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Abstract. We analyze in detail the background cosmological evolution of a scalar field cou-
pled to a massless abelian gauge field through an axial term φ

fγ
FF̃ , such as in the case of

an axion. Gauge fields in this case are known to experience tachyonic growth and therefore
can backreact on the background as an effective dissipation into radiation energy density ρR,
which can lead to inflation without the need of a flat potential. We analyze the system, for
momenta k smaller than the cutoff fγ , including the backreaction numerically. We consider
the evolution from a given static initial condition and explicitly show that, if fγ is smaller
than the field excursion φ0 by about a factor of at least O(20), there is a friction effect which
turns on before the field can fall down and which can then lead to a very long stage of in-
flation with a generic potential. In addition we find superimposed oscillations, which would
get imprinted on any kind of perturbations, scalars and tensors. Such oscillations have a pe-
riod of 4–5 efolds and an amplitude which is typically less than a few percent and decreases
linearly with fγ . We also stress that the curvature perturbation on uniform density slices
should be sensitive to slow-roll parameters related to ρR rather than φ̇2/2 and we discuss
the existence of friction terms acting on the perturbations, although we postpone a calcula-
tion of the power spectrum and of non-gaussianity to future work and we simply define and
compute suitable slow roll parameters. Finally we stress that this scenario may be realized
in the axion case, if the coupling 1/fγ to U(1) (photons) is much larger than the coupling
1/fG to non-abelian gauge fields (gluons), since the latter sets the range of the potential and
therefore the maximal allowed φ0 ∼ fG.
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1 Introduction

Inflation [1–3] is the best known candidate for providing initial conditions for our Universe,
which can then evolve in the hot radiation dominated era. It explains, in fact, how the
Universe can become nearly homogenous, isotropic and flat on very large scales. Moreover
a great success of inflation is the possibility of generating an initial condition for metric
perturbations which are consistent with the observed spectrum on large scales: adiabatic,
gaussian and almost scale invariant. The simplest realization of inflation is arguably a single
slowly rolling scalar field. This requires nonetheless a very flat potential, in such a way that
the absolute value of the potential dominates over its derivatives, and so the Hubble friction
dominates the evolution. It usually requires a large amount of fine-tunings to explain how
such a potential can maintain its flatness during the required 60 efolds of inflation. In the
present paper we pursue the idea that inflation could actually be realized in a very different
way, in which the slow-roll is not due to Hubble friction, but is dynamically generated by
a non-trivial dissipation mechanism into other degrees of freedom. Such an idea has been
invoked already in some scenarios, e.g. in [4]. In our view a simple and compelling concrete
mechanism is the one proposed in [5],1 in which a scalar φ is coupled to a CP-odd combination
of a U(1) gauge field, with the term φ

fγ
FF̃ : in this case, in fact, a nonzero time derivative

φ̇ induces a tachyonic instability for the gauge field, which can then grow until it backreacts
on the scalar, slowing down its evolution. In the present paper we study such a system
by fully taking into account of the backreaction in a numerical way, showing that indeed
slow-roll can be realized even in the absence of Hubble friction and studying in detail the
evolution of the system. As we will discuss, the analysis performed in [5] assumed that
such a friction dominated regime could be realized and it was estimated within an analytical
approximation. There are some issues which, however, cannot be addressed within such a

1This was also called “natural steep” inflation, while we prefer to avoid the word natural, because it reminds
necessarily of axion potentials, while the only ingredient is an axial coupling which allows dissipation into
gauge fields, and so we prefer to call it dissipative axial inflation.

– 1 –



J
C
A
P
1
2
(
2
0
1
6
)
0
3
8

treatment. For instance such an estimate assumes that an inflationary solution with almost
constant expansion rate H and almost constant field velocity φ̇ can be found, but does not
address how such a solution could be reached from a given initial condition. In fact the
question can be formulated as follows: starting with a field at rest at some initial value in
a steep potential, can the backreaction term turn on before the field simply falls down its
potential? The initial stage of evolution can be actually studied ignoring the expansion of the
Universe since the field dynamics dictated by the potential is much faster than the Hubble
expansion. The treatment of [5] cannot be used for this purpose, since it actually explodes
exponentially in the limit H → 0 and only makes sense after the backreaction has already
turned on. Another reason why a numerical treatment is appropriate is to check whether
the ansatz of constant φ̇ is actually realized and to which extent. For these reasons we study
the system carefully in the present paper and show that it can be solved explicitly, therefore
providing an inflationary background and finding new relevant features. Note that a similar
numerical analysis has been performed in [6], although with the scalar starting in a Hubble
friction regime and then only approaching the dissipative regime at the end of inflation. We
will comment more on this study in the rest of the paper. Importantly, we also find that
generically the energy density dissipated in radiation ρR is much bigger than the field kinetic
energy and so it dominates the time derivative of the total energy density ρ̇; we stress then
that the amplitude of the primordial curvature perturbation ζ should be different from the
usual expression for a single scalar field used in [5], although we do not perform here a full
calculation of ζ. Finally we will also point out that this mechanism can work with generic
potentials, but most naturally can be realized in the case of an axion or axion-like field
coupled to a U(1) gauge field: in fact, using the well-known example of the QCD axion, we
suggest that the scenario can work just by having the coupling between axion and abelian
fields (the photon) much larger than than the coupling to non-abelian fields (the gluons).

The paper is organized as follows. In section 2 we review the setup. In section 3 we
solve the system in flat spacetime, while in section 4 we solve it in an expanding background.
In section 5 we show results for several potentials. Finally we discuss some features of the
model in section 6 and we draw our conclusions in section 7.

2 Setup

We consider the action of a scalar field φ with a potential V (φ), coupled to a massless
gauge field Aµ (the photon or another field), with field strength Fµν = ∂µAν − ∂µAν . Such a
coupling is naturally present for an axion field and it has been considered in [5] in the context
of inflation. In principle one could also consider non-abelian fields, but this would introduce
complications: (i) the presence of nonlinear self-interactions might change the production
mechanism, (ii) producing friction mostly through such a coupling would not work, because
it would also induce a contribution to V (φ) through instanton effects. We therefore only
consider U(1) and discuss later the importance of the relative size of abelian vs. non-abelian
couplings. Our action is therefore

S = −
∫
d4x
√
−g
(

1

2
∂µφ∂

µφ+ V (φ) +
1

4
FµνF

µν +
g(φ)

4
FµνF̃

µν

)
, (2.1)

where we assume for simplicity the coupling function to be

g(φ) =
φ

fγ
, (2.2)
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where fγ is a mass scale and F̃µν is the antisymmetric dual field tensor. It is straightforward
to generalize to other forms of g(φ). Note that such a coupling term has dimension five and
therefore we can trust it only at energy scales smaller than fγ . We will return to this point
and to the possible origin of such a coupling from a more complete renormalizable theory
at higher energy in section 6. We first analyze in section 3 the system in flat spacetime in
order to have a clear picture of the dynamics and of the onset of the backreaction. In fact we
are interested in cases in which the scalar field potential is steep, ∂V/∂φ ≡ V,φ � 3Hφ̇, and
therefore the Hubble friction is subdominant, at least in the initial stages of the φ evolution,
until the backreaction term becomes important. Then we will include the expansion of the
metric in section 4.

3 Flat spacetime analysis

Let us first analyze the equations in the simplest setup, namely in flat spacetime. Varying
the action with respect to φ and only considering the spatially homogeneous mode φ(t) we
get the equation of motion:

φ̈+ V,φ(φ) + g,φ(φ)B = 0, B ≡ 〈FF̃ 〉/4 . (3.1)

A gauge field of three momentum ~k evolves in the φ(t) background according to (see e.g. [7]
and references therein):

Ä± + (k2 ∓ kġ)A± = 0 , (3.2)

where k ≡ |~k| and the index + or − represents the gauge field helicity, defined by a helicity
vector ~ε±, which satisfies ~k · ~ε± = 0 and ~k × ~ε± = ∓ik~ε±. The gauge field backreacts on the
scalar through

B =
1

2

∫
d3k

(2π)3
k
d
[
|A+|2 − |A−|2

]
dt

. (3.3)

In absence of interactions the classical field evolution would be simply determined by the
potential. The interacting system has instead a non-trivial evolution if the coupling 1/fγ is
large enough: there can be a very efficient dissipation of energy into gauge fields and this can
slow down dramatically the scalar field evolution, being effectively a friction-like term. The
physical essence is that a tachyonic instability signals that the initial background is not the
correct one, and by solving for the full system we effectively find a new background. Note
that the existence of such a friction is possible only because our interaction term involves
a CP-odd combination FF̃ , which does not respect Time reversal (T) and therefore it is
sensitive to φ̇, contained in ġ. The fact that the friction can be sustained for a long time is
crucially due to the massless nature of the gauge field, so that, even if the field φ changes
value, this does not induce a mass, which would otherwise prevent efficient dissipation.

Let us now place our field at rest at some initial time t = 0 with an initial value φ0 > 0
and for simplicity consider a constant force V,φ ≡ −Vp < 0, so that the solution without
backreaction is

φ(t) = φ0 −
1

2
Vpt

2 , (3.4)

and so φ would fall down its potential to a final value (introducing additional terms to the
linear potential this could be a minimum of V , which we can also define to be φ = 0 without
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loss of generality), in a time given by tF ≈ (φ0/Vp)
1/2. In this case the gauge field behaves

according to

Ä± + (k2 ± µ2kt)A± = 0 , µ2 ≡ Vp
fγ
. (3.5)

We can focus on the negative helicity modes, which for low k are unstable. We find the
following solution in terms of the Airy functions of the first and second kind,

A−(t) = c1Ai

(
k
(
µ2t− k

)
(kµ2)2/3

)
+ c2Bi

(
k
(
µ2t− k

)
(kµ2)2/3

)
, (3.6)

where c1 and c2 are two constants related to the initial conditions. In the large t limit the
second term of this equation is rapidly growing for low k,

A− ≈ c2
e

2
√
k(µ2t−k)

3/2

3µ2

√
π 12
√
k 6
√
µ 4
√
t
. (3.7)

More and more modes grow as time grows. At a given time all modes with k < µ2t grow
explosively, with a time-scale given by t̄ ≈ (kµ2)−1/3. We should then integrate eq. (3.3) using
eq. (3.7) for all the tachyonic k’s. This can be done analytically approximating µ2t−k ≈ µ2t

in the exponents, leading to a B which grows roughly as e
4
3

(tµ)2 . This means that we should
compare the timescale µ−1 with tF , in order to know whether the effect can become large
before that the field falls down. This gives us the crucial condition that fγ � φ0. Such an
analysis is valid for a constant force, but a similar general lesson can be extracted from the
more realistic (and complicated) case of a quadratic potential V = 1

2m
2φ2. In this case the

free field solution is periodic with some amplitude φ0, so that with suitable initial conditions
we have:

φ̇(t) = mφ0 cos(mt) , (3.8)

which leads to

Ä± +

(
k2 ∓ kmφ0

fγ
cos(mt)

)
A± = 0 . (3.9)

This equation has a well-known solution

A±(t) = c1MathieuC[a, q, z] + c2MathieuS[a, q, z] ,

a ≡ 4k2

m
, q ≡ ±2kφ0

mfγ
, z ≡ mt

2
, (3.10)

in terms of even and odd Mathieu functions, whose behavior can be always written, according
to Floquet’s theorem, as eirzf(z), where f(z) has period 2π and r is the so-called Mathieu
characteristic exponent. It is possible to check that for k < mφ0

fγ
such exponents have a

negative imaginary part for one of the two helicities and so lead to an exponential growth of
the modes. Such a growth can overcome the free field classical evolution if the |Im(r)|’s are
much bigger than 1. Therefore one can plot Im(r) and check that, fixing for instance units
of m = 1, they grow linearly as κφ0fγ , where κ is a number which depends on k and which has
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Figure 1. We show the time evolution, in a quadratic potential and in flat spacetime, of the growing
gauge field A−, for increasing values of k, from kmin = fγ/300 to kmax = fγ , equally spaced in
logarithmic scale. In dashed lines we show the same modes, in absence of backreaction.

a maximum value of roughly 0.3. This shows again that one can get large backreaction as
long as φ0/fγ is bigger than a few times κ−1, which means O(10–20).

As a next step we solve numerically the coupled system eqs. (3.1)–(3.3), for a given
potential V (φ). We solve eq. (3.2) for a relatively large number, Nmodes ≈ O(10–100), of
different discrete values of k. We set the following initial conditions:

A(0) =
1√
2k

, Ȧ(0) =
ik√
2k

,

φ(0) = φ0 , φ̇(0) = 0 . (3.11)

The first line corresponds to vacuum fluctuations for the gauge field. Then, we include the
backreaction term in the system of differential equations by discretizing the integral in Nmodes

logarithmic intervals. We check that the result is not sensitive to the number of modes, as
long as we capture the relevant range. In order to find such a range we plot the backreaction
spectrum, defined through

B ≡
∫
dk

k
PB(k) , (3.12)

and we will check that we integrate over the relevant region.

We see in figure 1 that the modes evolve in time exponentially in the initial stage of the
evolution until the backreaction term becomes important, and starting from this time the
modes grow at a very low rate. However as time goes on there are more modes, with lower
values of k, which follow the same behavior. This leads to a spectrum PB(k) which is almost
flat in a band, which becomes wider and wider as time goes on, as can be seen in figure 2.

The other important physical point, as we mentioned before, is that our coupling is an
effective one, which we can trust only at k < fγ and so we always cut the integral off at
k = fγ . We did not attempt here at studying what happens in a more complete theory at
higher energies, but we will comment on this in section 6. Note however that, if the range of
tachyonic modes (i.e. the ones for which k < kp ≡ |φ̇/fγ |) is always smaller than the cutoff

– 5 –
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Figure 2. We show in the left panel the backreaction spectrum PB(k), defined in eq. (3.12), at three
different times during the evolution, using a quadratic potential and in flat spacetime. In the right
panel we show the spectrum of electromagnetic energy density PρR(k), and also the vacuum energy
density, which should be subtracted by renormalization. For both cases the flat region of the spectrum
becomes wider as time goes on, since more infrared modes have enough time to get excited. The thin
pink line represents the growth of modes in absence of backreaction, at a given time.

kc ≡ fγ , we do not need to consider such a high-energy completion of the theory. We will
check in the following in which cases we this condition is met.

As anticipated we find that the evolution depends on the above discussed condition
on fγ/φ0. If we are in the regime fγ & φ0 the backreaction does not have enough time to
become large, so nothing relevant happens and the fields falls down normally. If instead fγ is
at least about one order of magnitude smaller than φ0 then the backreaction kicks in and we
see a dramatic change of behavior: the field slows down and B balances the potential for a
very long time. Such a balance does not lead to a smooth behavior, but to rapid oscillations
around an average slow evolution. We discuss a simple approximation in which is possible
to verify the existence of oscillations in a simple way in appendix A. Such an average slow
evolution leads eventually to an almost constant φ̇ regime, as we show in figure 3 for several
values of fγ . In figure 4 we show the size of the various terms (potential term, backreaction
and φ̈) in the equation of motion. The dependence of φ̇ (its average behavior, disregarding
oscillations) on fγ is found to be quadratic φ̇ = αf2

γ , see figure 3, where α ≈ −0.75 is almost
independent on the potential.

A similar dynamics with two stages of evolution must take place also in an expanding
background, as long as the time scales of the potential and of the evolution of the gauge fields
are much smaller than the Hubble time H−1 and as long as we follow the system for a time
shorter than the Hubble scale (i.e. for much less than one efold of expansion of the metric).
In fact with a steep potential and a rapidly growing gauge field, we should first have a free
fall regime just because of the potential and then the backreaction should turn on exactly
in the same way as in flat spacetime and start dominating the evolution. This should now
lead to slow-roll and hence to inflationary expansion of the metric. Some differences will
appear when following the evolution for more than one or two efolds: (1) we have to take
into account of the redshift of the gauge fields modes, as inflation goes on for a long time,
(2) there is a Hubble friction term also in the φ evolution. Such effects will lead to a third
stage of the evolution, that we will address in the next section.
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Figure 3. We show the time evolution of φ in the flat spacetime case, for a quadratic potential
V = 1

2m
2φ2, for several values of fγ . The dashed lines represent linear interpolations of the average

asymptotic evolution. We also show, in the small panel, the dependence of such asymptotic slope
dφ/dt on fγ , which turns out to be quadratic. In the right plot we show the φ evolution for a smaller
range of time, in order to show that there are small oscillations at high frequency on top the average
behaviors.
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Figure 4. In the left panel we show the various terms (potential term, backreaction and φ̈) in the
equation of motion eq. (3.1), for a quadratic potential and in flat spacetime. In the right panel we
show the size of the various energy densities: potential and kinetic energy of φ and the renormalized
ρR, computed using eq. (3.13). The dashed line represents instead the result obtained using eq. (3.15),
which agrees with the previous line at the beginning, but starts deviating at large time.

Finally we can also compute the energy density in the gauge field as,

ρR ≡
〈
B2

2
+
E2

2

〉
− ρvac

R =
1

2

∑
h=±

∫
d3k

(2π)3

[(
|Ȧh|2 + k2|Ah|2

)
− k
]
, (3.13)

where E and B are electric and magnetic fields and where we have subtracted the vacuum
contribution ρvac

R , using Ak = eikt/
√

2k, which takes care of the UV behavior. We also show
its spectrum PρR , defined as ρR =

∫
dk
k PρR , in figure 2. Another way to estimate ρR is to

rewrite eq. (3.1) as a conservation equation,

ρ̇φ +
Bφ̇
fγ

= 0 , ρφ ≡ V +
φ̇2

2
, (3.14)

which shows that there is energy dissipation in the scalar field. Since the total energy density
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is conserved, such an energy flow must go into a gauge field energy density ρR as follows:

ρ̇R −
Bφ̇
fγ

= 0 . (3.15)

By integrating numerically this equation, the ρR computed in this “effective” way should
coincide with the integral over the modes given in eq. (3.13). We find that indeed they
coincide in the initial stages of evolution, see figure 4, but they start differing after some time,
for unknown reasons. Note however that the two ways of computing ρR nicely coincide instead
in the full case in an FLRW background, discussed in the next section. Another important
remark is that we can see in the same plot that the kinetic energy of φ is subdominant with
respect to ρR.

4 Inflation

We consider now our system in a FLRW metric with conformal time τ

ds2 = a(τ)(dτ2 − d~x2) . (4.1)

The equations of motion are [5]:

φ′′ + 2aHφ′ + a2V,φ(φ) + a2g,φ(φ)B = 0 ,

A′′± + (k2 ∓ kg′)A± = 0 ,

B =
〈FF̃ 〉

4
=

1

2a4

∫
d3k

(2π)3
k
d
[
|A+|2 − |A−|2

]
dτ

, (4.2)

where a ′ means a derivative with respect to τ . Note that the gauge field equation is formally
unchanged, while the scalar field has Hubble damping. Note also that 〈FF̃ 〉 has now a dilution
factor a−4. In an inflationary background this may seem to induce a large suppression, but
it is actually not an issue. In fact such a dilution is counterbalanced by the explosive growth
of the modes, keeping the value of 〈FF̃ 〉 roughly constant for a large number of efolds. The
equation of motion for the scale factor is simply the Friedmann equation,

H2 ≡
(
a′

a2

)2

=
V (φ) + φ′2

2a2
+ ρR

3M2
Pl

, ρR ≡
1

2a4

∑
±

∫
d3k

(2π)3

[
|A′h|2 + k2|Ah|2 − k

]
,

(4.3)
where MPl = 2.43 × 1018 GeV is the reduced Planck mass and where the radiation energy
density ρR has been renormalized. Both ρR and the field kinetic energy are subdominant
compared to V (φ) if inflation is successfully generated.

Note that the k modes are getting redshifted and as inflation goes on the long wavelength
modes go superhorizon and become less relevant in 〈FF̃ 〉 (because of the weight k d3k), but
at the same time new shorter wavelength growing modes are constantly generated. The
expected outcome is an almost stationary process with an almost constant backreaction,
which can be checked by integrating the full system of equations. Moreover, considering the
full system also includes the intermediate case in which φ could have both electromagnetic
and gravitational friction, in comparable amounts.

As we said, we expect that the initial behavior of φ must be very similar to the flat
spacetime case, at least when following the system for less than about one efold. We are
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interested in fact in a case in which the potential is steep and thus its typical timescale is
much smaller than H−1; the same is true for the gauge fields, whose evolution is even faster.
So the onset of backreaction happens under the same conditions that we have seen in the flat
spacetime case, namely that φ0 � fγ . However, once the backreaction sets in, it leads to a
very slow evolution of φ and so the Hubble expansion may start to become important. This
is indeed the case, as we discuss below.

Such a stage of evolution in an inflationary background has been studied in [5], where an
analytical estimate of B has been given. Assuming that backreaction can indeed become large
the authors have worked under the hypothesis that a regime with constant φ̇ can be reached.
In such a background they considered a de Sitter metric and computed analytically the
evolution of the gauge fields setting an initial condition at infinite past time and looking for
the asymptotic solution at future infinity. We have checked that their approximate solution

Aan± =
1√
2k

(
k

2ξaH

)1/4

eπξ−2
√

2ξk/(aH) , (4.4)

gives the correct size for both the imaginary and the real part of the full numerical solution,
as a late time behavior, assuming constant φ̇ and H, where ξ ≡ φ,N

2fγ
. After an integration in

k they have then derived the following equation for φ̇

φ̈+ 3Hφ̇+ V,φ = sign(ξ)
I
fγ

(
H

ξ

)4

e2π|ξ| , (4.5)

where I = 2.4 × 10−4 (we have introduced the sign(ξ) to include also the case ξ < 0).
Given this equation, one could infer the value of ξ just equating approximately V,φ to the
backreaction term, as suggested in [5]. A caveat is that this would lead to two solutions: one
at very small ξ and the other one at ξ larger than O(1). We checked that solving numerically
eq. (4.5) leads rapidly to the first or the second solution, depending on the initial velocity of
the field. Such an ambiguity is not present in our full numerical solutions, which we discuss
in the next section, and the solution that is reached after 1–2 efolds agrees qualitatively
well with the second solution, as discussed in the next section. Such a second solution is
approximately given by eq. (11) of [5]:

ξ ≈ 1

2π
log

(
9M4

PlfγV,φ
IV 2

)
. (4.6)

5 Potentials and results

In order to integrate the equations in a more efficient way we change variable from τ to the
number of efolds N ≡ log(a), choosing as initial value N0 = 0 and using eqs. (3.11) as initial
conditions (but replacing d/dt with d/dτ), leading to

H2φ,NN + 3H2φ,N +HHNφN + V,φ(φ) + g,φ(φ)B = 0,

e2NH2(A±,NN +A±,N ) + e2NHH,NA±,N

+(k2 ∓ keNHg,N )A± = 0,

B =
e−4N

2

∫
d3k

(2π)3
kHeN

d
[
|A+|2 − |A−|2

]
dN

,

H2 =
V + ρR

3M2
Pl − φ2

N/2
. (5.1)
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We analyze potentials of the following types

(i) V (φ) =
1

2
m2φ2 , (5.2)

(ii) V (φ) = Λ4

[
1− cos

(
φ

M

)]
. (5.3)

The first is a simple minimal choice, while the second is particularly interesting because it is
an axion potential (plus a constant, such that the minimum at φ = 0 has V (0) = 0). Let us
in fact stress a crucial point here, taking as an illustration the QCD axion, though keeping
in mind that this is generic for any axion-like field. In the QCD case the coupling which is
needed to solve the strong CP problem is the one with gluons

LG =
φ

fG
GµνG̃

µν . (5.4)

Such a coupling to non-abelian fields breaks the shift symmetry φ → φ + c, leaving only
the symmetry φ → φ + 2πfG and inducing a periodic potential of the above form with
Λ = ΛQCD and M = fG (note that this is only an approximation for the QCD axion, which
is good around minima [8]). The relevant point here is that we may assume that the field has
a starting point in a generic position, displaced from the minimum by an amount of order
φ0 ≈ fG. Therefore, as we have discussed, the condition we need for inflation is that fγ � fG,
by about one or two orders of magnitude. Note that, although in the vast majority of analyses
of the QCD axion these two couplings are considered to be comparable, they are actually two
independent parameters. Moreover, even if the coupling to photons is much larger it does
not break the φ shift symmetry and theferore it cannot induce large loop corrections to the
gluon coupling. It is therefore allowed to have 1/fγ � 1/fG.

Hence, a crucial observation is that an axion field coupled stronger to abelian than non-
abelian gauge fields is a viable candidate for dissipative inflation. It is very interesting to
check whether using the QCD axion itself for inflation with such couplings can work, which
we discuss later.

It turns out to be possible to integrate eqs. (5.1), with a few complications. First, as
seen also in the previous section, one needs to include a large enough density of modes so
that the evolution converges to a smooth one. Second, one needs to take care of the fact that
a huge range of k’s has to be used during inflation, since the relevant modes are constantly
redshifted away. Moreover, as we already have discussed, we do not have control of the theory
for physical momenta above the cutoff. However, unless fγ is extremely small, typically the
modes above the cutoff would just oscillate anyway. We deal therefore with this situation
by freezing the modes in the numerical solution, as long as they satisfy k/a > fγ and then
starting integrating only when such a condition is met. However, when fγ is very small the
modes with k/a > fγ could also be in the unstable region. In this case the effective theory
is not adequate and the full answer should come from a UV complete theory.

We show the mode evolution in figure 5 and the relative spectra in figure 6. The
field evolution is shown in figure 7, for a quadratic potential and for different values of fγ .
Some features are very striking. When the friction kicks in, it is very efficient and slows
down dramatically the evolution of the field. Even if we integrate for only 10–20 efolds
it is obvious by visual extrapolation that the slow roll keeps going easily for much more
than 60 efolds, as long as fγ is smaller than a threshold value. Our numerical results agree
qualitatively with [6], although in that work the parameters have been chosen so that most
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Figure 5. We show the evolution of the the gauge field A− as a function of the number of efolds,
ranging from Ni = 0 up to Nf = 11, for different k’s in a FLRW inflating background. The last line
in the bottom of the plot corresponds to a mode with maximal value of the momentum kmax = affγ
while the other lines correspond to momenta which decrease with equal logarithmic spacing down to
the minimal value of kmin = aifγ/50, where ai = 1 and af = eNf are respectively the initial and final
value of the scale factor. We used here units of φ0 = MPl = 10.
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Figure 6. We show in the left panel the backreaction spectrum PB(k), defined in eq. (3.12), at three
different numbers of efoldsN during the evolution, using a quadratic potential and in a FLRW inflating
background. In the right panel we also show the spectrum of the renormalized electromagnetic energy
density PρR(k). We show as a reference, in dotted line, a k4 behavior. Both plots have a range of
modes between kmin = aifγ/50 and kmax = affγ , where ai and af are respectively the initial and
final value of the scale factor.

of the inflationary trajectory is due to the usual Hubble friction dominated evolution and
only a few more efolds are added due to gauge field backreaction.2 This has been motivated
by the need of keeping the parameter ξ smaller than roughly 2, which supposedly is required
to avoid large non-gaussianities. We do not apply such constraints, since as we argue here
below, a reliable calculation of the curvature perturbations has not been performed yet in the
backreaction dominated case, and hence it is even more the case for its three-point function.

2Similar results are found also in [9, 10], which uses also lattice simulations for the interacting scalar and
gauge fields during and immediately before reheating.
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Figure 7. We show in the left panel the evolution of φ in a FLRW background, as a function of the
number of efolds N , for several values of fγ . We show also linear interpolations in dashed lines and in
the small panel we display the scaling of their slopes with fγ : note that dφ/dN goes roughly linearly
as 8fγ/φ0 (except at very small fγ, where modes of k > fγ start being important, and are ignored
in our effective treatment). This agrees quite well with the analytical scaling dφ/dN ≈ 2ξfγ of [5],
since ξ ≈ 3.5 for these parameters. In the right panel we show the ratio of the full field evolution vs.
the linear interpolation to highlight the presence of oscillations with a period of a few efolds, after an
initial transient. We show in the small panel the scaling of the amplitude of such oscillations with fγ .

The main results of our analysis are as follows.

• If the field starts at rest it begins falling down rapidly but, if φ0/fγ & O(10), it is
suddenly slowed down reaching a second stage of evolution similar to the one studied
in the flat spacetime case, where its velocity φ̇1 tends to a constant (plus some high
frequency oscillations) and scales linearly as a function of fγ as in figure 3. These two
stages can be seen in the first efold of evolution, looking also at figure 8.

• If this friction-dominated regime lasts for at least about one efold, the field enters a
third stage in which the Hubble friction and the redshift of modes become important:
high frequency oscillations disappear and φ reaches another asymptotic velocity φ̇2.
This stage is quite well approximated by dφ/dN ≈ 2ξfγ , as in [5] (and so φ̇2 ≈ 2ξfγH).
Therefore the total number of efolds is approximately φ0/(2ξfγ).

• Another relevant feature is that the numerical solutions show a stable evolution, but
with slow superimposed oscillations, as shown in the right panel of figure 7. Such
oscillations do not seem to disappear for any of the analyzed values of fγ and they do
not vanish by increasing the precision of the numerical integration or the number of
modes. Therefore we believe they are a physical feature of the evolution. The field starts
falling down but then the backreaction stops it and as a consequence the gauge modes
are afterwards less amplified and the field can move again until the same pattern repeats
itself. Such a pattern is consistent with the spikes found also in [6]. The amplitude of
such oscillations is found to depend linearly on fγ and it is smaller than about O(0.1%)
for cases with a total number of efolds of at least 60. The period instead seems almost
independent of fγ , and turns out to be around 4–5 efolds. This phenomenon must
lead to potentially observable consequences, at the level of the density and tensor
perturbations, most likely as oscillations in the power spectrum and therefore as a
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Figure 8. In the left panel we show the dependence of the field evolution on V,φ, keeping fixed all
other parameters, including the height of the potential V (φ0) (achieved by adding a suitable constant
to it). Note that the initial transient stage at N . 1, as in the flat spacetime case depends on the size
of V,φ. Instead in the subsequent stage, a dependence on V,φ is not visible. The dotted lines are linear
interpolations of the final stage, which all have the same slope of about 0.0027, corresponding roughly
to 740 efolds. We have chosen here a quadratic potential, with H0 = 5.5 × 10−5MPl, φ0 = 2MPl,
fγ = φ0/2500. In the central panel we show in solid lines the dependence of the field evolution on H0,
keeping fixed all other parameters, including V,φ. Note that after the initial transient stage at N . 1,
there is a second stage, in which the slope φ,N depends very weakly on H0. The dotted lines here
would be the field evolutions in the flat spacetime case (using N = H0t with H2

0 = V (φ0)/(3M2
Pl)).

We have chosen here a quadratic potential, with m = 6 × 10−5MPl, φ0 = 2MPl, fγ = φ0/2500. In
the right panel we considered a wider range for H0, so that a weak dependence on it becomes visible.
The dashed lines are the analytical expression given by eq. (4.6) (adjusted with a constant to account
for the initial transient). Here m = 6.6× 10−6MPl and φ0 = MPl.

potentially unique signature of the model. It is tempting to mention that the presence
of such oscillations might be associated to features of the CMB spectrum, which do not
fit in the usual single field slow-roll scenario: for instance, the power suppression on
large scales [11] or a possible oscillation in the power spectrum [11, 12]. We postpone
anyway a detailed study to future work, also because in the present paper we do not
use any constraints from perturbations around such a background solution, as we will
explain later.

• If we decrease the energy scale of the potential keeping fixed all other parameters, we
decrease H and so during the first friction-dominated stage the field falls down very
quickly since dφ/dN ' φ̇1/H ' αf2

γ/H. If the evolution happens at very low energy
H it can therefore happen that the field falls down to the minimum in much less than
1 efold, and so in this case the second stage of friction dominated inflation can never
actually start. This is a concern in cases such as inflation with the QCD axion, where
H is very small since the scale is ΛQCD.

Then, we show the dependence of the asymptotic inflationary φ̇2 on V ′ and V in figure 8,
which confirm that the dependence is very weak, as expected from eq. (4.6). We also show
in the left panel of figure 9 the size of the various terms in the φ equation of motion.

Note, moreover, that the background equations can be rewritten as:

3M2
PlH

2 = ρφ + ρR , (5.5)

ρ̇φ + 3Hφ̇2 +
B
fγ
φ̇ = 0 , (5.6)
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Figure 9. In the left panel we show the various terms (potential term, backreaction and φ̈) in the full
equation of motion eq. (4.2), for a quadratic potential and in FLRW spacetime. In the right panel we
show the size of the various energy densities: potential and kinetic energy of φ and the renormalized
ρR, computed using eq. (4.3). The dashed line represents instead the effective way of computing the
energy density, as in eq. (5.7).

ρ̇R + 4HρR −
B
fγ
φ̇ = 0 , (5.7)

ρφ = V (φ) + φ̇2/2 . (5.8)

As a response to the background φ evolution an electromagnetic field is produced, which on
average is homogeneous and isotropic, and it turns out that ρR � φ̇2/2, as can be seen from
the right panel of figure 9. This fact is crucial for the treatment of perturbations in such a
scenario, as discussed below.

It is also important to stress how the end of inflation and reheating happens here.
Actually there is no clear distinction between inflation and reheating, since radiation is
produced continuously and its energy density stays roughly constant in time. The crucial
difference is only that during inflation the potential energy dominates. We can find the field
value φRH and also the temperature TRH at reheating just equating by definition the potential
to the radiation energy density ρRH:

V (φRH) = ρRH , TRH =

(
30ρRH

π2g∗

)1/4

, (5.9)

where, to define a temperature, we assumed that the radiation can actually reach quickly
a thermal equilibrium (and g∗ is the number of degrees of freedom in the plasma which is
formed). Note that, remarkably, reheating here is fully fixed in this model and TRH is already
determined by the amount of radiation present during inflation (which is almost constant),
in stark contrast with the usual slow-roll models with flat potentials, which have model-
dependent reheating scenarios. We show one case, in figure 10, in which it is visible that
the field is overdamped and just slows down approaching φRH ≈ 0, which is consistent also
with [6], while ρR starts decreasing as a−4 after φ = φRH. In some cases, if the coupling 1/fγ
is not very large, the field may also perform a few damped oscillations before relaxing at
zero. An estimate of ρRH, and so of the reheating temperature, is given by ρRH ≈ B ≈ V ′fγ ,
as can be seen from figure 9.

It is easy to check that inflation with an axion-like potential, as in eq. (5.3), works
practically in the same way as the quadratic case, as long as one starts in a generic point of
the potential (we do not consider here fine-tuned situations with the initial φ very close to
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Figure 10. In the left panel we plot the field evolution close to the end of inflation: the field slows
down and stops in zero, as opposed to the standard reheating picture with oscillations around the
minimum. In the right panel we show the energy density stored in the potential V and in the gauge
field. The red line corresponds to ρR found using the exact (renormalized) value eq. (4.3), while
the blue dashed line corresponds to solving for eq. (5.7). Note that after that the potential becomes
subdominant, at N = NRH, radiation domination starts and ρR scales simply as a−4.

the maximum). We show some solutions for the axion potential in figure 11. A particularly
interesting case is the one of the QCD axion, with Λ = ΛQCD and so inflation happens at very
low H. The reheating temperature would be at most of order TRH . ΛQCD ≈ O(100 MeV).

More precisely, according to the above estimate TRH ≈ ρ
1/4
RH ≈ (V ′fγ)1/4 ≈ ΛQCD

(
fγ
fG

)1/4
.

This can satisfy bounds from primordial nucleosynthesis only if TRH & 5 MeV. Unfortunately
at such low values of H our numerical solutions becomes exceedingly slow, and so we could
not directly check if the scenario can work. Nonetheless, as already mentioned above, a major
concern is to make sure that during the transient phase, in the first efold of expansion, the
field does not already fall down to zero. Using our flat space estimates this should be possible
for very small fγ , since φ̇ = αf2

γ and so we should impose that the field excursion ∆φ . fG,

where ∆φ = φ̇∆t ≈ φ̇
H ≈

f2γMPl

Λ2
QCD

, which means fγ .
(
fG
MPl

)1/2
ΛQCD. Such a condition can be

satisfied only if fG is several orders of magnitude larger than MPl. Otherwise fγ turns out
to be smaller than ΛQCD and therefore well below the experimental bounds [13].

Finally, let us comment on the issue of density perturbations, which in such a scenario
is non-trivial. First of all, one may wonder whether the gauge modes generated by the
background evolution may have a spectrum which can be relevant on large scales. The
answer to this question is negative, as could already be seen from figure 6. In fact a given
k mode is rapidly produced, when k ≈ φ̇/fγ , but afterwards its momentum redshifts and
the growth is not fast enough to overcome the a−4 dilution. For this reason the spectrum of
energy density is suppressed on large scales, roughly as k4, and therefore its contribution to
large scale density perturbations is negligible. For the same reason also magnetic fields on
large scales would have a negligible amplitude today.3

3Note however that [14] and [10] invoked an inverse cascade scenario in which a helical magnetic field can
transfer power from small to large scales, which should apply also in our case.

– 15 –



J
C
A
P
1
2
(
2
0
1
6
)
0
3
8

� � � � �
����

����

����

����

�

ϕ
/�

�
�

����� ���������� ��/���=������ �γ/��=�⨯��-�(���=�)

��� ���

����� ����� ����� �����
�����

�����

�����

�����

�����

�����

�����

�����

-
ⅆ
ϕ
/ⅆ
�

Λ/��� Λ/MPl=1⨯10-2

Λ/MPl=5.6⨯10-3

Λ/MPl=3.2⨯10-3

Λ/MPl=1.8⨯10-3

Λ/MPl=1⨯10-3

Λ/MPl=5.6⨯10-4

� � � � �
���

���

���

���

���

���

���

�

ϕ
/�

�
�

����� ���������� Λ/���=�⨯��
-�� �γ/ ��=�⨯��

-�� ϕ�=�⨯ �� (���=�)

��� ��� � � �
-�����

-�����

-�����

-�����

�����

ⅆ
ϕ
/ⅆ
�

�� �� = �

�� = ���

�� = ����

�� = ����

�� = ����

�� = ���

Figure 11. We show here the φ behavior on an Axion potential varying the overall scale Λ (left
panel) and the scale fG (right panel) in eq. (5.3). In both cases there is very weak dependence in the
asymptotic late time behavior (in the small panels), while there is sensitivity only in the first efold of
expansion.

Nonetheless there is another source of density perturbations, which is due to the usual
vacuum quantum fluctuations of the field φ, coupled to a scalar part of the metric. To our
knowledge, the study of such perturbations in the backreaction-dominated regime has been
performed so far only in a heuristic way [5, 15–18] by looking at perturbations in φ and
ignoring the metric components, while an equation for a gauge-invariant quantity, such as
the comoving curvature perturbation has not been derived yet. Such a task is anyway highly
non-trivial because of the presence of two components (the scalar and the photons), which
exchange energy and because of the fact that the background itself has a contribution from
the expectation value of the photon field, which is already an average over a collection of
k 6= 0 modes, even in absence of fluctuations in φ and in the metric. We only mention here
some qualitative features that we expect to be the most relevant.

One can think of estimating the amplitude of the primordial curvature perturbation Aζ
in the so-called spatially flat gauge, where ζ = H δρ

ρ̇ and where ρ is the total energy density
and δρ its fluctuation; in usual single-field inflation this would give the well-known result

Aζ ' H
Vφδφ

3Hφ̇2
≈
HVφ

φ̇2
≈ H2

φ̇
, (5.10)

where we have used the fact that φ has an almost flat spectrum of fluctuations with amplitude
δφ ≈ O(H). In our case instead such an expression would become

Aζ ' H
δρ

ρ̇
= H

Vφδφ

4HρR
≈
Vφδφ

ρR
, (5.11)

where we have assumed that most of the energy density is stored in the potential of the φ
field and so δρ ≈ Vφδφ. The major challenge here is to know whether φ has a nearly flat
spectrum and whether its amplitude is given by H or some other quantity. One would have
to write down and solve the coupled system of gauge field, metric and φ fluctuations around
our background and quantize it to find the vacuum fluctuations.

Other subtle points are the following. In [5] a term proportional to δφ̇ has been intro-
duced by hand, on the basis that a δφ̇ should also dissipate its kinetic energy by exciting
photons. However, we argue that the situation is more involved and a possible dissipative
effect has to depend on the physical momentum pphys = p/a of the perturbation δφ̇, for two
reasons. First, the equation of motion for the vector potential A contains an extra term of
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the form ∇(δφ) ×A′ which becomes important for large p/a, so that the analogy with the
photons excited by a background φ(t) breaks down and we cannot expect a coherent excita-
tion of photons as a response to a δφ̇. Second, even ignoring this, one would write down an
equation of motion for A± similar to eq. (5.1), assuming a time dependent δφ̇ as a source. For

instance, a massless field at p/a� H would just have vacuum fluctuations with δφp = 1
a
eipτ√

2p

behavior in Fourier space. A given region of physical volume L3 would have field oscillations
in real space roughly of amplitude 1/L due to all modes with pphys . 1/L. Keeping the
modes around pL/a ≈ 1/L this translates in δφ ≈ pL/a sin(pLτ), whose time derivative is
(neglecting the expansion, in the regime pL/a� H) roughly δφ′ = p2

L/a cos(pLτ). This leads
to an equation of motion of the form

A′′± +

(
k2 ∓

kp2
L

afγ
cos(pLτ)

)
A± = 0 , (5.12)

which is very similar to eq. (3.9). It is easy to check that only if pL/a� fγ this equation can
have large exponents for the Mathieu functions for some values of k. As a conclusion, when
pL/a . fγ we do not expect any backreaction to be possible. Finally another concern is that
in [5] an “inverse decay” of the gauge modes created by the background was considered as a
source for δφ. However, as long as the δφ modes are not frozen completely there should be
also a direct decay term δφ into gauge modes, and so the dynamics is likely to be much more
complicated.

We have therefore given arguments to conclude that a treatment of perturbations is
very involved in this scenario and so we postpone this to future work. We only stress here
that as a consequence of eq. (5.11) the relevant slow-roll parameters are likely to be given
by the ratio of ρR over the Hubble rate, and its time variation. In analogy with the usual
slow-roll parameters εφ and ηφ defined from the derivatives of φ, we can then define two
slow-roll parameters for radiation:

εφ ≡
φ̇2

2M2
PlH

2
, ηφ ≡ 2εφ +

1

2

d log εφ
dN

,

εR ≡
2ρR

3M2
PlH

2
, ηR ≡ 2εR +

1

2

d log εR
dN

. (5.13)

One can also define and compute total slow-roll parameters as

ε ≡ − Ḣ

H2
= εφ + εR ≡ εR(1 + δφ) , η ≡ 2ε+

1

2

d log ε

dN
' ηR +

3

2
δφ(ηR + ηφ − εφ) , (5.14)

where we have expanded at first order in the small parameter δφ ≡ φ̇2

2ρR
, showing therefore that

both total slow roll parameters are to a good approximation given by εR and ηR. Nonetheless,
it may be useful to plot the four slow-roll parameters for some illustrative cases. As already
mentioned we leave for future work the calculation of the spectrum of perturbations, but
it is reasonable to assume that εR and ηR could be the relevant parameters. As it can
be seen from figure 12 the εφ and εR parameters are small, with εφ � εR; however they
have some superimposed oscillations that translate in values of ηR and ηφ which are not
very suppressed, O(0.1–1). Of course we know that decreasing fγ the oscillations in φ have
smaller amplitude, which would imply smaller η’s; however, as we have seen, when fγ is tiny
the modes beyond the cutoff of the effective theory become not completely negligible. And
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Figure 12. We plot the slow roll parameters defined in eqs. (5.13), for a quadratic potential V =
1
2m

2φ2: εR is always much larger than εφ, and they are both always small. Instead ηR and ηφ are not
extremely suppressed due to the oscillatory behavior of φ and in fact they are of O(0.1). Note also
that all slow-roll parameters decrease for small fγ .
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Figure 13. We plot the slow roll parameters defined in eqs. (5.13), for a quadratic potential V =
1
2m

2φ2: εR is always much larger than εφ, and they are both always small. In this case we could obtain
smaller ηR and ηφ than in figure 12 using two ingredients: a very small fγ and also by including modes
beyond the cutoff fγ . The inclusion of such modes, while not justified in our effective treatment, turns
out to provide a smoother evolution. In particular we have included modes up to kmax/af = 10fγ and
kmax/af = 20fγ in the left and right panels, and also we have implemented in both a step function
which freezes the modes only when k/a > 80fγ . We show for visual reference the value 0.02 in green
dashed.

in fact the only cases in which we could reach values of O(0.01) for ηR were obtained also
by including modes beyond the cutoff fγ . The inclusion of such modes, while not justified in
our effective treatment, turns out indeed to provide a smoother evolution. For instance in
figure 13 we have included modes up to kmax/af = 20fγ and kmax/af = 10fγ , and also we
have implemented a step function which freezes the modes only when k/a > 80fγ . This show
that, in order to get a very smooth evolution, it seems to be necessary to be able to treat also
the modes beyond the cutoff, which means dealing with a more fundamental renormalizable
UV complete model. This is however beyond the scope of this paper.

Finally let us comment that another way to get a smoother evolution is to increase the
multiplicity ng of gauge fields (note this was also invoked in [5], but for the different purpose
of suppressing the amplitude of perturbations). For instance in figure 14 if we consider a
number of identical species ng ≈ 102–103 we get a smoother evolution and smaller and more
stable values for ηφ and ηR.

Let us also stress that the background evolution implies that any additional light scalar
field with mass m� H would have an almost flat spectrum of fluctuations (but again with
superimposed small oscillations) and therefore it may be used to induce a flat spectrum
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Figure 14. We plot the slow roll parameters defined in eqs. (5.13), for a quadratic potential V =
1
2m

2φ2: εR is always much larger than εφ, and they are both always small. In this case we could
obtain smaller ηR and ηφ than in figure 12 using a large number ng of identical species for the gauge
fields. Here the cutoff is at kmax/af = fγ , as usual. We show for visual reference the value 0.02 in
green dashed.

of density perturbations, if it could dominate at any time the total energy density of the
Universe, i.e. through the so-called curvaton mechanism [19].

Another important fact is that the tensor modes from inflation should have two contri-

butions: a vacuum fluctuation with an amplitude AT = 8
M2

Pl

(
H
2π

)2
, and another one sourced

by the gauge field [17, 20–23]. Although we do not address such a calculation here, the
generic prediction is again the presence of superimposed oscillations. In addition [17] there
should also be parity violation, since the tensor modes produced by a source term should be
chiral.

6 Discussion

We have found that a scalar with a generic potential can successfully achieve inflation at the
background level through dissipation into gauge fields, as long as the coupling 1/fγ is much
larger than the inverse field excursion 1/φ0, as in the case of an axion coupled to photons
stronger than to gluons. This raises several questions and important issues.

First, it is interesting to consider whether such couplings might arise from a more
complete theory. For instance, a way to generate such a coupling is to integrate out a
fermion ψ, with U(1) charge g and with a yφψ̄γ5ψ term, where y is a coupling constant.
This would mean that either φ is a pseudoscalar or alternatively, if φ is a scalar, that we
have large CP violation. In any case this would generate an effective operator suppressed
by the fermion mass mf , of the form g2yφF F̃/mf , so that the new scale fγ would be given
by fγ ≡ mf/(g

2y). However the very same coupling also induces a contribution to mf of
order yφ. So in the end, barring cancellations with a tree level mass, we would typically
have fγ = φ/g2 and this could be much smaller than φ only if g is large, which would
represent a strong coupling regime. In order to avoid such a strongly coupled regime one
could invoke also the presence of several fermionic species. Let us comment also that in such
UV completions of our model it should be possible also to treat cases in which the tachyonic
physical momenta are larger than fγ . However this is beyond the scope of the present paper.

It is also interesting to think about other implications. For instance a curious phe-
nomenon may arise already during inflation. If the U(1) field is the actual electromagnetic
field it would actually produce pairs of electrons and positrons and other particles if the en-
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ergy scale is high enough, so this might induce an even more complex dissipative dynamics.
We do not expect however this to change the overall qualitative picture. In fact if such pairs
are created during inflation they would be rapidly diluted away.

Finally we comment again on the production of large scale magnetic fields: while we have
seen that PB due to the background evolution is suppressed on large scales, it is still possible
that large scale perturbations on φ may source large scale magnetic fields or that some later
mechanism can transfer power to larger scales (see [14] and [10]). Another interesting feature
is the fact that we are producing a nonzero ~E · ~B and this might in principle be a source of
parity violation in the early Universe [22], although again such an effect seems likely to be
also suppressed at large scales. We postpone however such analysis to future work.

7 Conclusions

In this paper we have solved explicitly the dynamics for the background in a system in
which inflation can take place without the need for a flat potential. This happens through
an effective coupling of the form φFF̃/fγ , as proposed already in [5], which produces an
instability in the gauge fields that can be viewed as dissipation that slows down the φ field.
We have studied the onset of such an instability starting from a static configuration of the
scalar field by numerically solving the coupled system of scalar and gauge fields. We have
shown that, even in flat spacetime, the mechanism is efficient as long as the instability is
faster than the free field evolution, which can happen if the scale fγ is smaller than the field
excursion φ0. Then we have extended this setup to the FLRW case, showing that, if the
mechanism can freeze the field value for at least about one efold, then the system enters
the regime studied in [5] with the energy density staying nearly constant and the universe
inflating. In particular dφ/dN ≈ cfγ , where c is a numerical factor, which depends only
logarithmically on the potential and on the Hubble scale and as long as the mass scale fγ
is much smaller than the field excursion φ0, the mechanism is highly efficient, providing
easily more than the required 60 efolds of inflation. The mechanism is appealing, since it
does not require any fine-tuned potential, nor superplanckian field excursions, and the basic
requirements are: an equation of motion which violates CP (and therefore T ), since it can
contain a term proportional to φ̇, and the dissipation of energy into massless degrees of
freedom, so that the friction is efficient for a very long time. We have studied the system
cutting off modes with momentum k > fγ . This is a good approximation except at extremely
small fγ (i.e. very large friction), in which case a full knowledge of the theory seems necessary
beyond the effective theory. An important feature of the numerical solutions is the presence
of oscillations in the background solution, with a typical period of about 4–5 efolds and an
amplitude which is linear in fγ and which is less than O(0.1)% if a total number of efolds
N & 60 is required.

We have also argued that an axion field can have such properties if the coupling to
photons 1/fγ is much larger than the one to gluons 1/fG, since the latter scale determines
the maximal field excursion, fG ∼ φ0.

We have left the calculation of the spectrum and the non-gaussianity of the perturbations
for future work. This is a crucial point since according to [5] this model has a too large
amplitude of the power spectrum Aζ , unless a large number of species for the gauge fields
is considered, and another concern is the size of the nonlinearity parameters fNL, which was
shown to grow large with ξ, at least in absence of backreaction [15, 21]. However we think that
the dynamics of the perturbations in the backreaction dominated regime should be treated
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more carefully. The action of a gauge-invariant variable (such as the comoving curvature
perturbation ζ) should take into account of the non-trivial background in which an energy
density ρR in radiation is present, so that ρ̇ ≈ 4HρR. So, an action to second and third
order for ζ in the presence of φ, Aµ and other metric perturbations should be consistently
written. Also, we have argued that the effect of gauge fields on the perturbations δφ cannot
be treated on all scales as a dissipative term proportional to δφ̇, as in [5], due to the presence
of gradients of δφ and due to the fact that such a dissipation should be efficient only on scales
much larger than 1/fγ . Moreover we have pointed out that the interaction term between δφ
and the gauge field should contain not only “inverse decays”, but also direct decays. Even if
we did not solve the challenging task of solving for the perturbations, we have argued that
new slow-roll parameters εR and ηR, proportional to ρR/H

2 and its time variations may be
relevant for the evolution of scalar fluctuations. For this purpose we have shown that while
εR can be rather small (though much bigger than the usual εφ parameter), it is more difficult
to make ηR less than O(0.1). The latter may be achieved at tiny values of fγ , but at the
price of including modes of about a factor of 10 beyond the cutoff k/a . O(10)fγ . This is
out of the regime of validity of our effective coupling, but nonetheless it may be an indication
that in a UV complete theory a smooth evolution can be achieved. Alternatively we have
shown that in the presence of a large number of gauge fields, O(102–103), ηR can be strongly
reduced.

We have also argued that the addition of a curvaton field might imprint a flat spectrum
of perturbations, in case the spectrum of ζ turns out to be negligible on large scales, since such
a field would have an almost flat spectrum of amplitude H in this inflationary background.
Finally we stress again that the background always has small superimposed oscillations in
the evolution of H and thus, whatever is the mechanism of production of cosmological scalar
and tensor perturbations, there should necessarily be an imprint on the observable density
and tensor fluctuations at late times, which can constitute a distinctive generic feature of
such a scenario.
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A Single mode approximation

We show here that it is possible, at least in the flat space case, to capture the physical effects
by a single ordinary nonlinear differential equation which shows the existence of oscillations
in the solution. This can be done under the assumption that a small range of k’s, around a
given k0, dominate B in eq. (3.3), so we can approximate (keeping only one helicity)

B ≈ 1

4π2
k4

0

d

dt
|A−|2 . (A.1)
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Figure 15. We show the time evolution, in a linear potential and in flat spacetime, of the gauge field
A−, for a single Fourier mode k0 and we show that φ̇, taken from eq. (A.3), quickly goes to a friction
dominated regime, in which it oscillates around a very small value.

We can also consider the special case of a linear potential V (φ) = Vpφ, so that we can rewrite
eq. (3.1) as a conservation equation:

d

dt

(
φ̇+ Vpt+

1

4π2fγ
k4

0|A−|2
)

= 0 . (A.2)

This immediately points to an important fact, namely that the φ̇ = constant cannot be a
solution. In fact, this could happen only if the third term canceled the second, which would
mean |A−|2 ∝ t. But this is impossible, since on a constant φ̇ background the solution is an
Airy function (and at late time goes as an exponential), see eqs. (3.6)–(3.7). So the constant
φ̇ solution can be reached only on average, which explains the presence of oscillations: if φ
approaches a constant value then A− grows very fast and this slows down φ, which in turn
implies less A− production and less friction, and so on.

The previous equation tells us that

φ̇ = −Vpt−
1

4π2fγ
k4

0|A−|2 +Q , (A.3)

where Q is given at an initial time t0 = 0 by Q = 1
4π2fγ

k4
0|A(t0)−|2 = 1

8π2fγ
k3

0. We can now

substitute φ̇ from the above equation in eq. (3.2) and get:

Ä− +

(
k2

0 +
k0

f
Vpt

)
A− +

k5
0

4π2f2
γ

A−

(
|A−|2 −

1

2k0

)
= 0 . (A.4)

So we have obtained a single differential equation, which however has a time-dependent mass
and a nonlinear term. Such an equation does not seem to have an analytical solution. It is
however very simple to solve this numerically and to show that it has a friction dominated
regime with an oscillatory superimposed behavior. In particular we have checked that it has
a good agreement with the full numerical solution and we show a solution in figure 15.
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