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Abstract

Spontaneous breaking of quantum scale invariance may provide a solution to the hi-

erarchy and cosmological constant problems. In a scale-invariant regularization, we

compute the two-loop potential of a higgs-like scalar φ in theories in which scale sym-

metry is broken only spontaneously by the dilaton (σ). Its vev 〈σ〉 generates the DR

subtraction scale (µ ∼ 〈σ〉), which avoids the explicit scale symmetry breaking by tradi-

tional regularizations (where µ=fixed scale). The two-loop potential contains effective

operators of non-polynomial nature as well as new corrections, beyond those obtained

with explicit breaking (µ=fixed scale). These operators have the form: φ6/σ2, φ8/σ4,

etc, which generate an infinite series of higher dimensional polynomial operators upon

expansion about 〈σ〉 ≫ 〈φ〉, where such hierarchy is arranged by one initial, classical

tuning. These operators emerge at the quantum level from evanescent interactions (∝ ǫ)

between σ and φ that vanish in d = 4 but are demanded by classical scale invariance

in d = 4 − 2ǫ. The Callan-Symanzik equation of the two-loop potential is respected

and the two-loop beta functions of the couplings differ from those of the same theory

regularized with µ =fixed scale. Therefore the running of the couplings enables one to

distinguish between spontaneous and explicit scale symmetry breaking.
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1 Introduction

Theories with scale symmetry [1] may provide a solution to the hierarchy and cosmological

constant problems. But scale symmetry is not a symmetry of the real world, therefore it

must be broken. In this work we discuss theories with scale invariance at the classical and

quantum level that is broken only spontaneously. This is important since in a classical scale

invariant theory, quantum calculations usually break this symmetry explicitly due to the

presence of the subtraction (renormalization) scale (µ). This scale is introduced to regularize

the loop integrals, regardless of the regularization method: dimensional regularization (DR),

Pauli-Villars, etc, and its simple presence breaks explicitly this symmetry.

It is known however how to avoid this problem by using a subtraction scale that is

generated spontaneously, as the vacuum expectation value (vev) of a scalar field σ [2]. This

field is the Goldstone mode of scale symmetry (dilaton) and then µ = z〈σ〉, where z is a

dimensionless parameter. But before (spontaneous) scale symmetry breaking, with a field-

dependent subtraction function µ(σ) = zσ, there is no scale in the theory. One can use this

idea to compute quantum corrections to the scalar potential of a theory with a higgs-like

scalar φ and dilaton σ and obtain a scale invariant result at one-loop [3, 4, 5, 6, 7] with a flat

direction and spontaneous scale symmetry breaking. Although the result is scale invariant

at the quantum level, the couplings still run with the momentum scale [5, 6, 8]1.

To illustrate some of these ideas, consider a scale invariant theory in d = 4

L =
1

2
∂µφ∂

µφ+
1

2
∂µσ∂

µσ − V (φ, σ) (1)

where φ is a higgs-like scalar and σ is a dilaton. In such a theory V has a form

V (φ, σ) = σ4 W (φ/σ) (2)

In this paper we assume that we have spontaneous breaking of this symmetry, hence 〈σ〉 6=0.

We do not detail how σ acquires a vev (expected to be large 〈σ〉 ∼ MPlanck) but search for

solutions with 〈σ〉 6=0. Then the two minimum conditions ∂V/∂φ=∂V/∂σ=0 become

W ′(x0) = W (x0) = 0, x0 ≡
〈φ〉
〈σ〉 ; 〈σ〉, 〈φ〉 6= 0. (3)

At a given order n in perturbation theory, one condition, say W ′(x0) = 0, fixes the ratio

x0 ≡ 〈φ〉/〈σ〉 in terms of the (dimensionless) couplings of the theory. The second condition,

W (x0) = 0, leads to vanishing vacuum energy V (〈φ〉, 〈σ〉) = 0 and fixes a relation among the

couplings, corrected to that order (n) in perturbation theory from its version in the lower

perturbation order (n − 1). If these two equations have a solution x0, then the system has

a flat direction (Goldstone) in the plane (φ, σ) with φ/σ = x0. Then a massless state exists

1After spontaneous breaking of scale symmetry 〈σ〉 6= 0, the subtraction scale µ(〈σ〉) and all other
masses/vev’s of the theory are generated, proportional to 〈σ〉.
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(dilaton) at this order. This is true provided that quantum corrections do not break explicitly

the scale symmetry (otherwise, eq.(2) is not valid due to the presence of the “usual” DR

scale µ). With a scale invariant regularization, it is possible to keep these properties (V = 0,

a flat direction, etc) and study spontaneously broken quantum scale invariance.

Why is this interesting? One reason is that this answers the question of Bardeen [9] on

the mass hierarchy. The Standard Model (SM) with a vanishing classical higgs mass term

is scale invariant and there is no mass hierarchy (ignoring gravity, as here2). If quantum

calculations preserve this symmetry, via a scale invariant regularization, one can avoid a

hierarchy problem and the fine-tuning of the higgs self-coupling and keep it light relative to

the high scale (physical mass of a new state) generated by 〈σ〉 6= 0. One can arrange that

x0 = 〈φ〉/〈σ〉 ≪ 1 by a single classical tuning of the (ratio of the) couplings of the theory

[14]. The hierarchy m2
higgs ∼ 〈φ〉2 ≪ 〈σ〉2 is maintained at one-loop [3, 4, 5, 6, 7, 14, 15]

and probably beyond it, due to the spontaneous-only scale symmetry breaking. The only

difference from the usual SM is the presence of a massless dilaton in addition to the SM

spectrum. Also, the solution x0 is related to the (minimum) condition V = 0. This suggests

that in spontaneously broken quantum scale invariant theories any fine tuning is related to

vacuum energy tuning at the same order of perturbation.

With this motivation, in this paper we extend the above results. We consider a classically

scale invariant theory of φ and σ and compute at two-loop the scalar potential and the

running of the couplings, in a scale invariant regularization. We find that starting from two

loops, the running of the couplings differs from that in the same theory of φ, σ regularised

with µ=constant. We show that effective non-polynomial operators like φ6/σ2, φ8/σ4, are

generated as two-loop counterterms. If expanded about the ground state, these operators

generate an infinite series of polynomial terms, showing the non-renormalizability of the

theory. The Callan-Symanzik equation of the potential is verified at two loops. The results

are useful for phenomenology, e.g. to study a scale invariant version of the SM (+dilaton).

2 One-loop potential

We first review the one-loop potential [6, 7]. Consider the classical potential3

V =
λφ

4!
φ4 +

λm

4
φ2σ2 +

λσ

4!
σ4. (4)

Spontaneous scale symmetry breaking 〈σ〉 6= 0 demands two conditions (eq.(3)) be met:

9λ2
m = λφλσ + loops, (λm < 0), and x20 ≡

〈φ〉2
〈σ〉2 = −3λm

λφ
+ loops. (5)

A massless (Goldstone) state exists corresponding to a flat direction φ = x0 σ with Vmin = 0.

With φ being higgs-like, scale symmetry breaking implies electroweak symmetry breaking.

2For related applications that include gravity, see for example [10, 11, 12, 13].
3 In principle one can also include higher dimensional terms like φ6/σ2, φ8/σ4, etc, (〈σ〉 6= 0), see later.
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To compute quantum corrections in d = 4− 2ǫ, the scalar potential is modified to Ṽ =

µ2ǫV to ensure dimensionless quartic couplings, with µ the “usual” DR subtraction scale.

General principles4 suggest that the subtraction function µ(σ) depend on the dilaton only

[6] and generate the subtraction scale µ(〈σ〉) after spontaneous scale symmetry breaking;

µ(σ) is then identified on dimensional grounds (using [µ] = 1, [σ] = (d − 2)/2). Then the

scale invariant potential in d = 4− 2ǫ and µ(σ) become

Ṽ (φ, σ) = µ(σ)2ǫV (φ, σ), µ(σ) = z σ1/(1−ǫ), (6)

where z is an arbitrary dimensionless parameter5. The one-loop result is

V1 = Ṽ − i

2

∫
ddp

(2π)d
Tr ln

[
p2 − Ṽαβ + iε

]
(7)

Here Ṽij = ∂2Ṽ /∂si∂sj, (i, j = 1, 2), s1 = φ, s2 = σ and similar for Vij = ∂2V/∂si∂sj.

Also Ṽij = µ2ǫ
[
Vij + 2ǫ µ−2Nij

]
+O(ǫ2), where

Nij ≡ µ
{ ∂µ

∂si

∂V

∂sj
+

∂µ

∂sj

∂V

∂si

}
+

{
µ

∂2µ

∂si∂sj
− ∂µ

∂si

∂µ

∂sj

}
V, i, j = 1, 2. (8)

Then

V1 = µ(σ)2ǫ
{
V − 1

64π2

[ ∑

s=φ,σ

M4
s

( 1

ǫ
− ln

M2
s (φ, σ)

c0 µ2(σ)

)
+

4 (Vij Nji)

µ2(σ)

]}
(9)

with an implicit sum over i, j and with c0 = 4πe3/2−γE . The one-loop Lagrangian is

L1 =
1

2
(∂µφ)

2 +
1

2
(∂µσ)

2 − V1. (10)

Above, M2
s denotes the field-dependent eigenvalues of the matrix Vij. The poles in L1 are

cancelled by adding the counterterm Lagrangian δL1 found using the expression of the M2
s :

δL1 ≡ −δV1 = −µ(σ)2ǫ
{ 1

4!
(Zλφ

− 1)λφφ
4 +

1

4
(Zλm− 1)λmφ2σ2 +

1

4!
(Zλσ− 1)λσσ

4
]

(11)

with

Zλφ
= 1 +

3

2κ ǫ
(λφ + λ2

m/λφ),

Zλm = 1 +
1

2κ ǫ
(λφ + λσ + 4λm),

4They demand quantum interactions between φ and σ vanish in their classically decoupling limit λm=0.
5The parameter z plays a special role in the Callan Symanzik equation, see later.
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Zλσ = 1 +
3

2κ ǫ
(λσ + λ2

m/λσ), κ = (4π)2. (12)

Zλ’s are identical to their counterparts computed in the same theory regularized with

µ=constant (when scale symmetry is broken explicitly). The one-loop potential becomes

U1 = V + V (1) + V (1,n), (13)

V (1) ≡ 1

64π2

∑

s=φ,σ

M4
s (φ, σ)

[
ln

M2
s (φ, σ)

µ2(σ)
− 3

2

]
, (14)

V (1,n) ≡ 1

48κ

[
λφλm

φ6

σ2
−(16λφλm + 18λ2

m−λφλσ)φ
4−(48λm+25λσ)λm φ2σ2−7λ2

σσ
4
]
.(15)

The potential simplifies further if we use the tree-level relation (5) among λs (s = φ,m, σ)

that ensures the spontaneous scale symmetry breaking. U1 is scale symmetric and a flat

direction exists also at the quantum level. V
(1,n)
1 is a new, finite one-loop correction, inde-

pendent of the parameter z; it contains a non-polynomial term φ6/σ2 that can be Taylor-

expanded about 〈φ〉, 〈σ〉 6= 0. V (1,n) → 0 in the classical decoupling limit λm → 0. The

Coleman-Weinberg term is also present, with µ → µ(σ) and thus depends on z. This de-

pendence replaces the “traditional” dependence of V (1) on the subtraction scale in theories

regularized with µ =constant. But physics should be independent of this parameter, which

means that U1 must respect the Callan-Symanzik equation: dU1/d ln z = 0 [8].

To check the Callan-Symanzik equation, we need the beta functions of the couplings

which run with the momentum, even in scale invariant theories [5, 8]. These are computed

from the condition d(µ(σ)2ǫλjZλj
)/d ln z=0 (j: fixed), since the bare coupling is independent

of z. The result is identical to that in a theory regularized with µ=constant:

β
(1)
λφ

≡ dλφ

d ln z
=

3

κ
(λ2

φ + λ2
m), (16)

β
(1)
λm

≡ dλm

d ln z
=

1

κ
(λφ + 4λm + λσ)λm (17)

β
(1)
λσ

≡ dλσ

d ln z
=

3

κ
(λ2

m + λ2
σ). (18)

The Callan Symanzik equation at one-loop is

dU1(λj, z)

d ln z
=

(
β
(1)
λj

∂

∂λj
+ z

∂

∂z

)
U1(λj , z) = O(λ3

j), (sum over j = φ,m, σ). (19)

Eq.(19) is easily verified with the above results for the beta functions. The one-loop U1 can

be used for phenomenology of a scale invariant version of the SM extended by the dilaton [6].
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3 Two-loop potential

3.1 New poles in the two-loop potential

To compute the two-loop potential we use the background field expansion method about

φ, σ. We Taylor-expand Ṽ about these values

Ṽ (φ+ δφ, σ + δσ) = V (φ, σ) + Ṽj sj +
1

2
Ṽjk sjsk +

1

3!
Ṽijk sisjsk +

1

4!
Ṽijkl sisjsksl + · · · (20)

where the subscripts i, j, k, l of Ṽij... denote derivatives of Ṽ wrt fields of the set {φ, σ}j ;
with i, j, k, l = 1, 2. Also s1 = δφ, s2 = δσ are field fluctuations. Notice that there are new,

evanescent interactions (∝ ǫ) in vertices Ṽijk··· generated by eq.(6) that impact on the loop

corrections. The two-loop diagrams are presented below. Let us first denote:

V2 = V a
2 + V b

2 + V c
2 . (21)

Then

V a
2 =

i

12
=

i

12
ṼijkṼlmn

∫
ddp

(2π)d

∫
ddq

(2π)d
(D̃−1

p )il (D̃
−1
q )jm (D̃−1

p+q)kn

=
µ(σ)2ǫ

ǫ2
1

16κ2

[
φ4 (λ3

φ + λφ λ
2
m + 2λ3

m) + σ4 (2λ3
m + λ2

mλσ + λ3
σ)

+φ2 σ2 (λ2
φ λm + 6λφ λ

2
m + 10λ3

m + 6λ2
mλσ + λmλ2

σ)
]
+O(1/ǫ). (22)

Also

V b
2 =

i

8
=

i

8
Ṽijkl

[ ∫ ddp

(2π)d
(D̃−1

p )ij

] [ ∫ ddq

(2π)d
(D̃−1

q )kl

]

=
µ(σ)2ǫ

ǫ2
1

32κ2

[
φ4 (λ3

φ + 2λφλ
2
m + λ2

mλσ) + σ4 (λφλ
2
m + 2λ2

mλσ + λ3
σ)

+ 2λm φ2σ2 (λ2
φ + 9λ2

m + λφλσ + λ2
σ)
]
+O(1/ǫ), (23)

and finally

V c
2 =

i

2
=

i

2
(δV1)ij

∫
ddp

(2π)d
(D̃−1

p )ij

=
µ(σ)2ǫ

ǫ2
(−1)

16κ2

[
φ4 (3λ3

φ + 4λφλ
2
m + 4λ3

m + λ2
mλσ) + σ4 (λφλ

2
m + 4λ3

m + 4λ2
mλσ + 3λ3

σ)

+ φ2σ2 (4λ2
φλm + 12λφλ

2
m + 38λ3

m + 2λφλmλσ + 12λ2
mλσ + 4λmλ2

σ)
]
+O(1/ǫ). (24)
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These diagrams are computed using [17], see also [18]. The propagators are given by the

inverse of the matrix (D̃p)ij = p2δij− Ṽij. To simplify the calculation they can be re-written

as (D̃−1)ij = ãij/(p
2 − Ṽp) + b̃ij/(p

2 − Ṽm), with appropriate coefficients ãij and b̃ij and

where Ṽp, Ṽm (Ṽp > Ṽm) denote the field-dependent masses, eigenvalues of the matrix Ṽij,

i, j = φ, σ. Note that Ṽij, Ṽp, Ṽm, ãij , b̃ij and also Ṽijkl, Ṽijk contain positive powers of ǫ;

this is relevant for the above calculation, since they contribute to the finite and 1/ǫ parts of

the potential. Their form is detailed in Appendix B and C.

One notices that the poles 1/ǫ2 in V a,b,c
2 are identical to those in the theory regularized

with µ =constant. This is expected for this leading singularity, but this is not true for their

sub-leading one (1/ǫ) or for their finite part (see later). The long expressions O(1/ǫ) and

O(ǫ0) of each diagram V a,b,c
2 are not shown here. The sum of these diagrams gives

V2 =
µ(σ)2ǫ

ǫ2
(−1)

32κ2

[
φ4(3λ3

φ +4λφλ
2
m+ 4λ3

m + λ2
mλσ) +σ4(3λ3

σ+ λφλ
2
m +4λ3

m + 4λ2
mλσ)

+φ2σ2(4λ2
φλm + 12λφλ

2
m + 38λ3

m + 2λφλmλσ + 12λ2
mλσ + 4λmλ2

σ)
]

+
µ(σ)2ǫ

ǫ

1

16κ2

[
φ4(λ3

φ + λφλ
2
m + 2λ3

m) + σ4(2λ3
m + λ2

mλσ + λ3
σ) (25)

+φ2σ2(λ2
φλm + 6λφλ

2
m + 10λ3

m + 6λ2
mλσ + λmλ2

σ)
]
+ V

1/ǫ
2 + V (2) + V (2,n).

Here V (2) and V (2,n) are O(ǫ0) i.e. finite quantum corrections presented in Appendix B.

V
1/ǫ
2 = O(1/ǫ) is a new term that contains 1/ǫ poles not present in the theory regularized

with µ=constant; its origin is due to evanescent interactions (∝ ǫ), which “meet” 1/ǫ2 poles,

thus giving 1/ǫ terms. One finds

V
1/ǫ
2 =

µ(σ)2ǫ

16κ2 ǫ

[
φ4

(20
3
λ2
φλm+

7

6
λφλ

2
m− 2λ3

m− 1

2
λ2
φλσ−

4

3
λφλmλσ+

7

12
λ2
mλσ+

1

4
λφλ

2
σ

)

+ φ2σ2
(
8λφλ

2
m +

41

2
λ3
m + λφλmλσ +

43

3
λ2
mλσ +

1

2
λmλ2

σ

)
+ σ4

(
4λ3

m+
1

3
λ2
mλσ+

7

4
λ3
σ

)

+
φ6

σ2

(
− 7

6
λ2
φλm +

7

3
λφλ

2
m − 1

6
λφλmλσ

)
− 1

4
λφλ

2
m

φ8

σ4

]
. (26)

In addition to usual counterterms (φ4, etc), notice from eq.(26) the need for non-polynomial

counterterms φ6/σ2 and φ8/σ4 (see also φ6/σ2 in eq.(13)). The above two-loop results

contribute to the Lagrangian (below ρφ, ρσ are wavefunction coefficients defined later)

L2 =
1

2

(ρφ
ǫ

+ finite
)
(∂µφ)

2 +
1

2

(ρσ
ǫ

+ finite
)
(∂µσ)

2 − V2. (27)

A counterterm δL2 cancels the poles in the sum L1 + L2 of eqs.(10), (27) up to two-loops

6



δL2 =
1

2
(Zφ − 1)(∂µφ)

2 +
1

2
(Zσ − 1)(∂µσ)

2 − µ(σ)2ǫ
{
(Zλφ

− 1)
λφ

4!
φ4 +

+ (Zλm − 1)
λm

4
φ2 σ2 + (Zλσ − 1)

λσ

4!
σ4+(Zλ6 − 1)

λ6

6

φ6

σ2
+(Zλ8 − 1)

λ8

8

φ8

σ4

}
, (28)

where

Zλφ
= 1 +

δφ0
κ ǫ

+
1

κ2

( δφ1 + νφ1
ǫ

+
δφ2
ǫ2

)
,

Zλm = 1 +
δm0
κ ǫ

+
1

κ2

( δm1 + νm1
ǫ

+
δm2
ǫ2

)
,

Zλσ = 1 +
δσ0
κ ǫ

+
1

κ2

( δσ1 + νσ1
ǫ

+
δσ2
ǫ2

)
,

Zλ6 = 1 +
1

κ2
ν61
ǫ
; Zλ8 = 1 +

1

κ2
ν81
ǫ
, (29)

where one-loop δφ0 , δm0 , δσ0 can be read from eq.(12) while the two-loop coefficients δsk,

k = 1, 2, s = φ,m, σ, are shown in Appendix A. They are obtained by comparing δL2

against L2, using V2 of eq.(25). The coefficients δsk are those of the theory regularized with

µ =constant. However, there is an extra contribution from coefficients νs1 , s = φ,m, σ, 6, 8

(see Appendix A), that is generated by the new poles 1/ǫ of V
1/ǫ
2 . This new contribution

brings a correction to the two-loop beta functions of our theory, see later.

One can also show that the two-loop-corrected wavefunction coefficients have expressions

similar to those in the theory regularised with µ =constant:

Zφ = 1 +
ρφ

κ2ǫ
, ρφ = − 1

24
(λ2

φ + 3λ2
m),

Zσ = 1 +
ρσ

κ2 ǫ
, ρσ = − 1

24
(λ2

σ + 3λ2
m), (30)

One often uses the notation γφ = −2ρφ/κ2 and γσ = −2ρσ/κ2 for the anomalous dimensions.

3.2 Two-loop beta functions

With the above information, one obtains the two-loop beta functions. To this purpose, one

uses that the “bare” couplings λB
j below are independent of the parameter z:

λB
φ = µ(σ)2ǫλφ Zλφ

Z−2
φ ,

λB
m = µ(σ)2ǫλm Zλm Z−1

φ Z−1
σ ,

λB
σ = µ(σ)2ǫλσ Zλσ Z

−2
σ ,

λB
6 = µ(σ)2ǫλ6 Zλ6 Zφ Z

−3
σ . (31)

7



We thus demand that (d/d ln z)λB
k = 0, k = φ,m, σ, 6, 8 6. Taking the logarithm of the first

expression in (31) and then the derivative with respect to ln z, one obtains

2ǫ+
βλφ

λφ
+

∑

j=φ,m,σ

βλj

d

d ln z
ln
[
Zλφ

Z−2
φ

]
= 0 (32)

and similar expressions for the other couplings. Using the form of Z ′s, one finds

βλφ
= −2ǫλφ + 2λφ

∑

j=φ,m,σ

λj
d

dλj

(δφ0
κ

+
δφ1 + νφ1

κ2
− 2 ρφ

κ2

)
. (33)

One easily obtains similar relations for βλm and βλσ (for βλσ just replace the sub-/super-

script φ → σ). The difference in these beta functions from those in the same theory but

regularized with µ =constant is the presence of a new contribution: νφ1 (νm1 , νσ1 , respectively),

that we identified in eqs.(29). Eq.(33) is solved with particular attention to the ǫ-dependent

terms, to find at two-loop:

βλφ
=

3

κ
(λ2

φ + λ2
m)− 1

κ2
(
17

3
λ3
φ + 5λφλ

2
m + 12λ3

m) + β
(2,n)
λφ

,

βλm =
1

κ
(λφ + 4λm + λσ)λm − λm

6κ2
(5λ2

φ + 36λφλm + 54λ2
m + 36λmλσ + 5λ2

σ) + β
(2,n)
λm

,

βλσ =
3

κ
(λ2

m + λ2
σ)−

1

κ2
(12λ3

m + 5λ2
mλσ +

17

3
λ3
σ) + β

(2,n)
λσ

. (34)

The “new” terms β
(2,n)
λ on the rhs are

β
(2,n)
λφ

=
1

2κ2
[
λ2
m(24λm − 7λσ) + λφ(−14λ2

m + 16λmλσ − 3λ2
σ) + λ2

φ(−80λm + 6λσ)
]
,

β
(2,n)
λm

= − λm

6κ2
(48λφλm + 6λφλσ + 123λ2

m + 86λmλσ + 3λ2
σ),

β
(2,n)
λσ

= − 1

2κ2
(48λ3

m + 4λ2
mλσ + 21λ3

σ),

β
(2,n)
λ6

=
1

4κ2
λφλm(7λφ − 14λm + λσ),

β
(2,n)
λ8

=
1

2κ2
λφλ

2
m. (35)

Here β
(2,n)
λ that appears for each λ at two-loop is the mentioned correction, that is missed if

this theory is regularized with µ =constant, when one breaks explicitly the scale symmetry.

Notice that λ6,8 also run in this order in the scale invariant theory.

6 We also include the effect of wavefunction renormalization of the subtraction function which demands
replacing: µ(σ) = z σ1/(1−ǫ) → z (Z

1/2
σ σ)1/(1−ǫ); however, this brings no correction in this order.
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We conclude that from the two-loop running of the couplings, encoded by the beta func-

tions, one can distinguish between the theory with (spontaneously broken) scale symmetry

at quantum level and that in which this symmetry is broken explicitly by quantum correc-

tions (with µ =constant). There is a simple way to understand this difference: the theory

regularized with µ =constant, and two fields φ, σ is renormalizable while our model, scale

invariant at quantum level, is non-renormalizable. This is due to the scale-invariant non-

polynomial terms of type φ6/σ2, φ8/σ4 generated at one- and two-loop level7. This justifies

the different beta functions in the two approaches starting from the two-loop level. This is

an interesting result of the paper.

3.3 Two-loop potential after renormalization

Finally, we present the two-loop potential U after renormalization. It has the form

U = V + V (1) + V (1,n)
︸ ︷︷ ︸

=U1

+V (2) + V (2,n) (36)

where U1 is the one-loop result of (13). V (2) is a two-loop correction identical to that

obtained in the theory regularized with µ =constant (up to replacing µ → z σ), while V (2,n)

are new two-loop terms that involve derivatives of µ(σ) wrt σ (similar to one-loop V (1,n))8

The long expressions of V (2), V (2,n) are given in Appendix B, eq.(B-5). U contains new,

non-polynomial effective operators, such as φ6/σ2 and φ8/σ4, etc:

U =
7λ3

φ

576κ2
φ8

σ4
+

5λ3
φ

24κ2
φ6

σ2
+ · · · (37)

All non-polynomial terms present in the potential can be expanded about the ground state

φ = 〈φ〉+ δφ, σ = 〈σ〉+ δσ (38)

where δφ and δσ represent fluctuations about the ground state. Then each non-polynomial

operator becomes an infinite series expansion about the point 〈φ〉/〈σ〉. For example

φ6

σ2
= (〈φ〉 + δφ)4

〈φ〉2
〈σ〉2

(
1 +

2δφ

〈φ〉 +
δφ2

〈φ〉2 + · · ·
) (

1− 2δσ

〈σ〉 +
3δσ2

〈σ〉2 + · · ·
)

(39)

and similarly for the operator φ8/σ4 in U , etc. Although we did not present the ground state

of the one-loop potential, this is known to satisfy the relation [6]: 〈φ〉2/〈σ〉2 = −3λm/λσ(1+

loop-corrections) [6]. Using this information in eq.(39) and (37), one sees that in the classical

decoupling limit λm → 0, the non-polynomial operators of (37) do vanish.

7 This non-renormalizability argument is different from that in [4] which does not apply here, see [6].
8See [19] for further discussion on the Goldstone modes contributions to the potential.
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It is important to stress that only operators of the form φ2n+4/σ2n, n ≥ 1 were generated

in the two-loop potential, but no operator like σ2n+4/φ2n, n ≥ 1 is present. This is due to

the way the subtraction function enters in the loop corrections, via derivatives wrt σ of µ(σ)ǫ

which are suppressed by positive powers of µ(σ). This means that all higher dimensional

operators are ultimately suppressed by (large) 〈σ〉 and not proportional to it. This is

welcome for the hierarchy problem, since such terms could otherwise lead to corrections

to the higgs mass of the type λ3
φ〈σ〉2 requiring tuning the higgs self-coupling λφ, and thus

re-introducing the hierarchy problem. This problem is avoided at least at one-loop [3, 6].

4 Two-loop Callan-Symanzik for the potential

A good check of our two-loop scale-invariant potential is the Callan-Symanzik equation, in

its version for scale invariant theories [8]. This equation states the independence of the

two-loop potential of the subtraction (dimensionless) parameter z; this parameter fixes the

subtraction scale to z〈σ〉, after spontaneous scale symmetry breaking. The equation is

dU(λ, z)

d ln z
=

(
z
∂

∂z
+ βλj

∂

∂λj
− φγφ

∂

∂φ
− σγσ

∂

∂σ

)
U(λ, z) = 0 , (40)

where the j-summation runs over λj = λφ, λm, λσ, λ6, λ8. Eq.(40) can be re-written as a set

of equations at a given order of λ’s (or number of loops). To help one trace the difference

between our scale-invariant result and that of the same theory but with µ =constant, below

we use for U the decomposition given in eq.(36) while for the beta functions we write

βλj
= β

(1)
λj

+ β
(2)
λj

+ β
(2,n)
λj

. (41)

The terms in the beta function correspond to 1-loop (β
(1)
λ ), 2-loop-only (β

(2)
λ ) and 2-loop-new

parts (β
(2,n)
λ ). Then, with the two-loop anomalous dimensions γφ, γσ defined after eq.(30),

a careful analysis shows that eq.(40) splits into

∂ V (1)

∂ ln z
+ β

(1)
λj

∂V

∂λj
= 0 (42)

∂ V (1,n)

∂ ln z
= 0 (43)

∂ V (2)

∂ ln z
+

(
β
(2)
λj

∂

∂λj
− γφφ

∂

∂φ
− γσσ

∂

∂σ

)
V + β

(1)
λj

∂V (1)

∂λj
= 0 (44)

∂ V (2,n)

∂ ln z
+ β

(2,n)
λj

∂V

∂λj
+ β

(1)
λj

∂V (1,n)

∂λj
= 0 . (45)

where V includes the new terms (λ6/6)φ
6/σ2 + (λ8/8)φ

8/σ4. We checked that these equa-
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tions are respected. Eqs.(42), (44) express the usual Callan-Symanzik equation (of the

theory with µ =constant), whereas (43) and (45) constitute a new part, which is nonzero

only when µ = µ(σ). Eq.(43) is obvious and hardly revealing. But checking eq.(45) is more

difficult. For this one also needs to take account of the “new” corrections to two-loop beta

functions of λ6,8, see eq.(35) and also the z-dependent part of V (2,n) which we write below

V (2,n) =
1

192κ2

[
lnVp + lnVm

][(
− 144λ2

φλm − 111λφλ
2
m − 168λ3

m + 9λ2
φλσ − 40λ2

mλσ

)
φ4

−
(
192λφλ

2
m + 705λ3

m + 37λφλmλσ + 368λ2
mλσ + 106λmλ2

σ

)
φ2σ2

−
(
48λ3

m + 46λ2
mλσ + 63λ3

σ

)
σ4 +

(
18λ2

φλm − 24λφλ
2
m + 3λ3

m + 3λφλmλσ

) φ6

σ2

+ 3λφλ
2
m

φ8

σ4

]
+ z-independent terms, where lnA ≡ ln

A

(zσ)24πe−γE
− 1. (46)

where γE = 0.5772..... Here Vp and Vm are field dependent eigenvalues of the matrix of

second derivatives Vij wrt i, j = φ, σ of the tree level potential. Given this, the Callan-

Symanzik equation of the potential is verified at the two-loop level.

5 Conclusions

Quantum scale invariance with spontaneous breaking may provide a solution to the cosmo-

logical constant and the hierarchy problem. The “traditional” method for loop calculations

breaks explicitly classical scale symmetry of a theory due to the regularization which intro-

duces a subtraction scale (DR scale, cut-off, Pauli-Villars scale). However, it is known how

to perform quantum calculations in a manifestly scale invariant way: the subtraction scale

is replaced by a subtraction function of the field(s) (dilaton σ) which when acquiring a vev

spontaneously, generates this scale µ(〈σ〉) = z〈σ〉. The Goldstone mode of this symmetry is

the dilaton field which remains a flat direction of the quantum scale-invariant potential.

Starting with a classically scale-invariant action, we computed the two-loop scalar po-

tential of φ (higgs-like) and σ in a scale invariant regularization. The one- and two-loop

potential are scale invariant and contain new terms beyond the usual corrections obtained

for µ =constant (Coleman-Weinberg, etc), due to field derivatives of µ(σ). They also con-

tain interesting effective non-polynomial operators φ6/σ2 and φ8/σ4, etc, allowed by scale

symmetry, showing that such theories are non-renormalizable. These operators can be ex-

panded about the non-zero 〈φ〉 and 〈σ〉, to obtain an infinite series of effective polynomial

ones, suppressed by 〈σ〉 ≫ 〈φ〉 (such hierarchy can be enforced by one initial, classical tuning

of the couplings). The non-polynomial operators emerge from evanescent interactions (∝ ǫ)

between φ and σ that vanish in d = 4 but are demanded by scale invariance in d = 4− 2ǫ.

Previous works also showed that the higgs mass is stable against quantum corrections at

one-loop m2
φ ≪ 〈σ〉2, which may remain true beyond it if only spontaneous scale symmetry

breaking is present.
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We checked the consistency of the two-loop scale invariant potential by showing that it

satisfies the Callan-Symanzik equation in its scale-invariant formulation. To this purpose

we computed the two-loop beta functions of the couplings of the theory. While one-loop

beta functions are exactly those of the same theory of φ, σ regularized with µ=constant, the

two-loop beta functions differ from those of the theory regularized with explicit breaking of

scale symmetry (µ =constant). In conclusion, the running of the couplings enables one to

distinguish between spontaneous and explicit breaking of quantum scale symmetry of the

action.

——————————–

Appendix:

A Coefficients of the counterterms

Assuming λn = 0, n > 6 at tree-level, the coefficients of eqs.(29), (33) are:

δφ1 = −3

2

(
λ2
φ + λ2

m + 2
λ3
m

λφ

)
(A-1)

δm1 = −1

4

(
λ2
φ + 6λφλm + 10λ2

m + 6λmλσ + λ2
σ

)
(A-2)

δσ1 = −3

2

(
2
λ2
m

λσ
+ λ2

m + λ2
σ

)
(A-3)

νφ1 =
1

8

[
λ2
m

λφ
(24λm − 7λσ)− (14λ2

m − 16λmλσ + 3λ2
σ)− λφ(80λm − 6λσ)

]
(A-4)

νm1 = − 1

24

[
123λ2

m + 86λmλσ + 3λ2
σ + 6λφ(8λm + λσ)

]
(A-5)

νσ1 = − 1

8λσ

(
48λ3

m + 4λ2
mλσ + 21λ3

σ

)
(A-6)

ν61 =
1

16

λφλm

λ6
(7λφ − 14λm + λσ) (A-7)

ν81 =
1

8

λφλ
2
m

λ8
(A-8)

δφ2 =
3

4

[
3λ2

φ + 4λ2
m +

λ2
m

λφ
(4λm + λσ)

]
(A-9)

δm2 =
1

4

(
2λ2

φ + 6λφλm + λφλσ + 19λ2
m + 6λmλσ + 2λ2

σ

)
(A-10)

δσ2 =
3

4

[
λ2
m

λσ
(λφ + 4λm) + 4λ2

m + 3λ2
σ

]
. (A-11)
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B The finite part of the two-loop potential

We provide here the finite part of the two-loop potential, V (2) + V (2,n) of eq.(25), (36).

This is rather long, we thus use a simplified notation. The propagators are found from:

(D̃p)ij = p2δij − Ṽij. To simplify the calculation it helps to write them as

(D̃−1)ij =
ãij

p2 − Ṽp

+
b̃ij

p2 − Ṽm

, b̃ij = δij − ãij

ã11 = b̃22 =
Ṽp − Ṽ22

Ṽp − Ṽm

, ã22 = b̃11 = 1− ã11 =
Ṽp − Ṽ11

Ṽp − Ṽm

, ã12 = ã21 =
Ṽ12

Ṽp − Ṽm

, (B-1)

where Ṽp, Ṽm are the field-dependent eigenvalues of matrix Ṽij = ∂2Ṽ /∂si∂sj , i, j =

1, 2; s1 = φ, s2 = σ, and Ṽ = µ(σ)2ǫ V where V is the tree level potential in d = 4. We in-

troduce the following coefficients (without ˜) of the Taylor expansions in ǫ (see Appendix C

for their values in terms of the couplings and fields):

ãij = aij + ǫ a1ij + ǫ2 a2ij +O(ǫ3), bij = δij − aij , b1ij = −a1ij, b2ij = −a2ij

Ṽijk... = µ(σ)2ǫ
[
vijk... + ǫ uijk... + ǫ2 wijk... +O(ǫ3)

]
, where:

Ṽijk... =
∂4Ṽ

∂si∂sj∂sk · · ·
, vijk... =

∂4V

∂si∂sj∂sk · · ·
, i, j, k, . . . = 1, 2; s1=φ, s2=σ,

Ṽp = µ(σ)2ǫ Vp

[
1 + c1p ǫ+ c2p ǫ

2 +O(ǫ3)
]

Ṽm = µ(σ)2ǫ Vm

[
1 + c1m ǫ+ c2m ǫ2 +O(ǫ3)

]
. (B-2)

Here Vp and Vm are the field-dependent eigenvalues of the matrix Vij of the-tree level V :

Vp = 1/2
[
V11 + V22 +

[
(V11 − V22)

2 + 4V 2
12

]1/2]
(B-3)

with Vm of similar expression but with − in front of the square root. Vp and Vm should not

be confused with derivatives Vi of the potential. We also use the notation

lnA = ln
A

t(zσ)2
− 1, t = 4πe−γE . (B-4)

Then V (2) and V (2,n) of eq.(25), (36) are shown below. V (2) is that of the theory regularized

with µ =constant, while V (2,n) is a new correction. They are sums of the diagrams of eq.(22)

V (2) = V a
2,old + V b

2,old + V c
2,old

V (2,n) = V a
2,n + V b

2,n + V c
2,n (B-5)

where a, b, c, label the sunset (a), snowman (b), counterterm (c) diagrams, respectively.
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Then, in terms of the above coefficients, one finds for the sunset diagram (a):

V a
2,n =

1

4κ2

{[
vijwlmn +

1

2
uijkulmn

][
Vpail + Vmbil

][
ajm + bjm

][
akn + bkn

]

+ vijkulmn

[(
Vp

[
ail(1−2lnVm+c1p) + a1il

]
+ Vm

[
bil(1−2lnVm+c1m) + b1il

])(
ajm+bjm

)

+ 2
[
Vpail + Vmbil

][
a1jm + b1jm

]][
akn + bkn

]
+ vijkvlmn

[1
2

(
Vp

[
ail(c

2
p − c1p) + a1ilc

1
p

− 2lnVp(ailc
1
p + a1il)

]
+ Vm

[
bil(c

2
m − c1m) + b1ilc

1
m − 2lnVm(bilc

1
m + b1il)

])(
ajm + bjm

)

+
(
Vpail

[
c1p − 2lnVp

]
+ Vmbil

[
c1m − 2lnVm

])(
a1jm + b1jm

)][
akn + bkn

]

+ vijkvlmn

[
Vp

(
bil
[
2a1jma1kn + a2jmbkn + a1jmbkn + 2a1jmb1kn

]
+ ail

[
3a1jma1kn + 4a2jnbkn

+ 2bjmb1kn + 4a1jm(bkn + b1kn) + 2bjmb2kn
]
+ ailajm

[
3(a1kn + a2kn) + 2(b1kn + b2kn)

])

+ Vm

(
ail

[
2b1jmb1kn + b2jmakn + b1jmakn + 2b1jma1kn

]
+ bil

[
3b1jmb1kn + 4b2jnakn + 2ajma1kn

+ 4b1jm(akn + a1kn) + 2ajma2kn
]
+ bilbjm

[
3(b1kn + b2kn) + 2(a1kn + a2kn)

]) ] }
(B-6)

and

V a
2,old =

1

4κ2
vijkvlmn

{[
VpaillnVp + Vmbil lnVm

][
ajmaknlnVp + bjmbknlnVm

]

+ 2
[
vpailln

2
Vp + Vmbilln

2
Vm

]
ajmbkn +

1

2

[
Vpbil − Vmail

][
ln

2
Vp − ln

2
Vm

]
ajmbkn

−
[
VpaillnVp + VmbillnVm

][
ajm + bjm

][
akn + bkn

]

+
[
Vpail + Vmbil

][
ajm + bjm

][
akn + bkn

][3
2
+

π2

12

]

−
[
Vp

(
2ailΦp,m − 1

2
bilΦm,p

)
+ Vm

(
2bilΦm,p −

1

2
ailΦp,m

)]
ajmbkn

− 1

3

[
Vpailajmakn + Vmbilbjmbkn

]
C
}
, (B-7)

with [17]

Φp,m =





√
ypm

ypm−1

[
− 4Li2

(
1−ηpm

2

)
+ 2 ln2

1−ηpm
2 − ln2 4ypm + π2

3

]
, ypm > 1

4
√

ypm
1−ypm

Cl2
(
arcsin

√
ypm

)
, 1 > ypm > 0

,(B-8)

ypm = Vm/Vp, ηpm = (1− 1/ypm)1/2, C = −2
√
3Cl2 (π/3) ∼= 3.5 (B-9)

Li2(ξ) = −
∫ 1

0
dt

ln(1− ξt)

t
, Cl2(θ) = −

∫ θ

0
dθ ln

∣∣∣∣2 sin
θ

2

∣∣∣∣ . (B-10)

14



Further, for the snowman diagram (b):

V b
2,n =

1

8κ2

{
wijkl (aijVp + bij Vm) (aklVp + bkl Vm) − 2uijkl

[
(aijVp + bij Vm)

×
(
akl Vp lnVp + bkl Vm lnVm −

[
(aklcp1 + a1kl)Vp + (bklcp1 + b1kl)Vm

])]

− 2 vijkl

[
2 aij (akl cp1 + a1kl)V

2
p lnVp + 2bij (bkl cm1 + b1kl)V

2
m lnVm

+
[
aij (bkl cm1 + b1kl) + bij (akl cp1 + a1kl)

]
Vp Vm (lnVp + lnVm)− (aijVp + bij Vm)

×
([

akl (cp2 − cp1) + a1klcp1 + a2kl
]
Vp +

[
bkl (cm2 − cm1) + b1klcm1 + b2kl

]
Vm

)

− 1

2

[
(aijcp1 + a1ij)Vp + (bijcm1 + b1ij)Vm

][
(aklc

1
p + a1kl)Vp + (bklcm1 + b1kl)Vm

]]}
,(B-11)

where i, j, k, l = 1, 2. Also

V b
2,old =

1

8κ2
vijkl

{[
Vpaij + Vmbij

][
Vpakl + Vmbkl

][
1 +

π2

6

]
+ VpVmaijbkl

[
lnVp − lnVm

]2

+ 2
[
Vpaij lnVp + Vmbij lnVm

][
VpakllnVp + VmbkllnVm

]}
. (B-12)

For the final “counter-term” diagram (c) we need to introduce the coefficients δvij , δuij ,

δwij whose values will be presented shortly (Appendix C). From eq.(11)

δV1 =
1

ε κ
µ2ǫ

[
δφ0

λφ

4!
φ4 + δm0

λm

4
φ2σ2 + δσ0

λσ

4!
σ4

]
, then

(δV1)ij =
1

ε κ
µ2ǫ

[
δvij + ǫ δuij + ǫ2 δwij

]
, (B-13)

where (δV1)ij = ∂2(δV1)/∂si∂sj , i, j = 1, 2, s1, s2 = φ, σ. With this notation, we find for

diagram (c):

V c
2,n =

1

2κ2

{
δwij

[
aijVp + bijVm

]
+ δuij

[
Vp

(
aij [c

1
p − lnVp] + a1ij

)

+ Vm

(
bij [c

1
m − lnVm] + b1ij

)]
− δvij

[
VplnVp

(
aijc

1
p + a1ij

)
+ VmlnVm

(
bijc

1
m + b1ij

)

− Vp

(
aijc

2
p + [a1ij − aij]c

1
p + a2ij

)
− Vm

(
bijc

2
m + [b1ij − bij]c

1
m + b2ij

)]}
(B-14)

and

V c
2,old =

1

4κ2
δvij

[
Vpaij

(
ln

2
Vp + 1 +

π2

6

)
+ Vmbij

(
ln

2
Vm + 1 +

π2

6

)]
. (B-15)

15



C Coefficients entering the two-loop potential

Below we provide the expressions of the various coefficients introduced in the rhs of eq.(B-2),

(B-13) and used in Appendix B. The coefficients vijkl, vijk are functions of λ’s and fields




v1111 u1111 w1111

v1112 u1112 w1112

v1122 u1122 w1122

v1222 u1222 w1222

v2222 u2222 w2222



=




λφ 0 0

0 2λφ
φ
σ 2λφ

φ
σ

λm 3λm − λφ
φ2

σ2 λφ
φ2

σ2 + 5λm

0 2
3λφ

φ3

σ3 + 2λm
φ
σ 8λm

φ
σ − 4

3λφ
φ3

σ3

λσ −1
2λφ

φ4

σ4 + 25
6 λσ − λm

φ2

σ2
4
3λφ

φ4

σ4 + 10λσ − 2λm
φ2

σ2




(C-1)

and




v111 u111 w111

v112 u112 w112

v122 u122 w122

v222 u222 w222


=




λφφ 0 0

λmσ λφ
φ2

σ + σλm λφ
φ2

σ + λmσ

λmφ 3λmφ− 1
3λφ

φ3

σ2
1
3λφ

φ3

σ2 + 5λmφ

λσσ
1
6λφ

φ4

σ3 + 13
6 λσσ + λm

φ2

σ −1
3λφ

φ4

σ3 + 11
3 λσσ + 4λm

φ2

σ



.

(C-2)

Further, coefficients δvij , δuij and δwij of eq.(B-13) are

δv11 =
1

4κ

[
3
(
λ2
φ + λ2

m

)
φ2 + λm (λφ + 4λm + λσ)σ

2
]
, δu11 = δw11 = 0 (C-3)

δv12 =
1

2κ
λm (λφ + 4λm + λσ)φσ (C-4)

δu12 = δw12 =
1

2κ

[(
λ2
φ + λ2

m

)
φ2 + λm (λφ + 4λm + λσ)σ

2
] φ
σ

(C-5)

δv22 =
1

4κ2
[(
4λ2

m + λφλm + λmλσ

)
φ2 + 3

(
λ2
m + λ2

σ

)
σ2

]
(C-6)

δu22 =
1

8κ2
1

σ2

[
−
(
λ2
φ + λ2

m

)
φ4 + 6λm (λφ + 4λm + λσ)φ

2σ2 + 7
(
λ2
σ + λ2

m

)
σ4

]
(C-7)

δw22 =
1

8κ2
1

σ2

[(
λ2
φ + λ2

m

)
φ4 + 10λm (λφ + 4λm + λσ)φ

2σ2 + 9
(
λ2
σ + λ2

m

)
σ4

]
(C-8)

The coefficients c1p, c
2
p, c

1
m, c2m, also Vp and Vm introduced in eq.(B-2) have the expressions:

[
Vp c

1
p

Vm c1m

]
=

1

24

1

σ2

[
−λφφ

4 + 18λmφ2σ2 + 7λσσ
4 +R1

−λφφ
4 + 18λmφ2σ2 + 7λσσ

4 −R1

]
(C-9)
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where

R1 =
1

2S

[
λφ (λφ − λm)φ6 +

(
15λφλm − λφλσ + 18λ2

m

)
φ4σ2

+
(
−7λφλσ + 78λ2

m + 25λmλσ

)
φ2σ4 + 7λσ (−λm + λσ)σ

6
]

(C-10)

and

S2 =
1

4

[
(λφ − λm)2 φ4 + 2

(
λφλm + 7λ2

m − λφλσ + λmλσ

)
φ2σ2 + (λm − λσ)

2 σ4
]
, (C-11)

while Vm and Vp (see also (B-3)) are

[
Vp

Vm

]
=

1

4

[
(λσ + λm) σ2 + (λφ + λm)φ2 + 2S

(λσ + λm) σ2 + (λφ + λm)φ2 − 2S

]
. (C-12)

For c2p, c
2
m (with the above Vp and Vm):

[
Vp c

2
p

Vm c2m

]
=

1

24

1

σ2

[
λφφ

4 + 30λmφ2σ2 + 9λσσ
4 +R2

λφφ
4 + 30λmφ2σ2 + 9λσσ

4 −R2

]
, (C-13)

where

R2 =
1

σ2S3

[
σ2φ10λφ

(
13λ3

φ + 27λφλ
2
m − 39λ2

φλm + 3λ3
m

)
+ σ4φ8

(
− 23λσλ

3
φ

+ 3λφλ
2
m [3λσ + 16λφ] + 5λ2

φλm [6λσ + 25λφ]− 423λφλ
3
m + 90λ4

m

)

+ σ6φ6
(
λσλ

2
φ [7λσ − 27λφ] + 3λ3

m [99λσ + 151λφ] + λφλ
2
m [553λφ − 615λσ ]

+ λσλφλm [9λσ + 65λφ] + 2034λ4
m

)
+ σ8φ4

(
3λ2

σλφ [λσ + 27λφ] + 3λ3
m [641λσ + 261λφ]

+ λσλ
2
m [351λσ − 521λφ]− λσλφλm [361λσ + 81λφ] + 3438λ4

m

)
+ σ10φ2

(
− 81λ3

σλφ

+ λσλ
2
m [292λσ − 81λφ] + 9λ2

σλm [19λσ + 18λφ]− 609λσλ
3
m + 342λ4

m

)

− 27σ12λσ [λm − λσ]
3
]
. (C-14)

Finally, aij , a
1
ij, a

2
ij , bij , b

1
ij, b

2
ij introduced in (B-2) and used in Appendix B have the values

a11 = 1− a22 = b22 = 1− b11 =
1

2
+

1

4S

[
λφφ

2 + λm(−φ2 + σ2)− λσσ
2
]

(C-15)

a12 = a21 = −b12 = −b21 =
λmφσ

S
(C-16)
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a111 = −a122 = −b111 = b122 =
λmφ2

6S3

[
λφ

(
− 2λφ + 3λm

)
φ4

+2
(
λφλσ − 4λφλm − 6λ2

m

)
φ2σ2 −

(
6λ2

m + λmλσ

)
σ4

]
(C-17)

with S of eq.(C-11). Also

a112 = a121 = −b112 = −b121 =
φ

24σS3

[
φ6λφ

(
2λ2

φ − 5λφλm + 3λ2
m

)

+ φ4σ2
(
−4λσλ

2
φ + 5λφλm [λσ + 2λφ] + λφλ

2
m − 12λ3

m

)

+ φ2σ4
(
2λ2

σλφ + λ2
m [14λφ − 13λσ]− 9λσλφλm + 6λ3

m

)

+ σ6λm

(
−λ2

σ − 5λσλm + 6λ2
m

) ]
. (C-18)

Further

a211 = −a222 = −b211 = b222 =
φ2

288σ2S5

{
φ10 λ2

φ

(
− 4λ3

φ − 31λφλ
2
m + 20λ2

φλm + 15λ3
m

)

+ φ8σ2λφ

[
12λσλ

3
φ + λφλ

2
m [31λσ + 180λφ]− 20λ2

φλm [2λσ + 3λφ] + 5λφλ
3
m − 192λ4

m

]

+ 2φ6σ4
[
− 6λ2

σλ
3
φ + λφλ

3
m [44λφ − 163λσ ]− λ2

φλ
2
m [19λσ + 132λφ]

+ 2λσλ
2
φλm [5λσ + 28λφ] + 450λφλ

4
m + 144λ5

m

]
− 2φ4σ6

[
− 2λ3

σλ
2
φ + λ4

m [270λφ

− 96λσ ] + λφλ
3
m [236λφ − 463λσ ] + λσλφλ

2
m [71λσ − 118λφ] + 22λ2

σλ
2
φλm + 1008λ5

m

]

+ φ2σ8λm

[
− 8λ3

σλφ + 12λ3
m [29λσ − 31λφ] + λσλ

2
m [184λφ − 117λσ ] + 49λ2

σλφλm

− 468λ4
m

]
+ σ103λ2

m

(
− 7λ3

σ + 16λσλ
2
m + 27λ2

σλm − 36λ3
m

)}
. (C-19)

Finally

a212 = a221 = −b212 = −b221 = − φ

576σ3S5

[
− φ12λ2

φ (3λm − 2λφ)
(
λm − λφ

)2

+ 2σ2φ10λφ

(
− 3λ3

φ [λσ + 2λφ]− λφλ
2
m [4λσ + 99λφ] + λ2

φλm [7λσ + 57λφ]

+ 22λφλ
3
m + 30λ4

m

)
+ σ4φ8

(
2λσλ

3
φ [3λσ + 17λφ] + λφλ

3
m [160λσ + 301λφ]

+ 2λ2
φλ

2
m [28λσ + 237λφ]− λ2

φλm

[
184λσλφ + 7λ2

σ + 84λ2
φ

]
− 972λφλ

4
m − 72λ5

m

)

+ 2σ6φ6
(
− λ2

σλ
2
φ [λσ + 15λφ]− 6λ4

m [7λσ − 68λφ] + λφλ
3
m [379λφ − 651λσ ]

+λφλ
2
m

[
−5λσλφ + 71λ2

σ − 108λ2
φ

]
+ λσλ

2
φλm [13λσ + 75λφ] + 1116λ5

m

)
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+ σ8φ4
(
6λ3

σλ
2
φ + 12λ4

m [92λσ + 45λφ] + λ3
m

[
540λσλφ + 59λ2

σ − 264λ2
φ

]

−6λσλφλ
2
m [91λσ − 41λφ] + λ2

σλφλm [44λσ − 37λφ] + 324λ5
m

)

+ 2σ10φ2
(
λ4
σλφ + 6λ4

m [31λσ − 13λφ] + λσλ
3
m [89λφ − 103λσ ]

+λ2
σλ

2
m [41λσ + 8λφ]− 20λ3

σλφλm + 72λ5
m

)

+ σ12 (−λm) (λm − λσ)
2 (−11λ2

σ + 24λσλm + 36λ2
m

) ]
, (C-20)

which enter in the expression of the two-loop potential.
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