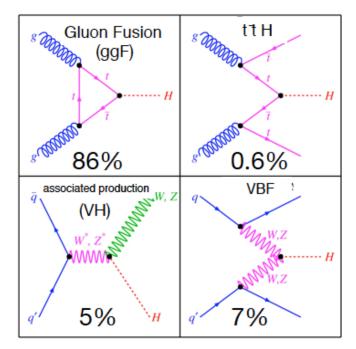


Determination of the Higgs boson properties with the ATLAS detector.

B. LAFORGE

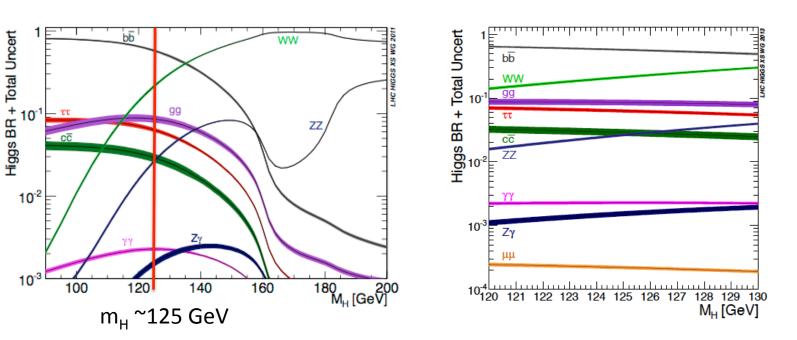
LPNHE Paris, France

On behalf of the ATLAS Collaboration


ICHEP 2016, August 4th, Higgs parallel session

SM Higgs boson production @ LHC

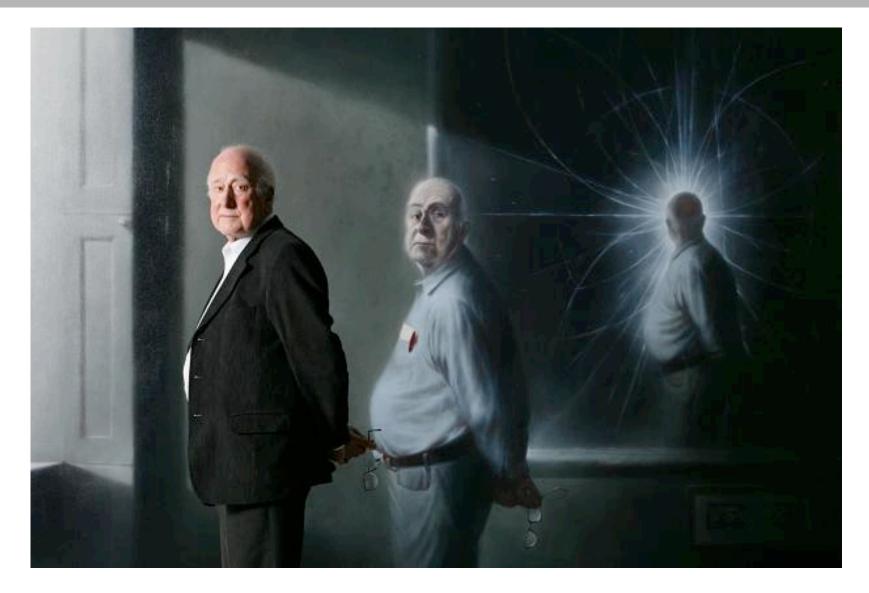
Run 2 data brings more sensitivity to SM Higgs boson physics


\sqrt{s}	SM Higgs boson theoretical production cross-section in pb^{-1} for $m_H = 125 \ GeV$					
	ggF	VBF	WH	ZH	ttH	Total
$7 { m TeV}$	$16.85^{+5.5\%}_{-7.7\%}$	$1.24^{+2.2\%}_{-2.2\%}$	$0.58^{+2.2\%}_{-2.3\%}$	$0.34^{+3.1\%}_{-2.8\%}$	$0.09^{+5.6\%}_{-10.0\%}$	19.1
8 TeV	$21.4^{+5.4\%}_{-7.6\%}$	$1.60^{+2.2\%}_{-2.2\%}$	$0.70^{+2.1\%}_{-2.2\%}$	$0.42^{+3.4\%}_{-2.9\%}$	-10.1%	24.25
$13 { m TeV}$	$48.58^{+5.6\%}_{-7.4\%}$	$3.78^{+2.1\%}_{-2.1\%}$	$1.37^{+2.0\%}_{-2.0\%}$	$0.88^{+4.1\%}_{-3.5\%}$	$0.51^{+6.8\%}_{-9.8\%}$	55.12

4 leading production processes with different signatures :

- Sensitive to different Higgs couplings
 - ggF, ttH : fermions (t,b)
 - VBF, VH : bosons (W,Z)
- Sub-dominant modes have cleaner final states that help improve S/B :
 - VBF : two jets with large Mjj and rapidity gap
 - WH,ZH : V boson final state (Iv, II, qq')
 - ttH : tt \rightarrow WbWb, W \rightarrow Iv or qq' : many b-jets, I, E_{T}^{miss} .

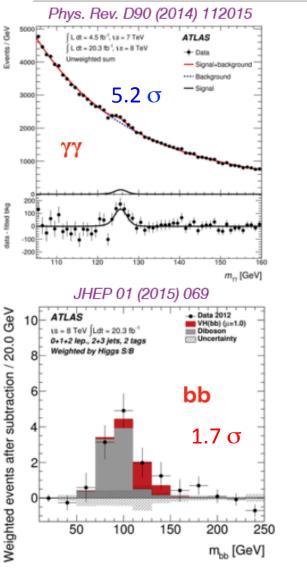
SM Higgs boson decay modes

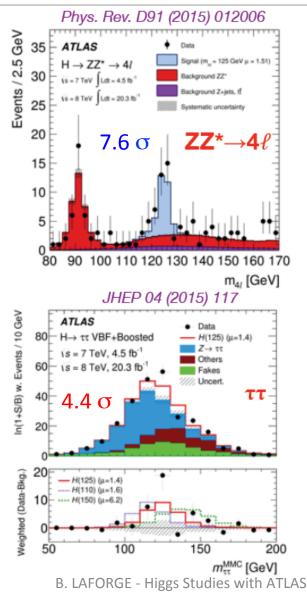

Decay mode	Branching fraction [%]
$H \rightarrow bb$	57.5 ± 1.9
$H \rightarrow WW$	21.6 ± 0.9
$H \rightarrow gg$	8.56 ± 0.86
$H \to \tau \tau$	6.30 ± 0.36
$H \rightarrow cc$	2.90 ± 0.35
$H \rightarrow ZZ$	2.67 ± 0.11
$H ightarrow \gamma \gamma$	0.228 ± 0.011
$H \rightarrow Z \gamma$	0.155 ± 0.014
$H ightarrow \mu \mu$	0.022 ± 0.001

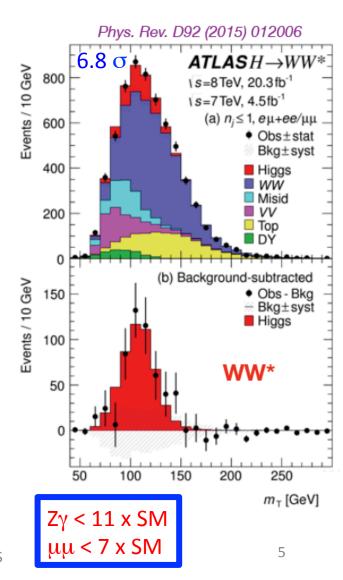
Nature is good with particle physicists : @ 125 GeV many decays have a substantial BR

But not all of them can be isolated from bkg (cc, gg, ...)

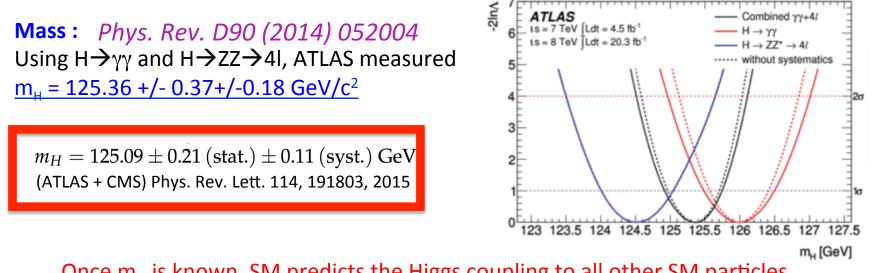
Low BR channels can have a higher S/B (γγ, 4I, ...) than bb (high QCD background and lower resolution)


Lessons on SM Higgs @ LHC run 1



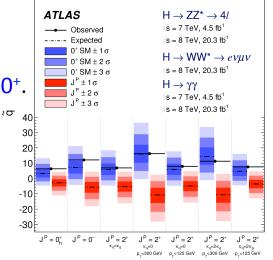

Ken Currie, 2008

"Higgs boson" also discovered in several single channels in Run 1



04/08/16

Higgs Boson Properties from Run 1



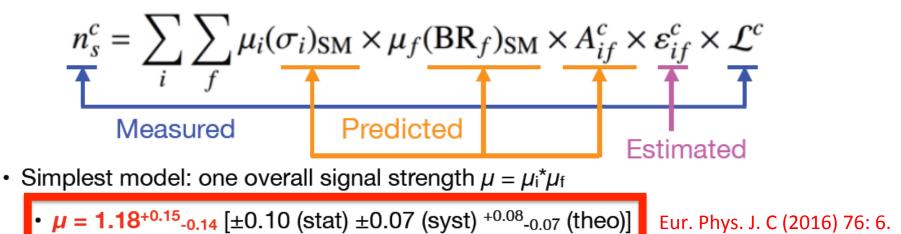
Once m_H is known, SM predicts the Higgs coupling to all other SM particles

Spin and CP quantum numbers: Eur. Phys. J. C75 (2015) 476

Using $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ \rightarrow 4I$, $H \rightarrow WW$ angular distributions, ATLAS tested different spin/CP hypotheses against SM model prediction 0⁺.

Spin^{CP} 0⁺ is very compatible with ATLAS data
 Alternative models are all rejected with more than 99.9% CL

Production and decay strengths


ATLAS analysis used several parameters known as production and decay strengths which are the ratios between actual production cross-sections or branching ratios and SM predictions:

Production (initial state)

$$\mu_i = \frac{\sigma_i}{(\sigma_i)_{\text{SM}}} \text{ and } \mu_f = \frac{\text{BR}_f}{(\text{BR}_f)_{\text{SM}}}$$

Decay (final state)

Maximum profile likelihood technique is used to infer these parameters from correlation between signal rates in various channels c:

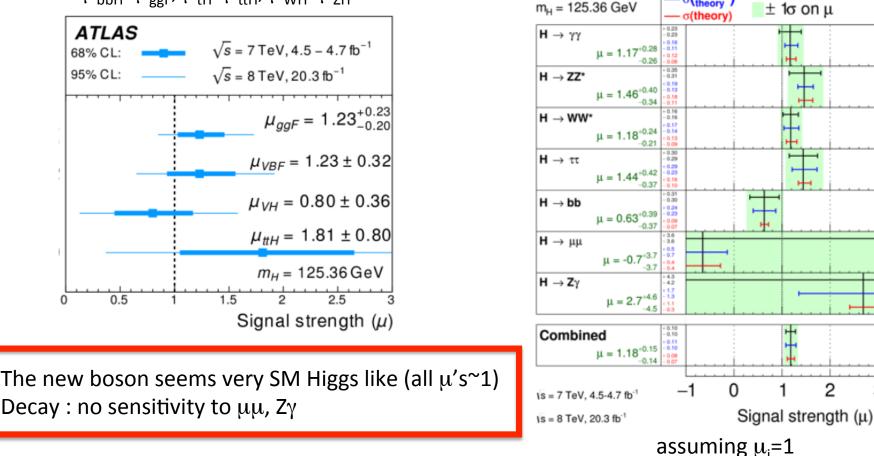
 systematic error dominated by background estimates; theory error due to uncertainty on SM x-sections, BRs and kinematic distributions

Production and decay strengths

Total uncertainty

σ(stat.)

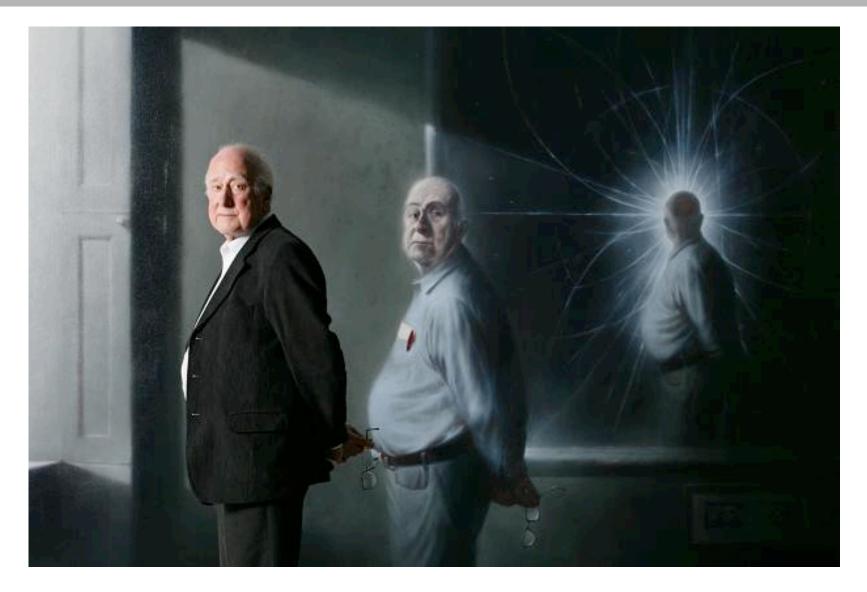
σ(sys inc.)



If one allows different strengths : by decay mode

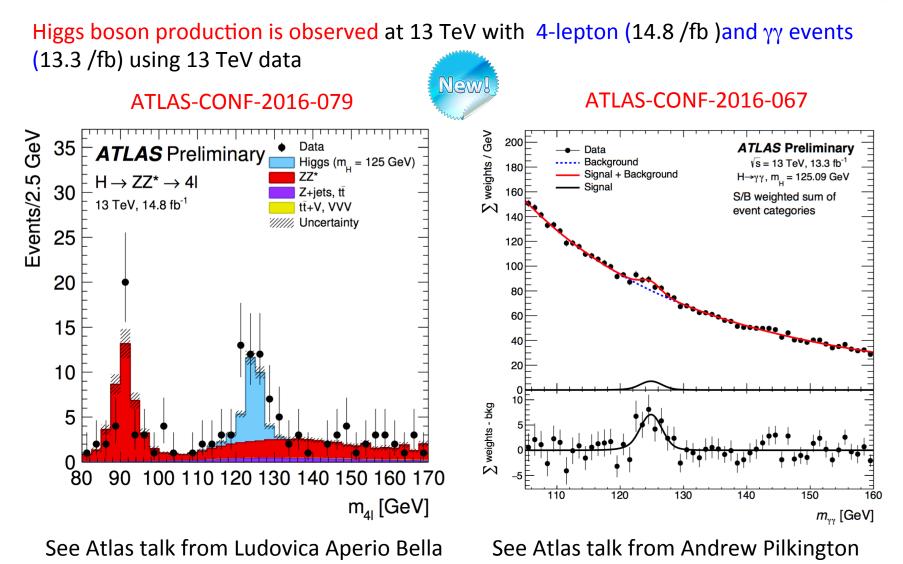
ATLAS

By production mode, assuming $\mu_{f}\text{=}1$


And $\mu_{\text{bbH}}=\mu_{\text{ggF}}$, $\mu_{\text{tH}}=\mu_{\text{ttH}}$, $\mu_{\text{WH}}=\mu_{\text{ZH}}$

ttH : 2.4 σ evidence (Physics Letters B 749 (2015) 519-541)

3


SM Higgs @ LHC run 2

Ken Currie, 2008

Higgs Production & decay at 13 TeV in ATLAS

04/08/16

Higgs boson combination at Run 2 using ZZ(4 ℓ) and $\gamma\gamma$ final states

ATLAS-CONF-2016-081 Which data? σ_{pp→H} [pb] ATLAS Preliminary $\sigma_{pp \rightarrow H} \quad m_{H} = 125.09 \text{ GeV}$ 100 Inclusive samples $H \rightarrow \gamma \gamma$ and $H \rightarrow Z \rightarrow 4I$ QCD scale uncertainty Tot. uncert. (scale @ PDF+α_) No categorisation 🜢 comb. data 🛛 🔳 syst. unc. 80 Which fit is performed? New 60 Fit total cross-section using SM BR, 40 acceptance from SM MC samples $N_{\gamma\gamma} = \sigma_{pp \rightarrow H} * BR_{SM(\gamma\gamma)} * Eff. * Acc. * Lumi_{\gamma\gamma}$ 20 √s = 7 TeV, 4.5 fb⁻¹ √s = 8 TeV, 20.3 fb⁻¹ $N_{4\ell} = \sigma_{pp \rightarrow H} * BR_{SM(4\ell)} * Eff. * Acc. * Lumi_{4\ell}$ $\sqrt{s} = 13 \text{ TeV}, 13.3 \text{ fb}^{-1}(\gamma \gamma), 14.8 \text{ fb}^{-1}(ZZ^*)$ 10 11 12 13 9

Use profiled likelihood ratio fit with ~200 nuisance parameters θ and get vector α (params of interest: here $\sigma_{pp \rightarrow H}$) $\Lambda(\alpha) = \frac{L(\alpha, \hat{\theta}(\alpha))}{L(\hat{\alpha}, \hat{\theta})}$

Table 8: Total $pp \rightarrow H + X$ cross sections measured using $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ decays, and their combination, for centre-of-mass energies of 7, 8 and 13 TeV. The SM predictions [7] are computed for a Higgs boson mass of 125.09 GeV [9].

Decay channel	Total cross section $(pp \rightarrow H + X)$			
	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = 13 \text{ TeV}$	
$H ightarrow \gamma \gamma$	35 ⁺¹³ ₋₁₂ pb	30.5 ^{+7.5} _{-7.4} pb	37^{+14}_{-13} pb	
$H \to Z Z^* \to 4\ell$	33^{+21}_{-16} pb	37 ₋₈ pb	81 ⁺¹⁸ ₋₁₆ pb	
Combination	34 ± 10 (stat.) $^{+4}_{-2}$ (syst.) pb	$33.3^{+5.5}_{-5.3}$ (stat.) $^{+1.7}_{-1.3}$ (syst.) pb	59.0 ^{+9.7} _{-9.2} (stat.) ^{+4.4} _{-3.5} (syst.) pb	
SM predictions [7]	$19.2 \pm 0.9 \text{ pb}$	24.5 ± 1.1 pb	55.5 ^{+2.4} _{-3.4} pb	

B. LAFORGE - Higgs Studies with ATLAS

Higgs boson combination at Run 2 using ZZ and $\gamma\gamma$ final states

ATLAS-CONF-2016-081

Data: 13.5 /fb yy & 14.8 /fb ZZ

$H \rightarrow ZZ^* \rightarrow 4\ell$		$H \rightarrow \gamma \gamma$	
Category	Target	Category	Target
VH-leptonic	VHlep	t <i>t</i> H leptonic	top
0-jet	ggF	<i>ttH</i> hadronic	top
1-jet	ggF	VH dilepton	VHlep
2-jet VBF-like	VBF	VH one-lepton	VHlep
2-jet VH-like	VHhad	VH Emiss	VHlep
		VH hadronic loose	VHhad
		VH hadronic tight	VHhad
		VBF loose	VBF
		VBF tight	VBF
		ggH central low- p_{Tt}	ggF
		ggH central high- p_{Tt}	ggF
		ggH fwd low- p_{Tt}	ggF
		ggH fwd high- p_{Tt}	ggF

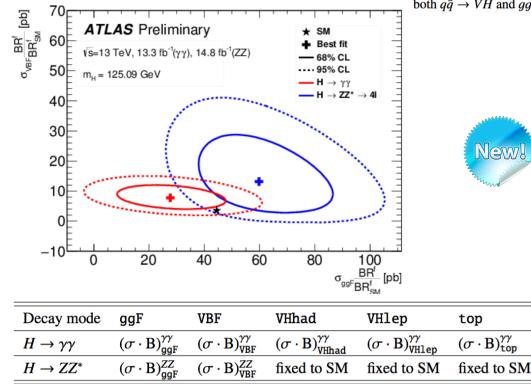
Now, use categorized data to become sensitive to production processes and fit a single parameter In all categories simultaneously

$$\mu = \frac{\sigma \times B}{\sigma^{SM} \times B^{SM}}$$

 $N_{cat} = \sum_{\text{Production}} \mu * \sigma_{SM} * BR_{SM} * Eff * Acceptance * Lumi in each category$

Global signal strength after fit is:

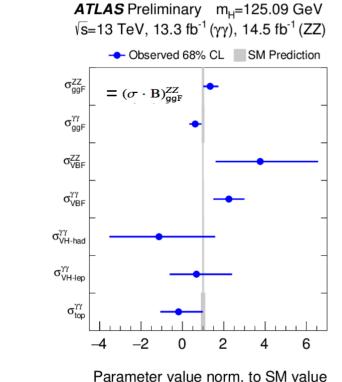
$$\mu = 1.13^{+0.18}_{-0.17}$$


Higgs production is observed with 10 σ significance (8.6 expected) with 13 TeV data in aggreement with SM expectations

Higgs boson combination at Run 2 using ZZ and $\gamma\gamma$ final states

Which fit performed ?

Use categorised data and allow different production cross-section (restricted to fiducial region) and different BR (7 parameters)



ATLAS-CONF-2016-081

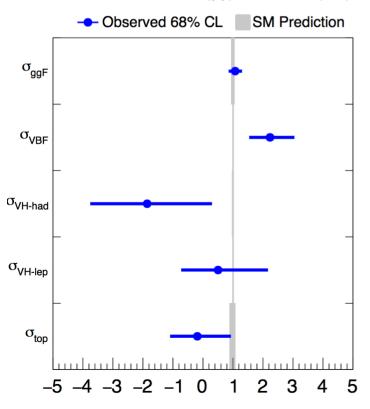
 σ_i : cross-section fiducial definition is $|y_H| < 2.5$

 $b\bar{b}H$ is coupled with $gg \to H$ by assuming SM predictions for the ratios of the two processes, tH is coupled with ttH, by assuming SM predictions for the ratios of the $pp \to tH$ and the $pp \to t\bar{t}H$ cross sections, together reported as "top".

WH and ZH are merged, separately for the leptonic and the hadronic V decays¹, into $V(\rightarrow q\bar{q})H$ and $V(\rightarrow$ leptons)H, reported as "VHhad" and "VHlep", respectively. The merging assumes the SM prediction for the ratio of the production cross sections and includes the contributions from both $q\bar{q} \rightarrow VH$ and $gg \rightarrow ZH$.

B. LAFORGE - Higgs Studies with ATLAS Good agreement with SM 13

Higgs boson combination at Run 2 using ZZ and gg final states


ATLAS-CONF-2016-081

Which fit performed ?

Use categorised data and allow different production cross-section (restricted to fiducial region) and assume SM BR (5 parameters)

	Best fit value (pb)	SM prediction (pb)
$\sigma_{ m ggF}$	$47.8^{+9.8}_{-9.4}$	44.5 ± 2.3
$\sigma_{\mathtt{VBF}}$	$7.9^{+2.8}_{-2.4}$	3.52 ± 0.07
$\sigma_{ extsf{VHhad}}$	$-2.5^{+2.9}_{-2.6}$	1.36 ± 0.03
$\sigma_{\mathtt{VHlep}}$	$0.32^{+1.07}_{-0.79}$	0.64 ± 0.02
$\sigma_{ t top}$	$-0.11^{+0.67}_{-0.54}$	0.60 ± 0.06

ATLAS Preliminary $m_{H}=125.09 \text{ GeV}$ $\sqrt{s}=13 \text{ TeV}, 13.3 \text{ fb}^{-1}(\gamma\gamma), 14.8 \text{ fb}^{-1}(ZZ)$

Parameter value norm. to SM value No sensitivity yet to VH and ttH

04/08/16

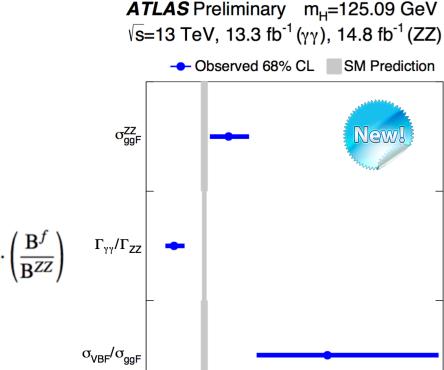
Higgs boson combination at Run 2 using ZZ and gg final states

ATLAS-CONF-2016-081

Which fit is performed ?

Use categorised data and allow different production cross-section (restricted to fiducial region) and different BR

Use as a reference (from SM):


- ggF cross-section
- $H \rightarrow ZZ$ Branching ratio

$$(\sigma \cdot \mathbf{B})_{i}^{f} = (\sigma \cdot \mathbf{B})_{ggF}^{ZZ} \cdot \left(\frac{\sigma_{i}}{\sigma_{ggF}}\right) \cdot \left(\frac{\mathbf{B}^{f}}{\mathbf{B}^{ZZ}}\right)$$

Then fit 3 parameters only :

Parameter	Best-fit value	SM prediction
$(\sigma \cdot \mathbf{B})^{ZZ}_{ggF}$ (pb)	$1.67 {}^{+0.41}_{-0.37}$	1.18 ± 0.07
$\sigma_{\mathtt{VBF}}/\sigma_{\mathtt{ggF}}$	$0.25{}^{+0.15}_{-0.10}$	0.079 ± 0.004
${ m B}^{\gamma\gamma}/{ m B}^{ZZ}$	$0.041 {}^{+0.015}_{-0.013}$	0.086 ± 0.003

 $\sigma_{\rm i}{:}\ {\rm cross-section}\ {\rm fiducial}\ {\rm definition}\ {\rm is}\ |y_{\rm H}|{<}2.5$

Parameter value norm. to SM value

3

4

2

1

0

No sensitivity yet to VH and ttH, fit VBF, ggF and $B_{\gamma\gamma}/B_{ZZ}$ and profile the other ratios in the fit 5

Conclusions

LHC Run 2 provides data beyond expectations

ATLAS detector is working well and reconstruction keeps collision pile-up under control. Very quick analysis of the data to be able to include data taken less than 2 weeks ago !

Higgs boson observed with 13 TeV data with ~10 σ significance

Higgs boson properties measured with Run 2 data with both diphoton and 4 leptons data
- a first measurement of Higgs boson cross-section done with 13 TeV data
- a first analysis of production processes cross-sections done with 13 TeV data
production in good agreement with Standard Model expectations

Sensitivity on rare decays increasing but no observation yet of $H \rightarrow \mu\mu$, $H \rightarrow Z\gamma$

 \rightarrow see talks by C. Grefe and Davide Gerbaudo this week

Lot of new measurements to come with expected ~30 /fb of data in 2016

Stay tuned...