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Abstract Spontaneous breaking of quantum scale invari-
ance may provide a solution to the hierarchy and cosmolog-
ical constant problems. In a scale-invariant regularization,
we compute the two-loop potential of a Higgs-like scalar ¢
in theories in which scale symmetry is broken only sponta-
neously by the dilaton (o). Its VEV (o) generates the DR
subtraction scale (u ~ (o)), which avoids the explicit scale
symmetry breaking by traditional regularizations (where u =
fixed scale). The two-loop potential contains effective oper-
ators of non-polynomial nature as well as new corrections,
beyond those obtained with explicit breaking (u = fixed
scale). These operators have the form ¢°/02, ¢8/0*, etc.,
which generate an infinite series of higher dimensional poly-
nomial operators upon expansion about (o) > (¢), where
such hierarchy is arranged by one initial, classical tuning.
These operators emerge at the quantum level from evanes-
cent interactions (< €) between o and ¢ that vanishind = 4
but are required by classical scale invariance in d = 4 — 2e.
The Callan—Symanzik equation of the two-loop potential is
respected and the two-loop beta functions of the couplings
differ from those of the same theory regularized with u =
fixed scale. Therefore the running of the couplings enables
one to distinguish between spontaneous and explicit scale
symmetry breaking.

1 Introduction

Theories with scale symmetry [1,2] may provide a solution
to the hierarchy and cosmological constant problems. But
scale symmetry is not a symmetry of the real world, there-
fore it must be broken. In this work we discuss theories with
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scale invariance at the classical and quantum level that is bro-
ken only spontaneously. This is important since in a classical
scale invariant theory, quantum calculations usually break
this symmetry explicitly due to the presence of the subtrac-
tion (renormalization) scale (w). This scale is introduced to
regularize the loop integrals, regardless of the regularization
method: dimensional regularization (DR), Pauli—Villars, etc.,
and its simple presence breaks explicitly this symmetry.

It is well known, however, how to avoid this problem by
using a subtraction scale that is generated spontaneously, as
the vacuum expectation value (VEV) of a scalar field o [3,4].
This field is the Goldstone mode of scale symmetry (dilaton)
and then u = z(o), where z is a dimensionless parameter.
But before (spontaneous) scale symmetry breaking, with a
field-dependent subtraction function (o) = zo, there is no
scale in the theory. One can use this idea to compute quantum
corrections to the scalar potential of a theory with a Higgs-
like scalar ¢ and dilaton o and obtain a scale-invariant result
at one loop [5-9] with a flat direction and spontaneous scale
symmetry breaking. Although the result is scale invariant at
the quantum level, the couplings still run with the momentum
scale [7,8,10].!

To illustrate some of these ideas, consider a scale-invariant
theory ind = 4

1 1
L= §8ﬂ¢8“¢+ 5%08“0 —V(p,0) (1)
where ¢ is a Higgs-like scalar and o is a dilaton. In such a
theory V has a form

V($,0) =0 W(g/o). )
In this paper we assume that we have spontaneous breaking

of this symmetry, hence (o) # 0. We do not detail how o

1" After spontaneous breaking of scale symmetry (o) # 0, the subtrac-
tion scale 1 ({o)) and all other masses/VEVs of the theory are generated,
proportional to (o).
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acquires a VEV (expected to be large (o) ~ Mpjanck) but
search for solutions with (o) # 0. Then the two minimum
conditions 0V /d¢ = 9V /do = 0 become

28
(o)’
At a given order n in perturbation theory, one condition,
say W/(xg) = 0, fixes the ratio xg = (¢)/(0) in terms
of the (dimensionless) couplings of the theory. The second
condition, W(xg) = 0, leads to vanishing vacuum energy
V({(¢), (o)) = 0 and fixes a relation among the couplings,
corrected to that order (n) in perturbation theory from its
version in the lower perturbation order (n — 1). If these two
equations have a solution xg, then the system has a flat direc-
tion (Goldstone) in the plane (¢, o) with ¢ /o = x¢. Then a
massless state exists (dilaton) at this order. This is true pro-
vided that quantum corrections do not break explicitly the
scale symmetry (otherwise, Eq. (2) is not valid due to the
presence of the “usual” DR scale u). With a scale-invariant
regularization, it is possible to keep these properties (V = 0,
a flat direction, etc.) and study spontaneously broken quan-
tum scale invariance.

Why is this interesting? One reason is that this answers
the question of Bardeen [11] on the mass hierarchy. The
Standard Model (SM) with a vanishing classical Higgs mass
term is scale invariant and there is no mass hierarchy (ignor-
ing gravity, as here?). If quantum calculations preserve this
symmetry, via a scale-invariant regularization, one can avoid
a hierarchy problem and the fine-tuning of the Higgs self-
coupling and keep it light relative to the high scale (phys-
ical mass of a new state) generated by (o) # 0. One can
arrange that xo = (¢)/(o) < 1 by a single classical tun-
ing of the (ratio of the) couplings of the theory [20]. The
hierarchy m%ig 7 (¢)> <« (o)? is maintained at one loop
[5-9,20,21] and probably beyond it, due to the spontaneous-
only scale symmetry breaking. The only difference from the
usual SM is the presence of a massless dilaton in addition
to the SM spectrum. Also, the solution x is related to the
(minimum) condition V = 0. This suggests that in spon-
taneously broken quantum scale-invariant theories any fine
tuning is related to vacuum energy tuning at the same order
of perturbation.

With this motivation, in this paper we extend the above
results. We consider a classically scale-invariant theory of ¢
and o and compute at two loops the scalar potential and the
running of the couplings, in a scale-invariant regularization.
We find that starting from two loops, the running of the cou-
plings differs from that in the same theory of ¢, o regularized
with © =constant. We show that effective non-polynomial
operators like ¢ /o2, $8 /o#, are generated as two-loop coun-
terterms. If expanded about the ground state, these operators

W'(xo) = W(xo) =0, xo= (0).(9) #0. (3)

2 For related applications that include gravity, see for example [12—19].

@ Springer

generate an infinite series of polynomial terms, showing the
non-renormalizability of the theory. The Callan-Symanzik
equation of the potential is verified at two loops. The results
are useful for phenomenology, e.g. to study a scale-invariant
version of the SM (+dilaton).

2 One-loop potential

We first review the one-loop potential [8,9]. Consider the
classical potential®

S VRN S AR !
V_4—!q) +T¢U +4—!a. 4)

Spontaneous scale symmetry breaking (o) # 0 requires two
conditions (Eq. (3)) be met:

942 = Aphrs +l0OPS, (A < 0),

2
(@) = —3;—'" + loops. 5)

2
and  xj e .

A massless (Goldstone) state exists corresponding to a flat
direction ¢ = xpo with Vpin = 0. With ¢ being Higgs-
like, scale symmetry breaking implies electroweak symmetry
breaking.

To compute quantum corrections in d = 4 — 2¢, the scalar
potential is modified to V = u2¢V to ensure dimension-
less quartic couplings, with p the “usual” DR subtraction
scale. General principles* suggest that the subtraction func-
tion (o) depend on the dilaton only [8] and generate the
subtraction scale ©({o)) after spontaneous scale symmetry
breaking; w(o) is then identified on dimensional grounds
(using [u] = 1, [o] = (d — 2)/2). Then the scale-invariant
potential in d = 4 — 2¢ and (o) become
V(g.0) =pn©0)*V@.0). u)=z0"1"9 ()
where z is an arbitrary dimensionless parameter.> The one-
loop result is

V=\7—ifdd—pTr1n[2—\7--+is] 7)
! 2 | @n) P Vi '

Here Vij = 82V /ds;ds; (i,j = 1,2), 51 = ¢, 52 = 0,
and similar for V;; = 82V /ds;ds;. Also V;; = u?¢ [Vij +
2e p?2 Nij1+ O(€?), where

3 In principle one can also include higher dimensional terms like
¢6/(72, ¢8/a4, etc. ((o) # 0); see later.

4 They require quantum interactions between ¢ and o vanish in their
classically decoupling limit A,, = O.

> The parameter z plays a special role in the Callan—Symanzik equation,
see later.
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du AV dp 9V
Nij = n s; Os
le Bs] dsj 0s;
82,u o o
_——— 'V i, j=1,2. 8
+ [M asiaSj Bs,- asj' . ( )
Then
1 I M, 0)
Vlzu(a)k{V——[ M4<——lns—)
64m2 s§a S\ e co u2(o)
4(V;; Nji)“
+— )
1 (o)

with an implicit sum over i, j and with ¢g = 4me>/>~VE . The
one-loop Lagrangian is

1 2 1 2
Li=5(0u)" + 5@u0)" = V1. (10)

Above, M, 3 denotes the field-dependent eigenvalues of the
matrix V;;. The poles in L are canceled by adding the coun-
terterm Lagrangian § L1 found using the expression of M SZ:

2¢ 1 4
L1 = —8V) = —u(o) E(Z“’ — Dy

l _ 2.2 l _ 4
+4(me Dimp o +4,(ng Digo™ ¢ (11)
with
3
=1+ —(A¢ + 22, /%),
Z)‘m = 1 + (A‘(ﬁ +)"U +4)"m)7 (12)
3
Z, —1+2—(x + 12 /ho), Kk = (41)%

Z,’s are identical to their counterparts computed in the same
theory regularized with ; = constant (when scale symmetry
is broken explicitly). The one-loop potential becomes

Uy=V+v®Opydn (13)
1 M*(¢,0) 3

vih = Mg, 0)|In =2 —Z |, (14
6ar2 S=2¢,:g (@)= aey T2 M

1 6
vamn = @[k"”\’”% — (16hghm + 1822, — Apro)o*

— (480 + 25ho)Am 20> — 71(2,04:|. (15)

The potential simplifies further if we use the tree-level rela-
tion (5) among A (s = ¢, m, o) thatensures the spontaneous
scale symmetry breaking. U; is scale symmetric and a flat
direction exists also at the quantum level. Vl(l’") is a new,
finite one-loop correction, independent of the parameter z; it
contains a non-polynomial term ¢°/o? that can be Taylor-
expanded about (¢), (o) # 0. V(™ — 0 in the classical
decoupling limit A,, — 0. The Coleman—Weinberg term is

also present, with u — (o) and thus depends on z. This
dependence replaces the “traditional” dependence of V(D
on the subtraction scale in theories regularized with u =
constant. But physics should be independent of this parame-
ter, which means that U; must respect the Callan—-Symanzik
equation: dU;/dInz = 0 [10].

To check the Callan—Symanzik equation, we need the beta
functions of the couplings which run with the momentum,
even in scale-invariant theories [7,10]. These are computed
from the condition d(,u(a)ze)LjZ;»j)/d Inz = 0 (j:fixed),
since the bare coupling is independent of z. The result is
identical to that in a theory regularized with u© = con-
stant:

diy 3

@O _ 2 2
== A, 16
'3 " dlngz K( o T *m) (16)
= =— (A 4 Ao )Am, 17
IBAm dlnz P ( ¢ + m + 0') m ( )
) _ dio 3 .2 2
=——==(X AD). 18
P dlnz « (G + 25 (18)
The Callan—Symanzik equation at one loop is
Ui, _ (L) 9 3
— o — 4z — | Ui(hj, 2) = OOD),
dinz P o, “a 1), 2) =00
(sum over j = ¢, m, o). (19)

Equation (19) is easily verified with the above results for the
beta functions. The one-loop Uj can be used for phenomenol-
ogy of a scale-invariant version of the SM extended by the
dilaton [8].

3 Two-loop potential
3.1 New poles in the two-loop potential
To compute the two-loop potential we use the background

field expansion method about ¢, o. We Taylor-expand V
about these values

V(p+8p,0+80)=V(p,0)+ Vs + ZVJks]sk
1~ 1 -
+ 5y Vidk Sisjse + gy Vijen Sisjsest + - (20)

where the subscripts i, j, k, [ of f/l ;... denote derivatives of 1%
w.r.t. fields of the set {¢), o'} ;; withi, j, k, [ = 1,2. Alsos; =
8¢, so = §o are field fluctuations. Notice that there are new,
evanescent interactions ( €) in vertices \7, k... generated by
Eq. (6) that impact on the loop corrections. The two-loop
diagrams are presented below. Let us first denote

Vo = Vi + VP + vy, (21)

@ Springer
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Then
a Z Z - ¥ ddp ddq ~—1 n—1 n—1
‘/2 = ﬁ = mm;k‘/lmn/(zﬂ_)d/@ﬂ_)d(D )il (Dq )jm (Dp+q)kn
2e
w(o
- (62) = [qj‘* N 4+ As A2+ 203 ) + 0 (203, + A2 0, + A2)
+ 0% 02 (A2 Ay + 60 A2, + 10X3, + 6XZ N, + Amx?,)} +O(1/e). (22)
Also
i i - dip - dlq -
2 8 g K / (27r)d( b )i (27r)d( ¢ W
_ Mo G (AL 4 2002, + A2 A0) + 0t (AAZ, + 2020, + A2)
- €2 3252 o \m mAo g P \m mo o
+ 2\ 207 (MG + 9N, + ApAo + /\?,)} + O(1/e), (23)
and finally
¢ i i dip
Vi = 2@ = 5(5V1)z'j/7(27r)d (D, Yij
_ Ho* (- )[¢4(3A3 FANAZ AN+ A2 0,) + 0t (A2, + 403 + 402 N, + 3)03)
- 62 16k 2 ¢ P \m m m7\o T
+ 3207 (ANIAm + 1206027, + 38A3 4+ 22 A As + 1202 Ao + 4AmA§)] +O(1/e). (24)

These diagrams are computed using [22]; see also [23].
The propagators are given by the inverse of the matrix
(Dp), i =P 25 = Vii i To s1mp11fy the calculation they can
be re-written as (D™ ),J = a,]/(p - Vp) +b,1/(p - Vm)
with appropriate coefficients a;; and b;; and where Vp, Vi
(\7 > V,,) denote the field-dependent masses, eigenvalues
of the matrix V,], i, ] = ¢, 0. Note that V,], Vp, Vm, aij,
b,], and also V;j, V,]k contain positive powers of €; this is
relevant for the above calculation, since they contribute to the
finite and 1 /€ parts of the potential. Their form is detailed in
Appendices B and C.

One notices that the poles 1/€* in Vza’b’c are identical
to those in the theory regularized with & = constant. This
is expected for this leading singularity, but this is not true
for their sub-leading one (1/¢) or for their finite part (see
later). The long expressions O(1/€) and O(€?) of each dia-
gram V' *>¢ are not shown here. The sum of these diagrams
gives

@ Springer

1(0)* (—1)
2 32
+403 422 h) +0BA3 4apA2 +423 + 422 0,)
+ 202 (AAGhm + 12497, + 384, + 2hphm Ao
+ 12020 + 4hmA2)]
(o)
€
4 3 2 3
+ot 20 4020, +12)
+ 0202 0Ghm + 6hghp, + 1007, + 645 05 + Anh2)]
+V,/C VO pyen (25)

[6* (32} + 4rghs,

1
o2 [6* (M) + Aghp, + 223

Here V@ and V™ are O(e) i.e. finite quantum corrections
presented in Appendix B. Vzl/ ¢ = O(1/e€) is a new term that
contains 1/€ poles not present in the theory regularized with
j=constant; its origin is due to evanescent interactions (x €),
which “meet” 1/€? poles, thus giving 1/€ terms. One finds
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2e
1/e _ (o) 4(20 5 1. .2 3 Lo

= 3hohnho + Thunko + Aehs

41
+ ¢202(8A¢/\§, + 7)\,3" + Aphmho

43, 1,

+ e + Exm)\g>

+o4<4kf’n + %Afnka + 47_1’\‘3’)

+f_z <— %,\gxm + ;M,\ﬁ, - é/\¢km/\a>
Lz & | 26)

In addition to usual counterterms (¢4, etc.), notice from Eq.
(26) the need for non-polynomial counterterms ¢®/o and
#8/c* (see also $®/o? in Eq. (13)). The above two-loop
results contribute to the Lagrangian (below p?, p” are wave-
function coefficients defined later)

1/ p? )
Ly = 3 <p? + ﬁmte) (8,L¢)2

1/p° . )
+§ ?+ﬁn1te (0,0)" — Va. 27

A counterterm § L cancels the poles in the sum L1 + Ly of
Egs. (10) and (27) up to two loops

1 2 1 2
8La = 5(Zg = D(@u9) + 5 (Zo = 1)(3u0)
A
— (o) { (Zy, — 1>4—"!’¢4

A A
+ (Z, — 1)7’”4302 + (Zy, — 1)4—‘704

A ¢° A ¢°
+(Z)\,6_1)€0__2+(Z)L3_1)§0__4 , (28)
where
¢ ¢ ¢ b
8 187 +0v? 5
Zy =14+ 20 (T %)
*o K€ K2< € €2
zxm=1+i+—2<1 L+2)
K € K € €
89 1 /87400 &
Zx”=1+—0+—2(1 +-=2 ).
K € K € €
z =14 1M, g g 1M (29)
o T2 e BT e

where the one-loop Sg , 8y, 83 can be read from Eq. (12),
while the two-loop coefficients (Si, k=1,2,s = ¢,m,o,
are shown in Appendix A. They are obtained by comparing

8Ly against Ly, using V; of Eq. (25). The coefficients §; are
those of the theory regularized with © = constant. However,
there is an extra contribution from the coefficients vi‘, s =
¢,m,o,6,8 (see Ag)/pendiX A), which is generated by the
new poles 1/€ of V, €. This new contribution brings about
a correction to the two-loop beta functions of our theory, see
later.

One can also show that the two-loop-corrected wavefunc-
tion coefficients have expressions similar to those in the the-
ory regularized with u = constant:

¢ 1
o ¢ 2 2
Zy =14 —, =——( 312,
& + e 1Y 24 ( é + m) 30)
zo=1+2  o=_Lozime)
KkZe 24 ¢ "
One often uses the notation y, = —2p%/k? and y, =

—2p% /k? for the anomalous dimensions.
3.2 Two-loop beta functions

With the above information, one obtains the two-loop beta
functions. To this purpose, one uses that the “bare” couplings
kf below are independent of the parameter z:

My = 1(0)hg 2o,y 2,7,

oy = 100D Z3,, 251 2, ah
W= o), 23, 237,

A8 = (o) he 2oy 29 2.

We thus require (d/d In2)A8 = 0,k = ¢, m, 0, 6, 8.9 Taking

the logarithm of the first expression in (31) and then the
derivative with respect to In z, one obtains

By
2€+E+ Z ,BAJ-

j=¢.m,c

d -2

and similar expressions for the other couplings. Using the
form of Z’s, one finds

d
Pro = —2€hp + 209 > a
j=¢.m,o
¢ ¢ ¢ ¢
) s +v 2
X<—O+1—21—L2>. (33)
K K K

One easily obtains similar relations for §,,, and 8, (for g,
just replace the sub-/super-script ¢ — o). The difference
in these beta functions from those in the same theory but
regularized with & =constant is the presence of a new con-
tribution: v? (vi", v{, respectively), which we identified in

6 We also include the effect of wavefunction renormalization of the

subtraction function which requires replacing u(o) = zo/079 —
1/2

2 (Zo'” 0)1/1=9); however, this brings no correction in this order.

@ Springer
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Eqgs. (29). Equation (33) is solved with particular attention to
the e-dependent terms, to find at two loops

3 117
Bro = —0G +20) — — (544 + Shghy, +1243)

Tk
2,
+B2",
1 Am 2
,Bkm = ;(M) + 4)\m + )\U))Vm - @(Skqb + 36}‘¢)”m

5412 + 360mhg +502) + BT,

3 1 17
B, = ;(,\51 +22) - = (12,\,3” + 5320, + ?ﬁ,)

(2,n)

+ By (34)

The “new” terms ,3;2’") on the r.h.s. are

1
B = 5510 Q4 = Tha) + kg (—143], + 1632,
=322) + A5 (=80 + 62.5)1,
A
B = = (483phu + 6hpha + 12317,
+86Amhe + 312),

1
O = 55 (482, + 427 hg +2107),

(2,n) !
’8)\6 = m )\,¢)\,n1 (7)\,¢ - 14)\4;11 + )\'O‘)v
1
2,
By = 22 Morm 5

Here ,Biz’n), which appears for each A at two loops is the
mentioned correction, which is absent if this theory is reg-
ularized with ;. = constant, when one breaks explicitly the
scale symmetry. Notice that A¢ g also run in this order in the
scale-invariant theory.

We conclude that from the two-loop running of the cou-
plings, encoded by the beta functions, one can distinguish
between the theory with (spontaneously broken) scale sym-
metry at quantum level and that in which this symmetry is
broken explicitly by quantum corrections (with © = con-
stant). There is a simple way to understand this difference:
the theory regularized with u =constant, and two fields ¢, o
is renormalizable while our model, scale invariant at quan-
tum level, is non-renormalizable. This is due to the scale-
invariant non-polynomial terms of type ¢°/02, ¢8/c* gen-
erated at one- and two-loop level.” This justifies the different
beta functions in the two approaches starting from the two-
loop level. This is an interesting result of the paper.

7 This non-renormalizability argument is different from that in [6]
which does not apply here; see [8].

@ Springer

3.3 Two-loop potential after renormalization

Finally, we present the two-loop potential U after renormal-
ization. It has the form

U=y+vO4ylny® g yen (36)
—— —
=U,

where U] is the one-loop result of (13). V® is a two-loop
correction identical to that obtained in the theory regularized
with 4 = constant (up to replacing u — z o), while V*»
are new two-loop terms that involve derivatives of (o) w.r.t.
o (similar to the one-loop V(1) 3 The long expressions of
V@ V& are given in Appendix B, Eq. (B.5). U contains
new, non-polynomial effective operators, such as ¢°/o2 and
¢8 / o?, etc.:

= 7)% ¢_8 SA% ¢_6_|_... (37)

© 576k20% 24?02

All non-polynomial terms present in the potential can be
expanded about the ground state

¢ = (¢) + 9,

where 8¢ and do represent fluctuations about the ground
state. Then each non-polynomial operator becomes an infi-
nite series expansion about the point (¢) /(o). For example

o= {(o)+do (38)

¢° 4 (0)? ( 28 8¢? )
o B Mo == 24
p =W o Uty T T
280 3802
(T %

and similarly for the operator ¢%/c* in U, etc. Although
we did not present the ground state of the one-loop poten-
tial, this is well known to satisfy the relation @)/ (0)? =
—3Xm/ e (1 + loop corrections) [8]. Using this information
in Egs. (39) and (37), one sees that in the classical decou-
pling limit A,, — 0, the non-polynomial operators of (37)
do vanish.

It is important to stress that only operators of the form
$*" T4 /o n > 1 were generated in the two-loop potential,
but no operator like ot / ¢2”, n > 1is present. This is due
to the way the subtraction function enters in the loop correc-
tions, via derivatives w.r.t. o of p(o)€ which are suppressed
by positive powers of (o). This means that all higher dimen-
sional operators are ultimately suppressed by (large) (o) and
not proportional to it. This is welcome for the hierarchy prob-
lem, since such terms could otherwise lead to corrections to
the Higgs mass of the type A; (0')? requiring tuning the Higgs
self-coupling A4, and thus re-introducing the hierarchy prob-
lem. This problem is avoided at least at one loop [5,8].

8 See [24-26] for further discussion of the Goldstone modes contribu-
tions to the potential.
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4 Two-loop Callan—Symanzik for the potential

A good check of our two-loop scale-invariant potential is the
Callan—-Symanzik equation, in its version for scale-invariant
theories [10]. This equation states the independence of the
two-loop potential of the subtraction (dimensionless) param-
eter z; this parameter fixes the subtraction scale to z (o), after
spontaneous scale symmetry breaking. The equation is

dU 8 Bl
dlnz

9 3
= +,3,\, oy —dVp = 2% aya—>U(A z)=0,

(40)

where the j-summation runs over A; = Ag, Am, Ao, Ag, Ag.
Equation (40) can be re-written as a set of equations at a
given order of A’s (or number of loops). To help one trace the
difference between our scale-invariant result and that of the
same theory but with © = constant, below we use for U the
decomposition given in Eq. (36) while for the beta functions
we write

ﬂ /3(1) 13(2)

The terms in the beta function correspond to one loop
(,B)ED ), and two loops only (’3)(\2)) and two-loop new parts

B (41)

(,3;2’“)). Then, with the two-loop anomalous dimensions y,
Yo defined after Eq. (30), a careful analysis shows that Eq.
(40) splits into

avm A4
—— + B -— =0, 42)
dlnz Iy
g v
= 43
dlnz )
2
VO (s —Vcb——)/ “)v
8lnz Man 3 %90
gy
M
— =0, 44
+8;, o (44)
qVeEm oV gy avam
——— =0, 45
omz TP w, TP anj )

where V includes the new terms® (1g/6) /0% + (Ag/8)
#8/*. We checked that these equations are respected. Eqs.
(42), (44) express the usual Callan—-Symanzik equation (of
the theory with u =constant), whereas (43) and (45) con-
stitute a new part, which is nonzero only when u = (o).
Equation (43) is obvious and hardly revealing. But check-
ing Eq. (45) is more difficult. For this one also needs to take
account of the “new” corrections to two-loop beta functions
of g 3. see Eq. (35), and also the z-dependent part of V (>™)
which we write

9 Although As, A¢ were set to 0 at the tree level, they have non-zero beta
functions and since in the Callan-Symanzik equation the couplings are
replaced by running couplings, these terms are present in V.

yen —

P 2[1nv +anm]|:( 14433 0 — 111062,

— 1684, + 9 jhs — 4045, 00) ¢

— (192222, + 70513, + 3ThgAmAo
+36832 4o + 1061,12) 7o

— (482, + 461505 + 631 ) ot + (18150
6

— 24022 + 323 + BhpAmdo) ¢—2
o

8
+ 3002 2 ¢ i| + z-independent terms, where

InA =1 -1, (46)

n——

(z0)2*4mweVE
where yg = 0.5772.... Here V,, and V), are field depen-
dent eigenvalues of the matrix of second derivatives V;; w.r.t.
i, j = ¢, o of the tree-level potential. Given this, the Callan—
Symanzik equation of the potential is verified at the two-loop
level.

5 Conclusions

Quantum scale invariance with spontaneous breaking may
provide a solution to the cosmological constant and the hier-
archy problem. The “traditional” method for loop calcula-
tions breaks explicitly classical scale symmetry of a the-
ory due to the regularization which introduces a subtraction
scale (DR scale, cut-off, Pauli—Villars scale). However, it is
well known how to perform quantum calculations in a man-
ifestly scale-invariant way: the subtraction scale is replaced
by a subtraction function of the field(s) (dilaton o) which
when acquiring a VEV spontaneously, generates this scale
(o)) = z{o). The Goldstone mode of this symmetry is the
dilaton field which remains a flat direction of the quantum
scale-invariant potential.

Starting with a classically scale-invariant action, we com-
puted the two-loop scalar potential of ¢ (Higgs-like) and
o in a scale-invariant regularization. The one- and two-
loop potential are scale invariant and contain new terms
beyond the usual corrections obtained for p = constant
(Coleman—Weinberg, etc.), due to field derivatives of (o).
They also contain interesting effective non-polynomial oper-
ators ¢®/o2 and ¢8/c?, etc., allowed by scale symmetry,
showing that such theories are non-renormalizable. These
operators can be expanded about the non-zero (¢) and (o),
to obtain an infinite series of effective polynomial ones, sup-
pressed by (o) > (¢) (such hierarchy can be enforced
by one initial, classical tuning of the couplings). The non-
polynomial operators emerge from evanescent interactions
(ox €) between ¢ and o that vanish in d = 4 but are required
by scale invariance ind = 4 —2e¢. Previous work also showed
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that the Higgs mass is stable against quantum corrections
at one loop, mé < (0)2, which we expect to remain true
beyond this order because only spontaneous scale symmetry
breaking is present.

We checked the consistency of the two-loop scale-
invariant potential by showing that it satisfies the Callan—
Symanzik equation in its scale-invariant formulation. To this
purpose we computed the two-loop beta functions of the
couplings of the theory. While one-loop beta functions are
exactly those of the same theory of ¢, o regularized with u =
constant, the two-loop beta functions differ from those of the
theory regularized with explicit breaking of scale symmetry
(n = constant). In conclusion, the running of the couplings
enables one to distinguish between spontaneous and explicit
breaking of quantum scale symmetry of the action.
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Appendix A: Coefficients of the counterterms

Assuming A, = 0, n > 6 at tree level, the coefficients of
Egs. (29) and (33) are

50— 3 A2+,\2+2E (A1)
1 = 2 ] m )x¢ ’ .
m 1 2 2 2
8" = = O + Ohphm + 1045, + 6hnho +15),  (A2)
3 /.22
o =3 (2k—m + 22 +x§> , (A3)
o

1722
v = g[k—m(zzum — The) — (1422 — 16Am05 +312)
¢

ey (800 — 6Ag)], (A4)

1
Vi = —ﬁ[mx; + 86AmAo 4 30E 4 6hg (8m + Ao)],

(A.5)
Vo = _L(48)\3 + 4220, +21203) (A.6)
LT g, e - '
(o3
1 Agh
6 ¢
W= A6m (Thg — 14k + Ao ), (A7)
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1 Apr2
8 dMNm

=_%m A.8
I=g » (A.8)
¢ 3 2 2 )‘;%1
)4 =1 3)\¢+4km+—k¢ @rm +25) 1, (A9)

1

s = Z(zx; + 6hghm + Apho + 19X 4 6hphe + 212),
(A.10)
s 3 A,%, 2 2
89 = i T(@ +4hm) + 405, + 305 |- (A.11)
o

Appendix B: The finite part of the two-loop potential

We provide here the finite part of the two-loop potential,
V@ 4 y@m of Egs. (25) and (36). This is rather long, we
thus use a simplified notation. The propagators are found
from: (D,);; = p*8ij — Vij. To simplify the calculation it
helps to write them as

~_ dij bij - .
(D 1),’j = ~ + ~, bij =&ij — ajj
Pz_ 2 Pz_ Vin
- ~ V,— Vo ~ -
al = byn=-L—=<=, apn=>hb)=1-ay
Vo — Vi
V,—Vii - Via
=L~ ap=ay = T (B.1)
p— Ym p— Ym

where 17p, V,, are the field-dependent eigenvalues of matrix
Vij =02V /3si0sj,i,j = 1,2, s1 =¢,s0 =0, and V =
w(o)?€ V where V is the tree-level potential in d = 4. We
introduce the following coefficients (without ™) of the Taylor
expansions in € (see Appendix C for their values in terms of
the couplings and fields):

&ij =aij + eailj +€2 al-zj + 0(63),
1 g2 2
bij = —a;. bjj=-a;
~ 2 2 3
Vijk..= (@) [ vijk... + € uijk..+€ wijr.. + O ],

where:

bij = 6ij — aij,

. 94V otV

ke = e Vijk. = o
ijk... 0s;0s;0s) - - - ke 9si 0808k - - -
ik .. =12 s1=¢,5=o0,

Vp = (@) V, [1+ cll7 €+ cf, €2+ 0]

Vi = 11(0)% Vi [1 4 ¢l e + 2 €2 + O] (B.2)

Here V), and V), are the field-dependent eigenvalues of the
matrix V;; of the tree level V:

Vy = 1/2[Vi1 + Voo + [(Vi1 — Va2)® +4V31Y?1 (B3)

with V,, having a similar expression but with — in front of
the square root. V,, and V,, should not be confused with
derivatives V; of the potential. We also use the notation
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InA=In A 1, t=4dme VE, (B.4)
1(z0)?

Then V@ and V&M of Egs. (25) and (36) are shown below.

V@ is that of the theory regularized with & =constant, while

V2" is a new correction. They are sums of the diagrams of

Eq. (22),

2 b
Ve = Viiod + V2o + Vaou
y@en _ V2a,n + V£n + VZC,n (B.5)
where a, b, ¢, label the sunset (a), snowman (b), countert-

erm (c) diagrams, respectively. Then, in terms of the above
coefficients, one finds for the sunset diagram (a):

1 1
Vza,n = I 3 {[vl]wlmn + 2”1]k”1mni|[v aij + Vi bzl][ajm + bjm][akn + byl

+ vijttimn[(Vplan (1 = 20V, + ¢p) + aj]+ Vb (1 = 2InVy, + c)) +bjD(ajm + bjm)
1
+2[Vpair + Vbillaj,, + b}, Nan + binl + VijkVimn [z(vp lai(c;, — c)) + ajjc),

—2InV, (airc), + aj)] + Vnlbir(cy, — c5) + biscy, — 2V (bisc,, + b)) @jm + bjm)

+ (Vpaitle, =2V, 1+ Viubitlc,, 2V, ) (aj,, + b}m)] [akn + ben]

+ ik Vimn [V (bit[2a 0, + %, bin + @) bin + 2a],, b, 1 + ainl3a),,al, + 4a5, b
+2bjmby, + 4aj,, (bin + by, + 2bjmbi, ] + anajml3(a}, +ai,) + 2(by, + b))
+ Vin(ail[2b],,by, + b3,,akn + b}, akn + 207,03, 1 + bi[3b},, by, + 467, akn + 2ajmay,,

+4b},, (@ + ap,) + 2ajmai,] + bibjml3(by, + bi,) + 2@y, + ag,)) ] } (B.6)
and
1
Viela = Pl v']kvlmn{[v ainV,, + Vb nVy 1l @jmainInVy + bjmbialnVy, |
n’ 2 1 —2 —
+2[vpailn V) + Vi biln Vi la jmbin + E[Vpbil — Vuaillin"V, —1In" Vi, 1a jmbin
~[VpaulnVy, + VaubiltViullajm + bjmakn + ben
3 72
+[Vpaii + Viebillajm + bjm1lak, + bkn]|:§ + E:|
1 1
= Vol 2a:1®pm — Ebilq)m,p + Vi (Zbilq)m,p - Eailq)p,m ajmbin
1
3 [ Vpairajmarn + Vinbitb jmbin 1C ¢, (B.7)
with [22]

o, = o] et () 2w e -2 dyp 4 ]y > 1, (B.8)
p.m 4 me C12 (arcsm W) , 1> ypm >0, .
Ypm = Vm/Vm Npm = (1= 1/ypm)V/2, € = —24/3Cl (/3) 3.5, (B.9)

U In(1 — &t o 0
Lix(§) = —/ dln(fg),cb(@) = —/ df In |2 sin 5’ (B.10)
0 0
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Further, for the snowman diagram (b):

1
Vi = 3 2{wukl (@ijVp + bij Vin) (a1 Vp + b Vin) — 2uijia [(@ij Vi + bij Vin)

x (ag VpInVy, + by Vi InVy,

— aricpt + ap) Vi + (bricpr + bip) VD]

=2k [2aij (aki cp1 + a,l,) V]? EV,, +2b;j (bri cm1 + blil) Vn% nv,,
+[aij (bri cm1 + byy) + bij (axi cp1 + ai) 1V Vin 0V, +10V,) — (@i Vyy + bij Vin)

x ([awt (cpa — cp1) + agcpr + a1 Vy + [by (cm2

1
Sl@ijepr +aiVp + (ijem +bjj)Vin ][(akzc},+a,l,)vp+(bk1cm1+b,1,>vm]]},

—em1) + bpem + b1 Vi)

(B.11)

where i, j, k,l = 1,2. Also
b 1
Vyold = 3,2 Viiki [Vpaij + Vinbijl[Vpaw + Vinbi]

2
x [1 + %] + V) Vaijb[InV, — InV,, 2
+2[ Vpa;;InVy, + ViubijInVy, 1

x[ VpauInV, + VbV, ]}. (B.12)

For the final “counter-term” diagram (c) we need to intro-
duce the coefficients dv;;, du;;, Sw;; whose values will be
presented shortly (Appendix C). From Eq. (11)

1
§Vi=— 26[5"’ S
EK

A
0 1 ¢202+88 —504:|, then

T 4!

1
OV = — W8 +e Suij+€ Swi 1, (B.13)

where (8V1);j = 32(8V1)/dsidsj,i, j = 1,2,51, 52 = ¢, 0.
With this notation, we find for diagram (c)

1

Vzc’n = W{Swij[aijvp + bij Vil

+8uij [V (aijlc, —nV,] +a;)

+Viu(bijley, — V]l + bj))]

—8vij[VpInVy(aijc), + aj;) + VIV (bijey, + b})

—Vp(aijc2 + [a-l- —aij]cl +ai2j)

—Vin(bijep, + [bi; = bijley, + b7} (B.14)
and
. 1 — 72
Vf,old = 4K_28Uij |:Vpaij<1n Vp+ 1+ ?>
—2 72
+Vmbij<1n Vin +1 +?>i| (B.15)

@ Springer

C Appendix C: Coefficients entering the two-loop
potential

Below we provide the expressions of the various coefficients
introduced in the r.h.s. of Egs. (B.2) and (B.13) and used in
Appendix B. The coefficients v;jy;, v;jx are functions of A’s
and fields

VI “ir1r Wit
Vil2 U112 Wi
V1122 41122 w1122
V22 U122 W22
V02 U222 W22
Ap O 0
0 21,2 2452
2 V]
= | Am 3Am—)\¢% 2oL + 5k
2 4, ¢
0 2% +2)\m 8ims — $ap s
1 255 5 92 4y ¢t joa. — o 22
)er 2)» 4+ )La )hm 3)\¢a4+ O)La )Lmo,z
(C.1)
and
Vi1l Uil wiii

V112 U112 wWii2
V122 U122 w122
U222 U222 W222

Ap O 0

' ra
AmO Ay = + Ohm Ap g+ Amo

3 3
Amd 3hmd — $rp L e +Shnd
oo LB 4 Lo 42,2 — 1 Uyo+4n, 2
00 gho 3+ Gre0 +Am; ¢3+3 00 + 4k
(C.2)

Further, the coefficients §v;;, du;; and Sw;; of Eq. (B.13) are

1
duit = 30 + 2506 + A + 4hm + A0)0 7],
duip = owy; =0, (C.3)
1
Svip = ﬂ)\m()wp + 4, + Ao ) o, (C4)
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1
Suip = dwip = E[(X%" +A5)9°
¢

and

1
§? = Z[(A¢ — )2t 20 hm + TAE = Ao

+hom (Agp + 4 +)»g)02];, (C.5)
o S Fhnho)$0% + (= 1o) 0], (€11
Sv20 = —=[(4A2 4+ Aghm + Amh 302 + A , .
v22 4/<2[( m + Aghm Ao )§7 4 3y +45)07] while V,, and V), (see also (B.3)) are
(C.6) , ,
11 224 Vol _ 1[Go+2m) o+ (hp + Am) ¢° +28
Suxy = @p[—(kqs + Ay Vi | — (o 4+ dm) 02+ (Ap + Am) $* —
+6hm (g + 4hm + Ao)p?0” + 1007 + An)0 ], (C7) (C.12)
1 1 2 2 :
Sway = W_z[()‘é i )»,2,,)¢4 For Cps Cy (with the above V), and V,;,)
K= O
v, c2 1 1 [ hpd*+300,0%02 4900 0*+ Ry
O (Mg + 4hm + Ag)d20> + 902 + 22)0%]. (C.8 PCp ¢
+ 104, ( ¢ T 4hm + )P 0"+ 9( o T m)O‘ 1. (C3) Vmci 2402 X¢¢)4+30)»m¢)20'2+9}ug0' -R,
(C.13)
where
Ry = 2S3 [07¢' 00 (1305 + 2Thp A7, — 3945 0m + 34;) + 0 (=232, 1,
+ 3 A [3ho + 16461 + 545 640 + 254] — 423425, + 90A,))
+ 00900 A5 [Th — 270g] + 314, [99%6 + 151061 + ApAs, [5534p — 6154, ]
+ Ao rgphm[Ohs + 65441 + 203413 ) + 03* BA2 Ay [ho 4 27hp] + 313, [6410y 4 26124]
+ Ao A% [351hg — 52121 — Ao Agrm[3610 + 8121 4 34381%) + 0 10p? (=813 1g
+ Ao A2 (29205 — 81ap] + 922 Am (1925 + 18251 — 609213, + 34214 )
— 276 [hm — A6 121 (C.14)

The coefficients ¢!, ¢2, ¢l ¢2 also V, and V., introduced
p p m> ~m p

in Eq. (B.2) obey the expressions

Vpey | _ 11
Vi el 24 02
[—AW“ + 180,¢0%0% + Ths0* + Ry ]

C.
—rp¢* + 184 %0 + Thoo* — R (€9

where
_ 1 _ 6 o 2 4 2
Rl_ﬁ[k(f)(kd) Am)@°+(A5Xp A —Apro +18A,,)0 0

+(=TApro +T8A% +25hmhs )70

Finally, a;;, J b, iz b b2 introduced in (B.2) and used
in Appendix B have the Values

1
an=1—ap=bpn=1-b;; ==

2
1
+R[’\¢’¢2 + A (=% +02) — 1502, (C.15)
Amo o
app =ay) = —bp=—by = mS , (C.16)
1 1 1 1 m¢2
aj| = —ay; = _bll = b22 3 [)\.(p( 2)\¢ + 3)\.m)¢

+2(hpho — 4x¢xm—6x,§1)¢ — (62 +dmro)o]

C.17
T (—h + 1)) (C.10) (1
with S of Eq. (C.11). Also
Dmal = —bly = bl = — (6505202 = Shphm + 322
ajy = ay = —bjy = —by, —WW ¢ (2hg = Shphm + 34,)
+ ¢ 02 (—4ho Ay + Shghmlho + 2hp] + Aghn — 1227)
+ 92042020y + A2 [142p — 13451 — Yhohghm
+ 623 ) + 0O (=22 = Shohm + 612)]. (C.18)
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Further
2 ¢?
an = _azz = bu bzz 7880255

{0923 (=423 — 31apAp, + 20050, + 1543)

+ 08020y 120645, + Aphp, 3106 + 180Ag] — 20450 [206 + 3hg] + Shph,, — 1921;]

+2¢%0*

[—6A2 A5 + Aphy,[44hp — 16306] — 250 1905 + 13224]

+ 20 AghmlSho + 28hp] + 4500905, + 1441451 — 20* 0O [—227 25 + 2,[2701,
—96)g] + Ak [2364p — 463001 + AoAghn, [T1he — 1184g] + 2242 A A + 10084;,]
+ @203 A [=8A3 Ay + 1223 2945 — 3101 4 Ao A2, [1842y — 117hg] 4 4902 Ay A

— 468014 019322 (=723 + 160, A2 + 27020

—3623)).

(C.19)

Finally

2 2
ap =dx =

¢
5760355
+20%¢" 0y (=323 [he +249] —

2
b12 - b21

+ 2202 414y + 8hp] — 2003 Aghm + 7200

+ 02 (=hm) O — Ao)2 (=112 + 24452 + 3612)],

g h [4ho +992 ] + A3

— T [- ¢12A Ghm — 24g) o — 1g)?

Am[Tho + 5Thg]
+ 2200 + 3005 + 01 9P 2023 [3he + 17491 + A [1604s + 3012g]

+ 20500 (2805 + 2370g] — AGAm 18426 hg + TAT + 8405] — 97245, — T24;,)
+20%¢° (=25 05 [ho + 150] — 645, [Tho — 682g] + AgAp [3794y — 65115]

+ hghp [=5hgdg + TIAS = 108A5] + Ao Aghm[13hg + T5hg] + 11162;,)

+ 08 (6A) A5 + 120, (924 + 454p] + A, [54005 4y + 59A7 — 26423]

— Ao g2 [91hg — 41agp] 4 A2 ApAm[44hs — 3Thg] + 32400)

+20 1992 (A3hp + 64 [314s — 1321 + Ao Al [89Ap — 10314, ]

(C.20)

which enter in the expression of the two-loop potential.
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