sector to the DK (D^*K) threshold is a key feature in lowering the masses of the orresponding $D_{s0}^*(2317)$ and $D_{s1}(2460)$ states predicted by the naive quark model, be also in describing the $D_{s1}(2350)$ meson as the 1* state of the $j_q^F = 3/2^+$ doublet predicte by heavy quark symmetry and thus reproducing its strong decay properties. Two featur of our formalism cannot be address nowadays by other approaches: the coupling of d D-wave D^*K threshold in the $J^P = 1^+ c\bar{s}$ channel and the computation of the probabilitivit associated with different Fock components in the physical state. Abstract. Different experiments have confirmed that the $D_{s0}^*(2317)$ and $D_{s1}(2460)$ mesons are very narrow states located, respectively, below the DK and D^*K thresholds. This is markedly in contrast with the expectations of naive quark models and heavy quark symmetry. We address the mass shifts of the $c\bar{s}$ ground states with quantum numbers $J^P = 0^+ (D_{s0}^*(2317))$ and $J^P = 1^+ (D_{s1}(2460))$ using a nonrelativistic constituent quark model in which quark-antiquark and meson-meson degrees of freedom are incorporated. The quark model has been applied to a wide range of hadronic observables and thus the model parameters are completely constrained. We observe that the coupling of the 0^+ (1⁺) meson sector to the $DK(D^*K)$ threshold is a key feature in lowering the masses of the corresponding $D_{s0}^{*}(2317)$ and $D_{s1}(2460)$ states predicted by the naive quark model, but also in describing the $D_{s1}(2536)$ meson as the 1⁺ state of the $j_q^P = 3/2^+$ doublet predicted by heavy quark symmetry and thus reproducing its strong decay properties. Two features of our formalism cannot be address nowadays by other approaches: the coupling of the *D*-wave D^*K threshold in the $J^P = 1^+ c\bar{s}$ channel and the computation of the probabilities

Prior to the discovery in 2003 of the $D_{s0}^{*}(2317) (J^{P} = 0^{+}) [1]$ and $D_{s1}(2460) (1^{+}) [2]$ resonances, the heavy-light meson sectors were reasonably well understood in the $m_0 \rightarrow \infty$ limit. In such a limit, heavy quark symmetry (HQS) holds [3]. The heavy quark acts as a static color source, its spin s_Q is decoupled from the total angular momentum of the light quark j_q and they are separately conserved. Then, the heavy-light mesons can be organized in doublets, each one corresponding to a particular value of j_q and parity. For the lowest P-wave charmed-strange mesons, HQS predicts two doublets which are labeled by $j_q^P = 1/2^+$ with $J^P = 0^+$, 1^+ and $j_q^P = 3/2^+$ with $J^P = 1^+$, 2^+ . Moreover, the strong decays of the $D_{sJ}(j_q = 3/2)$ proceed only through D-waves, while the $D_{sJ}(j_q = 1/2)$ decays happen only through S-waves [3]. The D-wave decay is suppressed by the barrier factor which behaves as q^{2L+1} where q is the relative momentum of the two decaying mesons. Therefore, states decaying through D-waves are expected to be narrower than those decaying via S-waves.

The $D_{s0}^*(2317)$ and $D_{s1}(2460)$ mesons are considered to be the members of the $j_q^P = 1/2^+$ doublet and thus being almost degenerated and broad due to its S-wave decay. However, neither experimental values of their masses nor their empirical widths accommodate into the theoretical expectations.

^{*}Currently at Instituto de Física Corpuscular (IFIC), CSIC-Universidad de Valencia, E-46071 Valencia, Spain

^{**}speaker, e-mail: jorge.segovia@tum.de

Figure 1. Energy levels from constituent quark model (CQM), from Lattice QCD [16] using Ensemble (1) and Ensemble (2), and from experiment [26]. We show, for CQM results, the quark-antiquark value taking into account the OGE potential (α_s) , including its one-loop corrections (α_s^2) and coupling with the *DK* threshold. For the lattice QCD results, in each ensemble, we show values with just a $q\bar{q}$ interpolator basis and with a combined basis of $q\bar{q}$ and *DK* interpolating fields. The value of the bound $D_{s0}^*(2317)$ state position in the infinite volume limit $V \to \infty$ is obtained by an analytical continuation of the scattering amplitude combined with Lüscher's finite volume method. The dashed lines represent the threshold for *DK* in each approach and the dotted lines are the thresholds for D^0K^+ and D^+K^0 in experiment.

These results led to many theoretical speculations about the nature of these resonances ranging from conventional $c\bar{s}$ states [4, 5] to molecular or compact tetraquark interpretations [6–12].

Certainly quark models predict $c\bar{s}$ ground states with quantum numbers $J^P = 0^+$ and 1^+ that do not fit the experimental data. As the predictions of the quark models are roughly reasonable for other states in the charmed-strange sector [13], one must expect that the $D_{s0}^*(2317)$ and $D_{s1}(2460)$ resonances should be modifications of the genuine $c\bar{s}$ states rather than new states out of the systematics of the quark model. On this respect, particularly relevant was the suggestion [14, 15] that the coupling of the $J^P = 0^+$ (1⁺) $c\bar{s}$ state to the DK (D^*K) threshold plays an important dynamical role in lowering the bare mass to the observed value. Moreover, in a recent lattice study of the $D_{s0}^*(2317)$ and $D_{s1}(2460)$ mesons [16], good agreement with the experimental mass was found when operators for $D^{(*)}K$ scattering states are included.

In this contribution to the proceedings we present the work performed in Ref. $[17]^1$. Therein, we study the low-lying *P*-wave charmed-strange mesons using a nonrelativistic constituent quark model in which quark-antiquark and meson-meson degrees of freedom are incorporated. The constituent quark model (CQM) was proposed in Ref. [18] (see references [19] and [20] for reviews). This model successfully describes hadron phenomenology and hadronic reactions and has been recently applied to mesons containing heavy quarks (see, for instance, Refs. [21–25]).

2 Results for the $D_{s0}^*(2317)$ meson

Figure 1 compares our results for the $D_{s0}^*(2317)$ meson with the lattice QCD study of Ref. [16] and with experiment [26]. Instead of the $D_{s0}^*(2317)$ mass itself, following the lattice study, we compare the values of $m_{D_{s0}^*(2317)} - m_{\overline{15}}$, where $m_{\overline{15}} = 1/4(m_{D_s} + 3m_{D_s^*})$ is the spin-averaged ground state mass.

The mass of the $D_{s0}^*(2317)$ state obtained using the naive quark model and without the 1-loop corrections to the one-gluon exchange (OGE) potential is much higher than the experimental value. In this case, the $m_{D_{s0}^*(2317)} - m_{\overline{15}} = 437$ MeV is almost twice the empirical figure. The mass associated

¹All the details about the computation and the theoretical framework can be found in Ref. [17] and references therein.

Figure 2. Energy levels from constituent quark model (CQM), from Lattice QCD [16] using Ensemble (1) and Ensemble (2), and from experiment [26]. We show, for CQM results, the quark-antiquark value taking into account the OGE potential (α_s) , including its one-loop corrections (α_s^2) and coupling with the D^*K threshold in *S*- and *D*-wave. For the lattice QCD results, in each case, we show values with just a $q\bar{q}$ interpolator basis and with a combined basis of $q\bar{q}$ and D^*K interpolating fields. Remember that in the lattice QCD computations the D^*K threshold is coupled only in an *S*-wave. The value of the bound $D_{s1}(2460)$ state position in the infinite volume limit $V \rightarrow \infty$ is obtained by an analytical continuation of the scattering amplitude combined with Lüscher's finite volume method. This method has not been used for the $D_{s1}(2536)$ meson. The dashed lines represent the threshold for D^*K in each approach and the dotted lines are the thresholds for $D^{*0}K^+$ and $D^{*+}K^0$ in experiment.

to the $D_{s0}^*(2317)$ state is very sensitive to the α_s^2 -corrections of the OGE potential. This effect brings down the $m_{D_{s0}^*(2317)} - m_{\overline{1S}}$ splitting to 309 MeV, which is now only 30% higher than the experimental value. However, as one can see in Fig. 1, the hypothetical $D_{s0}^*(2317)$ state would be above the *DK* threshold and thus would decay into this final channel in an *S*-wave making the state wider than the observed one. The mass-shift due to the α_s^2 -corrections allows that the 0⁺ state be close to the *DK* threshold. This makes the *DK* coupling a relevant dynamical mechanism in the formation of the $D_{s0}^*(2317)$ bound state. When we couple the 0⁺ $c\bar{s}$ ground state with the *DK* threshold, the splitting $m_{D_{s0}^*(2317)} - m_{\overline{1S}} = 249.6$ MeV is in good agreement with experiment. Regarding the probabilities of the different Fock components in the physical state, we obtain 66% for $q\bar{q}$ and 34% for *DK* reflecting that the $D_{s0}^*(2317)$ meson is mostly of quark-antiquark nature in our approach.

3 Results for the $D_{s1}(2460)$ and $D_{s1}(2536)$ mesons

Figure 2 compares our results for the $m_{D_{s1}} - m_{\overline{1S}}$ mass splitting of the first two $J^P = 1^+$ charmed-strange states with the lattice QCD study of Ref. [16] and with experiment [26].

The naive quark model predicts that the states corresponding to the $D_{s1}(2460)$ and $D_{s1}(2536)$ mesons are almost degenerated, with masses close to the experimentally observed mass of the $D_{s1}(2536)$. The inclusion of the 1-loop corrections to the OGE potential does not improve the situation, making the splitting between the two states even smaller. Following lattice criteria, we couple first the D^*K threshold in an S-wave with the two 1⁺ $c\bar{s}$ states. One can see in Fig. 2 that the state associated with the $D_{s1}(2460)$ meson goes down in the spectrum and it is located below D^*K threshold with a mass compatible with the experimental value. The state associated with the $D_{s1}(2536)$ meson is almost insensitive to this coupling because it is the $J^P = 1^+$ member of the $j_q = 3/2$ doublet predicted by HQS and thus it couples mostly in a D-wave to the D^*K threshold. Lattice QCD has not yet computed the coupling in D-wave of the D^*K threshold with the 1⁺ $c\bar{s}$ sector. This coupling is trivially implemented in our approach. The state associated with the $D_{s1}(2460)$ meson experience a very small modification because it is almost the $|1/2, 1^+\rangle$ eigenstate of HQS, whereas the state associated with $D_{s1}(2536)$ meson suffers a moderate mass-shift approaching to the experimental value.

When the D^*K threshold is coupled, the meson-meson component is around 50% for both $D_{s1}(2460)$ and $D_{s1}(2536)$ mesons. It is also relevant to realize that the quark-antiquark component in the wave function of the $D_{s1}(2536)$ meson holds quite well the 1P_1 and 3P_1 composition predicted by HQS, which is crucial in order to have a very narrow state and describe well its decay properties.

4 Summary

We have performed a coupled-channel computation taking into account the $D_{s0}^*(2317)$, $D_{s1}(2460)$ and $D_{s1}(2536)$ mesons and the *DK* and D^*K thresholds within the framework of a constituent quark model. Our method allows to introduce the coupling with the *D*-wave D^*K channel and the computation of the probabilities associated with the different Fock components of the physical state.

This work has been partially funded by Ministerio de Ciencia y Tecnología under Contract no. FPA2013-47443-C2-2-P, by the Spanish Excellence Network on Hadronic Physics FIS2014-57026-REDT, and by the Junta de Castilla y León under Contract no. SA041U16. P.G.O. acknowledges the financial support from the Spanish Ministerio de Economia y Competitividad and European FEDER funds under the contract no. FIS2014-51948-C2-1-P. J.S. acknowledges the financial support from Alexander von Humboldt Foundation.

References

- [1] B. Aubert et al. (BaBar), Phys. Rev. Lett. 90, 242001 (2003)
- [2] D. Besson et al. (CLEO), Phys. Rev. D68, 032002 (2003)
- [3] N. Isgur, M.B. Wise, Phys. Rev. Lett. 66, 1130 (1991)
- [4] Fayyazuddin, Riazuddin, Phys. Rev. D69, 114008 (2004)
- [5] O. Lakhina, E.S. Swanson, Phys. Lett. B650, 159 (2007)
- [6] T. Barnes, F.E. Close, H.J. Lipkin, Phys. Rev. D68, 054006 (2003)
- [7] H.J. Lipkin, Phys. Lett. B580, 50 (2004)
- [8] P. Bicudo, Nucl. Phys. A748, 537 (2005)
- [9] D. Gamermann, E. Oset, D. Strottman, M.J. Vicente Vacas, Phys. Rev. D76, 074016 (2007)
- [10] D. Gamermann, E. Oset, Eur. Phys. J. A33, 119 (2007)
- [11] A. Martínez Torres, E. Oset, S. Prelovsek, A. Ramos, JHEP 05, 153 (2015)
- [12] Z.H. Guo, U.G. Meißner, D.L. Yao, Phys. Rev. D92, 094008 (2015)
- [13] J. Segovia, D.R. Entem, F. Fernandez, Phys. Rev. D91, 094020 (2015)
- [14] E. van Beveren, G. Rupp, Phys. Rev. Lett. 91, 012003 (2003)
- [15] E. van Beveren, G. Rupp, Eur. Phys. J. C32, 493 (2004)
- [16] C.B. Lang et al., Phys. Rev. D90, 034510 (2014)
- [17] P.G. Ortega, J. Segovia, D.R. Entem, F. Fernández (2016), arXiv:hep-ph/1603.07000
- [18] J. Vijande, F. Fernández, A. Valcarce, J. Phys. G31, 481 (2005)
- [19] A. Valcarce, H. Garcilazo, F. Fernández, P. Gonzalez, Rept. Prog. Phys. 68, 965 (2005)
- [20] J. Segovia, D.R. Entem, F. Fernández, E. Hernandez, Int. J. Mod. Phys. E22, 1330026 (2013)
- [21] P.G. Ortega, J. Segovia, D.R. Entem, F. Fernandez, Phys. Rev. D81, 054023 (2010)
- [22] J. Segovia, D.R. Entem, F. Fernández, Phys. Rev. D83, 114018 (2011)
- [23] J. Segovia, D. Entem, F. Fernández, Nucl. Phys. A915, 125 (2013)
- [24] J. Segovia, E. Hernández, F. Fernández, D.R. Entem, Phys. Rev. D87, 114009 (2013)
- [25] J. Segovia, D.R. Entem, F. Fernández, Phys. Rev. D91, 014002 (2015)
- [26] K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014)