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Abstract Spontaneous breaking of quantum scale invari-
ance may provide a solution to the hierarchy and cosmolog-
ical constant problems. In a scale-invariant regularization,
we compute the two-loop potential of a Higgs-like scalar φ

in theories in which scale symmetry is broken only sponta-
neously by the dilaton (σ ). Its VEV 〈σ 〉 generates the DR
subtraction scale (μ ∼ 〈σ 〉), which avoids the explicit scale
symmetry breaking by traditional regularizations (where μ=
fixed scale). The two-loop potential contains effective oper-
ators of non-polynomial nature as well as new corrections,
beyond those obtained with explicit breaking (μ = fixed
scale). These operators have the form φ6/σ 2, φ8/σ 4, etc.,
which generate an infinite series of higher dimensional poly-
nomial operators upon expansion about 〈σ 〉 � 〈φ〉, where
such hierarchy is arranged by one initial, classical tuning.
These operators emerge at the quantum level from evanes-
cent interactions (∝ ε) between σ and φ that vanish in d = 4
but are required by classical scale invariance in d = 4 − 2ε.
The Callan–Symanzik equation of the two-loop potential is
respected and the two-loop beta functions of the couplings
differ from those of the same theory regularized with μ =
fixed scale. Therefore the running of the couplings enables
one to distinguish between spontaneous and explicit scale
symmetry breaking.

1 Introduction

Theories with scale symmetry [1,2] may provide a solution
to the hierarchy and cosmological constant problems. But
scale symmetry is not a symmetry of the real world, there-
fore it must be broken. In this work we discuss theories with
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scale invariance at the classical and quantum level that is bro-
ken only spontaneously. This is important since in a classical
scale invariant theory, quantum calculations usually break
this symmetry explicitly due to the presence of the subtrac-
tion (renormalization) scale (μ). This scale is introduced to
regularize the loop integrals, regardless of the regularization
method: dimensional regularization (DR), Pauli–Villars, etc.,
and its simple presence breaks explicitly this symmetry.

It is well known, however, how to avoid this problem by
using a subtraction scale that is generated spontaneously, as
the vacuum expectation value (VEV) of a scalar field σ [3,4].
This field is the Goldstone mode of scale symmetry (dilaton)
and then μ = z〈σ 〉, where z is a dimensionless parameter.
But before (spontaneous) scale symmetry breaking, with a
field-dependent subtraction function μ(σ) = zσ , there is no
scale in the theory. One can use this idea to compute quantum
corrections to the scalar potential of a theory with a Higgs-
like scalar φ and dilaton σ and obtain a scale-invariant result
at one loop [5–9] with a flat direction and spontaneous scale
symmetry breaking. Although the result is scale invariant at
the quantum level, the couplings still run with the momentum
scale [7,8,10].1

To illustrate some of these ideas, consider a scale-invariant
theory in d = 4

L = 1

2
∂μφ∂μφ + 1

2
∂μσ∂μσ − V (φ, σ ) (1)

where φ is a Higgs-like scalar and σ is a dilaton. In such a
theory V has a form

V (φ, σ ) = σ 4 W (φ/σ). (2)

In this paper we assume that we have spontaneous breaking
of this symmetry, hence 〈σ 〉 �= 0. We do not detail how σ

1 After spontaneous breaking of scale symmetry 〈σ 〉 �= 0, the subtrac-
tion scale μ(〈σ 〉) and all other masses/VEVs of the theory are generated,
proportional to 〈σ 〉.
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acquires a VEV (expected to be large 〈σ 〉 ∼ MPlanck) but
search for solutions with 〈σ 〉 �= 0. Then the two minimum
conditions ∂V/∂φ = ∂V/∂σ = 0 become

W ′(x0) = W (x0) = 0, x0 ≡ 〈φ〉
〈σ 〉 ; 〈σ 〉, 〈φ〉 �= 0. (3)

At a given order n in perturbation theory, one condition,
say W ′(x0) = 0, fixes the ratio x0 ≡ 〈φ〉/〈σ 〉 in terms
of the (dimensionless) couplings of the theory. The second
condition, W (x0) = 0, leads to vanishing vacuum energy
V (〈φ〉, 〈σ 〉) = 0 and fixes a relation among the couplings,
corrected to that order (n) in perturbation theory from its
version in the lower perturbation order (n − 1). If these two
equations have a solution x0, then the system has a flat direc-
tion (Goldstone) in the plane (φ, σ ) with φ/σ = x0. Then a
massless state exists (dilaton) at this order. This is true pro-
vided that quantum corrections do not break explicitly the
scale symmetry (otherwise, Eq. (2) is not valid due to the
presence of the “usual” DR scale μ). With a scale-invariant
regularization, it is possible to keep these properties (V = 0,
a flat direction, etc.) and study spontaneously broken quan-
tum scale invariance.

Why is this interesting? One reason is that this answers
the question of Bardeen [11] on the mass hierarchy. The
Standard Model (SM) with a vanishing classical Higgs mass
term is scale invariant and there is no mass hierarchy (ignor-
ing gravity, as here2). If quantum calculations preserve this
symmetry, via a scale-invariant regularization, one can avoid
a hierarchy problem and the fine-tuning of the Higgs self-
coupling and keep it light relative to the high scale (phys-
ical mass of a new state) generated by 〈σ 〉 �= 0. One can
arrange that x0 = 〈φ〉/〈σ 〉 
 1 by a single classical tun-
ing of the (ratio of the) couplings of the theory [20]. The
hierarchy m2

Higgs ∼ 〈φ〉2 
 〈σ 〉2 is maintained at one loop
[5–9,20,21] and probably beyond it, due to the spontaneous-
only scale symmetry breaking. The only difference from the
usual SM is the presence of a massless dilaton in addition
to the SM spectrum. Also, the solution x0 is related to the
(minimum) condition V = 0. This suggests that in spon-
taneously broken quantum scale-invariant theories any fine
tuning is related to vacuum energy tuning at the same order
of perturbation.

With this motivation, in this paper we extend the above
results. We consider a classically scale-invariant theory of φ

and σ and compute at two loops the scalar potential and the
running of the couplings, in a scale-invariant regularization.
We find that starting from two loops, the running of the cou-
plings differs from that in the same theory of φ, σ regularized
with μ =constant. We show that effective non-polynomial
operators likeφ6/σ 2,φ8/σ 4, are generated as two-loop coun-
terterms. If expanded about the ground state, these operators

2 For related applications that include gravity, see for example [12–19].

generate an infinite series of polynomial terms, showing the
non-renormalizability of the theory. The Callan–Symanzik
equation of the potential is verified at two loops. The results
are useful for phenomenology, e.g. to study a scale-invariant
version of the SM (+dilaton).

2 One-loop potential

We first review the one-loop potential [8,9]. Consider the
classical potential3

V = λφ

4! φ4 + λm

4
φ2σ 2 + λσ

4! σ 4. (4)

Spontaneous scale symmetry breaking 〈σ 〉 �= 0 requires two
conditions (Eq. (3)) be met:

9λ2
m = λφλσ + loops, (λm < 0),

and x2
0 ≡ 〈φ〉2

〈σ 〉2 = −3λm

λφ

+ loops. (5)

A massless (Goldstone) state exists corresponding to a flat
direction φ = x0 σ with Vmin = 0. With φ being Higgs-
like, scale symmetry breaking implies electroweak symmetry
breaking.

To compute quantum corrections in d = 4−2ε, the scalar
potential is modified to Ṽ = μ2εV to ensure dimension-
less quartic couplings, with μ the “usual” DR subtraction
scale. General principles4 suggest that the subtraction func-
tion μ(σ) depend on the dilaton only [8] and generate the
subtraction scale μ(〈σ 〉) after spontaneous scale symmetry
breaking; μ(σ) is then identified on dimensional grounds
(using [μ] = 1, [σ ] = (d − 2)/2). Then the scale-invariant
potential in d = 4 − 2ε and μ(σ) become

Ṽ (φ, σ ) = μ(σ)2εV (φ, σ ), μ(σ ) = z σ 1/(1−ε), (6)

where z is an arbitrary dimensionless parameter.5 The one-
loop result is

V1 = Ṽ − i

2

∫
dd p

(2π)d
Tr ln

[
p2 − Ṽi j + iε

]
. (7)

Here Ṽi j = ∂2Ṽ /∂si∂s j (i, j = 1, 2), s1 = φ, s2 = σ ,
and similar for Vi j = ∂2V/∂si∂s j . Also Ṽi j = μ2ε [Vi j +
2ε μ−2 Ni j ] + O(ε2), where

3 In principle one can also include higher dimensional terms like
φ6/σ 2, φ8/σ 4, etc. (〈σ 〉 �= 0); see later.
4 They require quantum interactions between φ and σ vanish in their
classically decoupling limit λm = 0.
5 The parameter z plays a special role in the Callan–Symanzik equation,
see later.
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Ni j ≡ μ

{
∂μ

∂si

∂V

∂s j
+ ∂μ

∂s j

∂V

∂si

}

+
{
μ

∂2μ

∂si∂s j
− ∂μ

∂si

∂μ

∂s j

}
V, i, j = 1, 2. (8)

Then

V1 = μ(σ)2ε

{
V − 1

64π2

[ ∑
s=φ,σ

M4
s

(
1

ε
− ln

M2
s (φ, σ )

c0 μ2(σ )

)

+ 4 (Vi j N ji )

μ2(σ )

]}
(9)

with an implicit sum over i, j and with c0 = 4πe3/2−γE . The
one-loop Lagrangian is

L1 = 1

2
(∂μφ)2 + 1

2
(∂μσ)2 − V1. (10)

Above, M2
s denotes the field-dependent eigenvalues of the

matrix Vi j . The poles in L1 are canceled by adding the coun-
terterm Lagrangian δL1 found using the expression of M2

s :

δL1 ≡ −δV1 = −μ(σ)2ε

{
1

4! (Zλφ − 1)λφφ4

+ 1

4
(Zλm − 1)λmφ2σ 2 + 1

4! (Zλσ − 1)λσ σ 4
}

(11)

with

Zλφ = 1 + 3

2κ ε
(λφ + λ2

m/λφ),

Zλm = 1 + 1

2κ ε
(λφ + λσ + 4λm), (12)

Zλσ = 1 + 3

2κ ε
(λσ + λ2

m/λσ ), κ = (4π)2.

Zλ’s are identical to their counterparts computed in the same
theory regularized with μ = constant (when scale symmetry
is broken explicitly). The one-loop potential becomes

U1 = V + V (1) + V (1,n), (13)

V (1) ≡ 1

64π2

∑
s=φ,σ

M4
s (φ, σ )

[
ln

M2
s (φ, σ )

μ2(σ )
− 3

2

]
, (14)

V (1,n) ≡ 1

48κ

[
λφλm

φ6

σ 2 − (16λφλm + 18λ2
m − λφλσ )φ4

− (48λm + 25λσ )λm φ2σ 2 − 7λ2
σ σ 4

]
. (15)

The potential simplifies further if we use the tree-level rela-
tion (5) among λs (s = φ,m, σ ) that ensures the spontaneous
scale symmetry breaking. U1 is scale symmetric and a flat
direction exists also at the quantum level. V (1,n)

1 is a new,
finite one-loop correction, independent of the parameter z; it
contains a non-polynomial term φ6/σ 2 that can be Taylor-
expanded about 〈φ〉, 〈σ 〉 �= 0. V (1,n) → 0 in the classical
decoupling limit λm → 0. The Coleman–Weinberg term is

also present, with μ → μ(σ) and thus depends on z. This
dependence replaces the “traditional” dependence of V (1)

on the subtraction scale in theories regularized with μ =
constant. But physics should be independent of this parame-
ter, which means that U1 must respect the Callan–Symanzik
equation: dU1/d ln z = 0 [10].

To check the Callan–Symanzik equation, we need the beta
functions of the couplings which run with the momentum,
even in scale-invariant theories [7,10]. These are computed
from the condition d(μ(σ )2ελ j Zλ j )/d ln z = 0 ( j : fixed),
since the bare coupling is independent of z. The result is
identical to that in a theory regularized with μ = con-
stant:

β
(1)
λφ

≡ dλφ

d ln z
= 3

κ
(λ2

φ + λ2
m), (16)

β
(1)
λm

≡ dλm

d ln z
= 1

κ
(λφ + 4λm + λσ )λm, (17)

β
(1)
λσ

≡ dλσ

d ln z
= 3

κ
(λ2

m + λ2
σ ). (18)

The Callan–Symanzik equation at one loop is

dU1(λ j , z)

d ln z
=
(

β
(1)
λ j

∂

∂λ j
+ z

∂

∂z

)
U1(λ j , z) = O(λ3

j ),

(sum over j = φ,m, σ ). (19)

Equation (19) is easily verified with the above results for the
beta functions. The one-loopU1 can be used for phenomenol-
ogy of a scale-invariant version of the SM extended by the
dilaton [8].

3 Two-loop potential

3.1 New poles in the two-loop potential

To compute the two-loop potential we use the background
field expansion method about φ, σ . We Taylor-expand Ṽ
about these values

Ṽ (φ + δφ, σ + δσ ) = V (φ, σ ) + Ṽ j s j + 1

2
Ṽ jk s j sk

+ 1

3! Ṽi jk si s j sk + 1

4! Ṽi jkl si s j sksl + · · · (20)

where the subscripts i, j, k, l of Ṽi j ... denote derivatives of Ṽ
w.r.t. fields of the set {φ, σ } j ; with i, j, k, l = 1, 2. Also s1 =
δφ, s2 = δσ are field fluctuations. Notice that there are new,
evanescent interactions (∝ ε) in vertices Ṽi jk... generated by
Eq. (6) that impact on the loop corrections. The two-loop
diagrams are presented below. Let us first denote

V2 = V a
2 + V b

2 + V c
2 . (21)
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Then

(22)

Also

(23)

and finally

(24)

These diagrams are computed using [22]; see also [23].
The propagators are given by the inverse of the matrix
(D̃p)i j = p2δi j − Ṽi j . To simplify the calculation they can
be re-written as (D̃−1)i j = ãi j/(p2 − Ṽp)+ b̃i j/(p2 − Ṽm),
with appropriate coefficients ãi j and b̃i j and where Ṽp, Ṽm
(Ṽp > Ṽm) denote the field-dependent masses, eigenvalues
of the matrix Ṽi j , i, j = φ, σ . Note that Ṽi j , Ṽp, Ṽm , ãi j ,
b̃i j , and also Ṽi jkl , Ṽi jk contain positive powers of ε; this is
relevant for the above calculation, since they contribute to the
finite and 1/ε parts of the potential. Their form is detailed in
Appendices B and C.

One notices that the poles 1/ε2 in V a,b,c
2 are identical

to those in the theory regularized with μ = constant. This
is expected for this leading singularity, but this is not true
for their sub-leading one (1/ε) or for their finite part (see
later). The long expressions O(1/ε) and O(ε0) of each dia-
gram V a,b,c

2 are not shown here. The sum of these diagrams
gives

V2 = μ(σ)2ε

ε2

(−1)

32κ2 [φ4(3λ3
φ + 4λφλ2

m

+ 4λ3
m + λ2

mλσ )+σ 4(3λ3
σ +λφλ2

m+4λ3
m + 4λ2

mλσ )

+φ2σ 2(4λ2
φλm + 12λφλ2

m + 38λ3
m + 2λφλmλσ

+ 12λ2
mλσ + 4λmλ2

σ )]
+ μ(σ)2ε

ε

1

16κ2 [φ4(λ3
φ + λφλ2

m + 2λ3
m)

+ σ 4(2λ3
m + λ2

mλσ + λ3
σ )

+φ2σ 2(λ2
φλm + 6λφλ2

m + 10λ3
m + 6λ2

mλσ + λmλ2
σ )]

+ V 1/ε
2 + V (2) + V (2,n). (25)

HereV (2) andV (2,n) areO(ε0) i.e. finite quantum corrections
presented in Appendix B. V 1/ε

2 = O(1/ε) is a new term that
contains 1/ε poles not present in the theory regularized with
μ=constant; its origin is due to evanescent interactions (∝ ε),
which “meet” 1/ε2 poles, thus giving 1/ε terms. One finds
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V 1/ε
2 = μ(σ)2ε

16κ2 ε

[
φ4
(

20

3
λ2

φλm+ 7

6
λφλ2

m−2λ3
m− 1

2
λ2

φλσ

− 4

3
λφλmλσ + 7

12
λ2
mλσ + 1

4
λφλ2

σ

)

+φ2σ 2
(

8λφλ2
m + 41

2
λ3
m + λφλmλσ

+ 43

3
λ2
mλσ + 1

2
λmλ2

σ

)

+ σ 4
(

4λ3
m + 1

3
λ2
mλσ + 7

4
λ3

σ

)

+ φ6

σ 2

(
− 7

6
λ2

φλm + 7

3
λφλ2

m − 1

6
λφλmλσ

)

− 1

4
λφλ2

m
φ8

σ 4

]
. (26)

In addition to usual counterterms (φ4, etc.), notice from Eq.
(26) the need for non-polynomial counterterms φ6/σ 2 and
φ8/σ 4 (see also φ6/σ 2 in Eq. (13)). The above two-loop
results contribute to the Lagrangian (below ρφ, ρσ are wave-
function coefficients defined later)

L2 = 1

2

(
ρφ

ε
+ finite

)
(∂μφ)2

+1

2

(
ρσ

ε
+ finite

)
(∂μσ)2 − V2. (27)

A counterterm δL2 cancels the poles in the sum L1 + L2 of
Eqs. (10) and (27) up to two loops

δL2 = 1

2
(Zφ − 1)(∂μφ)2 + 1

2
(Zσ − 1)(∂μσ)2

−μ(σ)2ε

{
(Zλφ − 1)

λφ

4! φ4

+ (Zλm − 1)
λm

4
φ2 σ 2 + (Zλσ − 1)

λσ

4! σ 4

+ (Zλ6 − 1)
λ6

6

φ6

σ 2 + (Zλ8 − 1)
λ8

8

φ8

σ 4

}
, (28)

where

Zλφ = 1 + δ
φ
0

κ ε
+ 1

κ2

(
δ
φ
1 + ν

φ
1

ε
+ δ

φ
2

ε2

)
,

Zλm = 1 + δm0

κ ε
+ 1

κ2

(
δm1 + νm1

ε
+ δm2

ε2

)
,

Zλσ = 1 + δσ
0

κ ε
+ 1

κ2

(
δσ

1 + νσ
1

ε
+ δσ

2

ε2

)
,

Zλ6 = 1 + 1

κ2

ν6
1

ε
; Zλ8 = 1 + 1

κ2

ν8
1

ε
, (29)

where the one-loop δ
φ
0 , δm0 , δσ

0 can be read from Eq. (12),
while the two-loop coefficients δsk , k = 1, 2, s = φ,m, σ ,
are shown in Appendix A. They are obtained by comparing

δL2 against L2, using V2 of Eq. (25). The coefficients δsk are
those of the theory regularized with μ = constant. However,
there is an extra contribution from the coefficients νs1, s =
φ,m, σ, 6, 8 (see Appendix A), which is generated by the
new poles 1/ε of V 1/ε

2 . This new contribution brings about
a correction to the two-loop beta functions of our theory, see
later.

One can also show that the two-loop-corrected wavefunc-
tion coefficients have expressions similar to those in the the-
ory regularized with μ = constant:

Zφ = 1 + ρφ

κ2ε
, ρφ = − 1

24
(λ2

φ + 3λ2
m),

Zσ = 1 + ρσ

κ2 ε
, ρσ = − 1

24
(λ2

σ + 3λ2
m).

(30)

One often uses the notation γφ = −2ρφ/κ2 and γσ =
−2ρσ /κ2 for the anomalous dimensions.

3.2 Two-loop beta functions

With the above information, one obtains the two-loop beta
functions. To this purpose, one uses that the “bare” couplings
λB
j below are independent of the parameter z:

λB
φ = μ(σ)2ελφ Zλφ Z−2

φ ,

λB
m = μ(σ)2ελm Zλm Z−1

φ Z−1
σ ,

λB
σ = μ(σ)2ελσ Zλσ Z−2

σ ,

λB
6 = μ(σ)2ελ6 Zλ6 Zφ Z−3

σ .

(31)

We thus require (d/d ln z)λB
k = 0, k = φ,m, σ, 6, 8.6 Taking

the logarithm of the first expression in (31) and then the
derivative with respect to ln z, one obtains

2ε + βλφ

λφ

+
∑

j=φ,m,σ

βλ j

d

dλ j
ln[Zλφ Z

−2
φ ] = 0 (32)

and similar expressions for the other couplings. Using the
form of Z ′s, one finds

βλφ = −2ελφ + 2λφ

∑
j=φ,m,σ

λ j
d

dλ j

×
(

δ
φ
0

κ
+ δ

φ
1 + ν

φ
1

κ2 − 2 ρφ

κ2

)
. (33)

One easily obtains similar relations for βλm and βλσ (for βλσ

just replace the sub-/super-script φ → σ ). The difference
in these beta functions from those in the same theory but
regularized with μ =constant is the presence of a new con-
tribution: ν

φ
1 (νm1 , νσ

1 , respectively), which we identified in

6 We also include the effect of wavefunction renormalization of the
subtraction function which requires replacing μ(σ) = z σ 1/(1−ε) →
z (Z1/2

σ σ )1/(1−ε); however, this brings no correction in this order.
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Eqs. (29). Equation (33) is solved with particular attention to
the ε-dependent terms, to find at two loops

βλφ = 3

κ
(λ2

φ + λ2
m) − 1

κ2 (
17

3
λ3

φ + 5λφλ2
m + 12λ3

m)

+β
(2,n)
λφ

,

βλm = 1

κ
(λφ + 4λm + λσ )λm − λm

6κ2 (5λ2
φ + 36λφλm

+ 54λ2
m + 36λmλσ + 5λ2

σ ) + β
(2,n)
λm

,

βλσ = 3

κ
(λ2

m + λ2
σ ) − 1

κ2

(
12λ3

m + 5λ2
mλσ + 17

3
λ3

σ

)

+β
(2,n)
λσ

. (34)

The “new” terms β
(2,n)
λ on the r.h.s. are

β
(2,n)
λφ

= 1

2κ2 [λ2
m(24λm − 7λσ ) + λφ(−14λ2

m + 16λmλσ

−3λ2
σ ) + λ2

φ(−80λm + 6λσ )],
β

(2,n)
λm

= − λm

6κ2 (48λφλm + 6λφλσ + 123λ2
m

+86λmλσ + 3λ2
σ ),

β
(2,n)
λσ

= − 1

2κ2 (48λ3
m + 4λ2

mλσ + 21λ3
σ ),

β
(2,n)
λ6

= 1

4κ2 λφλm(7λφ − 14λm + λσ ),

β
(2,n)
λ8

= 1

2κ2 λφλ2
m . (35)

Here β
(2,n)
λ , which appears for each λ at two loops is the

mentioned correction, which is absent if this theory is reg-
ularized with μ = constant, when one breaks explicitly the
scale symmetry. Notice that λ6,8 also run in this order in the
scale-invariant theory.

We conclude that from the two-loop running of the cou-
plings, encoded by the beta functions, one can distinguish
between the theory with (spontaneously broken) scale sym-
metry at quantum level and that in which this symmetry is
broken explicitly by quantum corrections (with μ = con-
stant). There is a simple way to understand this difference:
the theory regularized with μ =constant, and two fields φ, σ
is renormalizable while our model, scale invariant at quan-
tum level, is non-renormalizable. This is due to the scale-
invariant non-polynomial terms of type φ6/σ 2, φ8/σ 4 gen-
erated at one- and two-loop level.7 This justifies the different
beta functions in the two approaches starting from the two-
loop level. This is an interesting result of the paper.

7 This non-renormalizability argument is different from that in [6]
which does not apply here; see [8].

3.3 Two-loop potential after renormalization

Finally, we present the two-loop potential U after renormal-
ization. It has the form

U = V + V (1) + V (1,n)︸ ︷︷ ︸
=U1

+V (2) + V (2,n) (36)

where U1 is the one-loop result of (13). V (2) is a two-loop
correction identical to that obtained in the theory regularized
with μ = constant (up to replacing μ → z σ), while V (2,n)

are new two-loop terms that involve derivatives of μ(σ) w.r.t.
σ (similar to the one-loop V (1,n)).8 The long expressions of
V (2), V (2,n) are given in Appendix B, Eq. (B.5). U contains
new, non-polynomial effective operators, such as φ6/σ 2 and
φ8/σ 4, etc.:

U = 7λ3
φ

576 κ2

φ8

σ 4 + 5λ3
φ

24 κ2

φ6

σ 2 + · · · (37)

All non-polynomial terms present in the potential can be
expanded about the ground state

φ = 〈φ〉 + δφ, σ = 〈σ 〉 + δσ (38)

where δφ and δσ represent fluctuations about the ground
state. Then each non-polynomial operator becomes an infi-
nite series expansion about the point 〈φ〉/〈σ 〉. For example

φ6

σ 2 = (〈φ〉 + δφ)4 〈φ〉2

〈σ 〉2

(
1 + 2δφ

〈φ〉 + δφ2

〈φ〉2 + · · ·
)

×
(

1 − 2δσ

〈σ 〉 + 3δσ 2

〈σ 〉2 + · · ·
)

(39)

and similarly for the operator φ8/σ 4 in U , etc. Although
we did not present the ground state of the one-loop poten-
tial, this is well known to satisfy the relation 〈φ〉2/〈σ 〉2 =
−3λm/λσ (1 + loop corrections) [8]. Using this information
in Eqs. (39) and (37), one sees that in the classical decou-
pling limit λm → 0, the non-polynomial operators of (37)
do vanish.

It is important to stress that only operators of the form
φ2n+4/σ 2n , n ≥ 1 were generated in the two-loop potential,
but no operator like σ 2n+4/φ2n , n ≥ 1 is present. This is due
to the way the subtraction function enters in the loop correc-
tions, via derivatives w.r.t. σ of μ(σ)ε which are suppressed
by positive powers of μ(σ). This means that all higher dimen-
sional operators are ultimately suppressed by (large) 〈σ 〉 and
not proportional to it. This is welcome for the hierarchy prob-
lem, since such terms could otherwise lead to corrections to
the Higgs mass of the type λ3

φ〈σ 〉2 requiring tuning the Higgs
self-coupling λφ , and thus re-introducing the hierarchy prob-
lem. This problem is avoided at least at one loop [5,8].

8 See [24–26] for further discussion of the Goldstone modes contribu-
tions to the potential.
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4 Two-loop Callan–Symanzik for the potential

A good check of our two-loop scale-invariant potential is the
Callan–Symanzik equation, in its version for scale-invariant
theories [10]. This equation states the independence of the
two-loop potential of the subtraction (dimensionless) param-
eter z; this parameter fixes the subtraction scale to z〈σ 〉, after
spontaneous scale symmetry breaking. The equation is

dU

d ln z
=
(
z

∂

∂z
+βλ j

∂

∂λ j
−φγφ

∂

∂φ
−σγσ

∂

∂σ

)
U (λ, z)=0,

(40)

where the j-summation runs over λ j = λφ, λm, λσ , λ6, λ8.
Equation (40) can be re-written as a set of equations at a
given order of λ’s (or number of loops). To help one trace the
difference between our scale-invariant result and that of the
same theory but with μ = constant, below we use for U the
decomposition given in Eq. (36) while for the beta functions
we write

βλ j = β
(1)
λ j

+ β
(2)
λ j

+ β
(2,n)
λ j

. (41)

The terms in the beta function correspond to one loop
(β(1)

λ ), and two loops only (β(2)
λ ) and two-loop new parts

(β(2,n)
λ ). Then, with the two-loop anomalous dimensions γφ ,

γσ defined after Eq. (30), a careful analysis shows that Eq.
(40) splits into

∂ V (1)

∂ ln z
+ β

(1)
λ j

∂V

∂λ j
= 0, (42)

∂ V (1,n)

∂ ln z
= 0, (43)

∂ V (2)

∂ ln z
+
(

β
(2)
λ j

∂

∂λ j
− γφφ

∂

∂φ
− γσ σ

∂

∂σ

)
V

+β
(1)
λ j

∂V (1)

∂λ j
= 0, (44)

∂ V (2,n)

∂ ln z
+ β

(2,n)
λ j

∂V

∂λ j
+ β

(1)
λ j

∂V (1,n)

∂λ j
= 0, (45)

where V includes the new terms9 (λ6/6) φ6/σ 2 + (λ8/8)

φ8/σ 4. We checked that these equations are respected. Eqs.
(42), (44) express the usual Callan–Symanzik equation (of
the theory with μ =constant), whereas (43) and (45) con-
stitute a new part, which is nonzero only when μ = μ(σ).
Equation (43) is obvious and hardly revealing. But check-
ing Eq. (45) is more difficult. For this one also needs to take
account of the “new” corrections to two-loop beta functions
of λ6,8, see Eq. (35), and also the z-dependent part of V (2,n)

which we write

9 Although λ5, λ6 were set to 0 at the tree level, they have non-zero beta
functions and since in the Callan-Symanzik equation the couplings are
replaced by running couplings, these terms are present in V.

V (2,n) = 1

192 κ2 [lnVp + lnVm]
[
(−144λ2

φλm − 111λφλ2
m

− 168λ3
m + 9λ2

φλσ − 40λ2
mλσ ) φ4

− (192λφλ2
m + 705λ3

m + 37λφλmλσ

+ 368λ2
mλσ + 106λmλ2

σ

)
φ2σ 2

− (48λ3
m + 46λ2

mλσ + 63λ3
σ

)
σ 4 + (

18λ2
φλm

− 24λφλ2
m + 3λ3

m + 3λφλmλσ

) φ6

σ 2

+ 3λφλ2
m

φ8

σ 4

]
+ z-independent terms, where

lnA ≡ ln
A

(zσ)24πe−γE
− 1, (46)

where γE = 0.5772 . . .. Here Vp and Vm are field depen-
dent eigenvalues of the matrix of second derivatives Vi j w.r.t.
i, j = φ, σ of the tree-level potential. Given this, the Callan–
Symanzik equation of the potential is verified at the two-loop
level.

5 Conclusions

Quantum scale invariance with spontaneous breaking may
provide a solution to the cosmological constant and the hier-
archy problem. The “traditional” method for loop calcula-
tions breaks explicitly classical scale symmetry of a the-
ory due to the regularization which introduces a subtraction
scale (DR scale, cut-off, Pauli–Villars scale). However, it is
well known how to perform quantum calculations in a man-
ifestly scale-invariant way: the subtraction scale is replaced
by a subtraction function of the field(s) (dilaton σ ) which
when acquiring a VEV spontaneously, generates this scale
μ(〈σ 〉) = z〈σ 〉. The Goldstone mode of this symmetry is the
dilaton field which remains a flat direction of the quantum
scale-invariant potential.

Starting with a classically scale-invariant action, we com-
puted the two-loop scalar potential of φ (Higgs-like) and
σ in a scale-invariant regularization. The one- and two-
loop potential are scale invariant and contain new terms
beyond the usual corrections obtained for μ = constant
(Coleman–Weinberg, etc.), due to field derivatives of μ(σ).
They also contain interesting effective non-polynomial oper-
ators φ6/σ 2 and φ8/σ 4, etc., allowed by scale symmetry,
showing that such theories are non-renormalizable. These
operators can be expanded about the non-zero 〈φ〉 and 〈σ 〉,
to obtain an infinite series of effective polynomial ones, sup-
pressed by 〈σ 〉 � 〈φ〉 (such hierarchy can be enforced
by one initial, classical tuning of the couplings). The non-
polynomial operators emerge from evanescent interactions
(∝ ε) between φ and σ that vanish in d = 4 but are required
by scale invariance in d = 4−2ε. Previous work also showed
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that the Higgs mass is stable against quantum corrections
at one loop, m2

φ 
 〈σ 〉2, which we expect to remain true
beyond this order because only spontaneous scale symmetry
breaking is present.

We checked the consistency of the two-loop scale-
invariant potential by showing that it satisfies the Callan–
Symanzik equation in its scale-invariant formulation. To this
purpose we computed the two-loop beta functions of the
couplings of the theory. While one-loop beta functions are
exactly those of the same theory of φ, σ regularized with μ =
constant, the two-loop beta functions differ from those of the
theory regularized with explicit breaking of scale symmetry
(μ = constant). In conclusion, the running of the couplings
enables one to distinguish between spontaneous and explicit
breaking of quantum scale symmetry of the action.
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Appendix A: Coefficients of the counterterms

Assuming λn = 0, n � 6 at tree level, the coefficients of
Eqs. (29) and (33) are

δ
φ
1 = −3

2

(
λ2

φ + λ2
m + 2

λ3
m

λφ

)
, (A.1)

δm1 = −1

4
(λ2

φ + 6λφλm + 10λ2
m + 6λmλσ + λ2

σ ), (A.2)

δσ
1 = −3

2

(
2
λ2
m

λσ

+ λ2
m + λ2

σ

)
, (A.3)

ν
φ
1 = 1

8

[
λ2
m

λφ

(24λm − 7λσ ) − (14λ2
m − 16λmλσ + 3λ2

σ )

−λφ(80λm − 6λσ )

]
, (A.4)

νm1 = − 1

24
[123λ2

m + 86λmλσ + 3λ2
σ + 6λφ(8λm + λσ )],

(A.5)

νσ
1 = − 1

8λσ

(48λ3
m + 4λ2

mλσ + 21λ3
σ ), (A.6)

ν6
1 = 1

16

λφλm

λ6

(
7λφ − 14λm + λσ

)
, (A.7)

ν8
1 = 1

8

λφλ2
m

λ8
, (A.8)

δ
φ
2 = 3

4

[
3λ2

φ + 4λ2
m + λ2

m

λφ

(4λm + λσ )

]
, (A.9)

δm2 = 1

4
(2λ2

φ + 6λφλm + λφλσ + 19λ2
m + 6λmλσ + 2λ2

σ ),

(A.10)

δσ
2 = 3

4

[
λ2
m

λσ

(λφ + 4λm) + 4λ2
m + 3λ2

σ

]
. (A.11)

Appendix B: The finite part of the two-loop potential

We provide here the finite part of the two-loop potential,
V (2) + V (2,n) of Eqs. (25) and (36). This is rather long, we
thus use a simplified notation. The propagators are found
from: (D̃p)i j = p2δi j − Ṽi j . To simplify the calculation it
helps to write them as

(D̃−1)i j = ãi j
p2 − Ṽp

+ b̃i j
p2 − Ṽm

, b̃i j = δi j − ãi j

ã11 = b̃22 = Ṽp − Ṽ22

Ṽp − Ṽm
, ã22 = b̃11 = 1 − ã11

= Ṽp − Ṽ11

Ṽp − Ṽm
, ã12 = ã21 = Ṽ12

Ṽp − Ṽm
, (B.1)

where Ṽp, Ṽm are the field-dependent eigenvalues of matrix
Ṽi j = ∂2Ṽ /∂si∂s j , i, j = 1, 2; s1 = φ, s2 = σ , and Ṽ =
μ(σ)2ε V where V is the tree-level potential in d = 4. We
introduce the following coefficients (without )̃ of the Taylor
expansions in ε (see Appendix C for their values in terms of
the couplings and fields):

ãi j = ai j + ε a1
i j + ε2 a2

i j + O(ε3), bi j = δi j − ai j ,

b1
i j = −a1

i j , b2
i j = −a2

i j

Ṽi jk... =μ(σ)2ε
[
vi jk... + ε ui jk...+ε2 wi jk... + O(ε3)

]
,

where:

Ṽi jk... = ∂4Ṽ

∂si∂s j∂sk · · · , vi jk... = ∂4V

∂si∂s j∂sk · · · ,
i, j, k, . . . = 1, 2; s1 = φ, s2 = σ,

Ṽp = μ(σ)2ε Vp [1 + c1
p ε + c2

p ε2 + O(ε3)]
Ṽm = μ(σ)2ε Vm [1 + c1

m ε + c2
m ε2 + O(ε3)]. (B.2)

Here Vp and Vm are the field-dependent eigenvalues of the
matrix Vi j of the tree level V :

Vp = 1/2[V11 + V22 + [(V11 − V22)
2 + 4V 2

12]1/2] (B.3)

with Vm having a similar expression but with − in front of
the square root. Vp and Vm should not be confused with
derivatives Vi of the potential. We also use the notation
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lnA = ln
A

t (zσ)2 − 1, t = 4πe−γE . (B.4)

Then V (2) and V (2,n) of Eqs. (25) and (36) are shown below.
V (2) is that of the theory regularized with μ =constant, while
V (2,n) is a new correction. They are sums of the diagrams of
Eq. (22),

V (2) = V a
2,old + V b

2,old + V c
2,old

V (2,n) = V a
2,n + V b

2,n + V c
2,n (B.5)

where a, b, c, label the sunset (a), snowman (b), countert-
erm (c) diagrams, respectively. Then, in terms of the above
coefficients, one finds for the sunset diagram (a):

V a
2,n = 1

4κ2

{[
vi jwlmn + 1

2
ui jkulmn

]
[Vpail + Vmbil ][a jm + b jm][akn + bkn]

+ vi jkulmn[(Vp[ail(1 − 2lnVm + c1
p) + a1

il ] + Vm[bil(1 − 2lnVm + c1
m) + b1

il ])( a jm + b jm )

+ 2[Vpail + Vmbil ][a1
jm + b1

jm]][akn + bkn] + vi jkvlmn

[
1

2
(Vp[ail(c2

p − c1
p) + a1

il c
1
p

− 2lnVp(ailc
1
p + a1

il)] + Vm[bil(c2
m − c1

m) + b1
il c

1
m − 2lnVm(bilc

1
m + b1

il)])(a jm + b jm)

+ (Vpail [c1
p−2lnVp]+Vmbil [c1

m−2lnVm])(a1
jm + b1

jm)

]
[akn + bkn]

+ vi jkvlmn[Vp(bil [2a1
jma

1
kn + a2

jmbkn + a1
jmbkn + 2a1

jmb
1
kn] + ail [3a1

jma
1
kn + 4a2

jnbkn

+ 2b jmb
1
kn + 4a1

jm(bkn + b1
kn) + 2b jmb

2
kn] + aila jm[3(a1

kn + a2
kn) + 2(b1

kn + b2
kn)])

+ Vm(ail [2b1
jmb

1
kn + b2

jmakn + b1
jmakn + 2b1

jma
1
kn] + bil [3b1

jmb
1
kn + 4b2

jnakn + 2a jma
1
kn

+ 4b1
jm(akn + a1

kn) + 2a jma
2
kn] + bilb jm[3(b1

kn + b2
kn) + 2(a1

kn + a2
kn)]) ]

}
(B.6)

and

V a
2,old = 1

4κ2 vi jkvlmn

{
[ Vpail lnVp + Vmbil lnVm][ a jmakn lnVp + b jmbkn lnVm ]

+2[ vpail ln
2
Vp + Vmbil ln

2
Vm]a jmbkn + 1

2
[Vpbil − Vmail ][ln2

Vp − ln
2
Vm ]a jmbkn

−[Vpail lnVp + Vmbil lnVm][a jm + b jm][akn + bkn]
+[Vpail + Vmbil ][a jm + b jm][akn + bkn]

[
3

2
+ π2

12

]

−
[
Vp

(
2ail�p,m − 1

2
bil�m,p

)
+ Vm

(
2bil�m,p − 1

2
ail�p,m

)]
a jmbkn

−1

3
[ Vpaila jmakn + Vmbilb jmbkn ]C

}
, (B.7)

with [22]

�p,m =
⎧⎨
⎩
√

ypm
ypm−1

[
− 4 Li2

(
1−ηpm

2

)
+ 2 ln2 1−ηpm

2 − ln2 4ypm + π2

3

]
, ypm > 1,

4
√

ypm
1−ypm

Cl2
(
arcsin

√
ypm

)
, 1 > ypm � 0,

(B.8)

ypm = Vm/Vp, ηpm = (1 − 1/ypm)1/2,C = −2
√

3Cl2 (π/3) ∼= 3.5 , (B.9)

Li2(ξ) = −
∫ 1

0
dt

ln(1 − ξ t)

t
, Cl2(θ) = −

∫ θ

0
dθ ln

∣∣∣∣2 sin
θ

2

∣∣∣∣ . (B.10)
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Further, for the snowman diagram (b):

V b
2,n = 1

8 κ2

{
wi jkl (ai j Vp + bi j Vm) (aklVp + bkl Vm) − 2ui jkl [ (ai j Vp + bi j Vm)

× ( akl Vp lnVp + bkl Vm lnVm − [(aklcp1 + a1
kl) Vp + (bklcp1 + b1

kl) Vm])]
− 2 vi jkl [2 ai j (akl cp1 + a1

kl) V
2
p lnVp + 2bi j (bkl cm1 + b1

kl) V
2
m lnVm

+[ai j (bkl cm1 + b1
kl) + bi j (akl cp1 + a1

kl) ]Vp Vm (lnVp + lnVm) − (ai j Vp + bi j Vm)

× ([ akl (cp2 − cp1) + a1
klcp1 + a2

kl ] Vp + [ bkl (cm2 − cm1) + b1
klcm1 + b2

kl ] Vm)

− 1

2
[(ai j cp1 + a1

i j )Vp + (bi j cm1 + b1
i j )Vm][(aklc1

p + a1
kl)Vp + (bklcm1 + b1

kl)Vm]]
}
, (B.11)

where i, j, k, l = 1, 2. Also

V b
2,old = 1

8κ2 vi jkl

{
[Vpai j + Vmbi j ][Vpakl + Vmbkl ]

×
[

1 + π2

6

]
+ VpVmai j bkl [lnVp − lnVm]2

+2 [ Vpai j lnVp + Vmbi j lnVm ]
×[ Vpakl lnVp + Vmbkl lnVm ]

}
. (B.12)

For the final “counter-term” diagram (c) we need to intro-
duce the coefficients δvi j , δui j , δwi j whose values will be
presented shortly (Appendix C). From Eq. (11)

δV1 = 1

ε κ
μ2ε

[
δ
φ
0

λφ

4! φ4+δm0
λm

4
φ2σ 2+δσ

0
λσ

4! σ 4
]
, then

(δV1)i j = 1

ε κ
μ2ε[ δvi j +ε δui j +ε2 δwi j ], (B.13)

where (δV1)i j = ∂2(δV1)/∂si∂s j , i, j = 1, 2, s1, s2 = φ, σ .
With this notation, we find for diagram (c)

V c
2,n = 1

2κ2 {δwi j [ai j Vp + bi j Vm]
+δui j [Vp(ai j [c1

p − lnVp] + a1
i j )

+Vm(bi j [c1
m − lnVm] + b1

i j )]
−δvi j [VplnVp(ai j c

1
p + a1

i j ) + Vm lnVm(bi j c
1
m + b1

i j )

−Vp(ai j c
2
p + [a1

i j − ai j ]c1
p + a2

i j )

−Vm(bi j c
2
m + [b1

i j − bi j ]c1
m + b2

i j )]} (B.14)

and

V c
2,old = 1

4κ2 δvi j

[
Vpai j

(
ln

2
Vp + 1 + π2

6

)

+Vmbi j

(
ln

2
Vm + 1 + π2

6

)]
. (B.15)

C Appendix C: Coefficients entering the two-loop
potential

Below we provide the expressions of the various coefficients
introduced in the r.h.s. of Eqs. (B.2) and (B.13) and used in
Appendix B. The coefficients vi jkl , vi jk are functions of λ’s
and fields

⎡
⎢⎢⎢⎢⎣

v1111 u1111 w1111

v1112 u1112 w1112

v1122 u1122 w1122

v1222 u1222 w1222

v2222 u2222 w2222

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

λφ 0 0
0 2λφ

φ
σ

2λφ
φ
σ

λm 3λm − λφ
φ2

σ 2 λφ
φ2

σ 2 + 5λm

0 2
3 λφ

φ3

σ 3 + 2λm
φ
σ

8λm
φ
σ

− 4
3 λφ

φ3

σ 3

λσ − 1
2 λφ

φ4

σ 4 + 25
6 λσ − λm

φ2

σ 2
4
3 λφ

φ4

σ 4 + 10λσ − 2λm
φ2

σ 2

⎤
⎥⎥⎥⎥⎥⎥⎦

(C.1)

and

⎡
⎢⎢⎣

v111 u111 w111

v112 u112 w112

v122 u122 w122

v222 u222 w222

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎣

λφφ 0 0

λmσ λφ
φ2

σ
+ σλm λφ

φ2

σ
+ λmσ

λmφ 3λmφ − 1
3 λφ

φ3

σ 2
1
3 λφ

φ3

σ 2 + 5λmφ

λσ σ 1
6 λφ

φ4

σ 3 + 13
6 λσ σ + λm

φ2

σ
− 1

3 λφ
φ4

σ 3 + 11
3 λσ σ + 4λm

φ2

σ

⎤
⎥⎥⎥⎦ .

(C.2)

Further, the coefficients δvi j , δui j and δwi j of Eq. (B.13) are

δv11 = 1

4κ
[3(λ2

φ + λ2
m)φ2 + λm(λφ + 4λm + λσ )σ 2],

δu11 = δw11 = 0, (C.3)

δv12 = 1

2κ
λm(λφ + 4λm + λσ )φσ, (C.4)
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δu12 = δw12 = 1

2κ
[(λ2

φ + λ2
m)φ2

+λm(λφ + 4λm + λσ )σ 2]φ
σ

, (C.5)

δv22 = 1

4κ2 [(4λ2
m + λφλm + λmλσ )φ2 + 3(λ2

m + λ2
σ )σ 2],

(C.6)

δu22 = 1

8κ2

1

σ 2 [−(λ2
φ + λ2

m)φ4

+6λm(λφ + 4λm + λσ )φ2σ 2 + 7(λ2
σ + λ2

m)σ 4], (C.7)

δw22 = 1

8κ2

1

σ 2 [(λ2
φ + λ2

m)φ4

+ 10λm(λφ + 4λm + λσ )φ2σ 2 + 9(λ2
σ + λ2

m)σ 4]. (C.8)

The coefficients c1
p, c2

p, c1
m , c2

m , also Vp and Vm introduced
in Eq. (B.2) obey the expressions[

Vp c1
p

Vm c1
m

]
= 1

24

1

σ 2

×
[−λφφ4 + 18λmφ2σ 2 + 7λσ σ 4 + R1

−λφφ4 + 18λmφ2σ 2 + 7λσ σ 4 − R1

]
(C.9)

where

R1 = 1

2S
[λφ(λφ − λm)φ6+(15λφλm−λφλσ +18λ2

m)φ4σ 2

+(−7λφλσ +78λ2
m+25λmλσ )φ2σ 4

+7λσ (−λm + λσ )σ 6] (C.10)

and

S2 = 1

4
[(λφ − λm)2φ4 + 2(λφλm + 7λ2

m − λφλσ

+λmλσ )φ2σ 2 + (λm − λσ )2σ 4], (C.11)

while Vm and Vp (see also (B.3)) are
[
Vp

Vm

]
= 1

4

[
(λσ + λm) σ 2 + (

λφ + λm
)
φ2 + 2S

(λσ + λm) σ 2 + (
λφ + λm

)
φ2 − 2S

]
.

(C.12)

For c2
p, c2

m (with the above Vp and Vm)
[
Vp c2

p
Vm c2

m

]
= 1

24

1

σ 2

[
λφφ4+30λmφ2σ 2+9λσ σ 4+R2

λφφ4+30λmφ2σ 2+9λσ σ 4−R2

]
,

(C.13)

where

R2 = 1

σ 2S3 [σ 2φ10λφ(13λ3
φ + 27λφλ2

m − 39λ2
φλm + 3λ3

m) + σ 4φ8(−23λσ λ3
φ

+ 3λφλ2
m[3λσ + 16λφ] + 5λ2

φλm[6λσ + 25λφ] − 423λφλ3
m + 90λ4

m)

+ σ 6φ6(λσ λ2
φ[7λσ − 27λφ] + 3λ3

m[99λσ + 151λφ] + λφλ2
m[553λφ − 615λσ ]

+ λσ λφλm[9λσ + 65λφ] + 2034λ4
m) + σ 8φ4(3λ2

σ λφ[λσ + 27λφ] + 3λ3
m[641λσ + 261λφ]

+ λσ λ2
m[351λσ − 521λφ] − λσ λφλm[361λσ + 81λφ] + 3438λ4

m) + σ 10φ2(−81λ3
σ λφ

+ λσ λ2
m[292λσ − 81λφ] + 9λ2

σ λm[19λσ + 18λφ] − 609λσ λ3
m + 342λ4

m)

− 27σ 12λσ [λm − λσ ]3]. (C.14)

Finally, ai j , a1
i j , a

2
i j , bi j , b

1
i j , b

2
i j introduced in (B.2) and used

in Appendix B have the values

a11 = 1 − a22 = b22 = 1 − b11 = 1

2

+ 1

4S
[λφφ2 + λm(−φ2 + σ 2) − λσ σ 2], (C.15)

a12 = a21 = −b12 = −b21 = λmφ σ

S
, (C.16)

a1
11 = −a1

22 = −b1
11 = b1

22 = λmφ2

6 S3 [λφ(−2λφ + 3λm)φ4

+2(λφλσ − 4λφλm−6λ2
m)φ2σ 2 − (6λ2

m+λmλσ )σ 4]
(C.17)

with S of Eq. (C.11). Also

a1
12 = a1

21 = −b1
12 = −b1

21 = φ

24σ S3 [φ6λφ(2λ2
φ − 5λφλm + 3λ2

m)

+φ4σ 2(−4λσ λ2
φ + 5λφλm[λσ + 2λφ] + λφλ2

m − 12λ3
m)

+φ2σ 4(2λ2
σ λφ + λ2

m[14λφ − 13λσ ] − 9λσ λφλm

+ 6λ3
m) + σ 6λm(−λ2

σ − 5λσ λm + 6λ2
m)]. (C.18)
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Further

a2
11 = −a2

22 = −b2
11 = b2

22 = φ2

288σ 2S5
{φ10λ2

φ (−4λ3
φ − 31λφλ2

m + 20λ2
φλm + 15λ3

m)

+φ8σ 2λφ [12λσ λ3
φ + λφλ2

m[31λσ + 180λφ] − 20λ2
φλm [2λσ + 3λφ] + 5λφλ3

m − 192λ4
m]

+ 2φ6σ 4[−6λ2
σ λ3

φ + λφλ3
m[44λφ − 163λσ ] − λ2

φλ2
m[19λσ + 132λφ]

+ 2λσ λ2
φλm[5λσ + 28λφ] + 450λφλ4

m + 144λ5
m] − 2φ4σ 6[−2λ3

σ λ2
φ + λ4

m[270λφ

− 96λσ ] + λφλ3
m[236λφ − 463λσ ] + λσ λφλ2

m[71λσ − 118λφ] + 22λ2
σ λ2

φλm + 1008λ5
m]

+φ2σ 8λm [−8λ3
σ λφ + 12λ3

m[29λσ − 31λφ] + λσ λ2
m[184λφ − 117λσ ] + 49λ2

σ λφλm

− 468λ4
m] + σ 103λ2

m(−7λ3
σ + 16λσ λ2

m + 27λ2
σ λm − 36λ3

m)}. (C.19)

Finally

a2
12 = a2

21 = −b2
12 = −b2

21 = − φ

576σ 3S5
[−φ12λ2

φ(3λm − 2λφ)(λm − λφ)2

+ 2σ 2φ10λφ(−3λ3
φ[λσ +2λφ] − λφλ2

m[4λσ +99λφ] + λ2
φλm[7λσ + 57λφ]

+ 22λφλ3
m + 30λ4

m) + σ 4φ8(2λσ λ3
φ[3λσ + 17λφ] + λφλ3

m[160λσ + 301λφ]
+ 2λ2

φλ2
m[28λσ + 237λφ] − λ2

φλm[184λσ λφ + 7λ2
σ + 84λ2

φ] − 972λφλ4
m − 72λ5

m)

+ 2σ 6φ6(−λ2
σ λ2

φ[λσ + 15λφ] − 6λ4
m[7λσ − 68λφ] + λφλ3

m[379λφ − 651λσ ]
+ λφλ2

m[−5λσ λφ + 71λ2
σ − 108λ2

φ] + λσ λ2
φλm[13λσ + 75λφ] + 1116λ5

m)

+ σ 8φ4(6λ3
σ λ2

φ + 12λ4
m[92λσ + 45λφ] + λ3

m[540λσ λφ + 59λ2
σ − 264λ2

φ]
− 6λσ λφλ2

m[91λσ − 41λφ] + λ2
σ λφλm[44λσ − 37λφ] + 324λ5

m)

+ 2σ 10φ2(λ4
σ λφ + 6λ4

m[31λσ − 13λφ] + λσ λ3
m[89λφ − 103λσ ]

+ λ2
σ λ2

m[41λσ + 8λφ] − 20λ3
σ λφλm + 72λ5

m)

+ σ 12(−λm)(λm − λσ )2(−11λ2
σ + 24λσ λm + 36λ2

m)], (C.20)

which enter in the expression of the two-loop potential.
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