Search for a high mass neutral Higgs boson in fermion final states with the ATLAS detector

Trevor Vickey (on behalf of the ATLAS Collaboration)

University of Sheffield, United Kingdom

August 5, 2016

ICHEP-2016 — Chicago, USA

If the (light) Higgs mass is ~125 GeV, what next?

Standard Model Higgs

Beyond the SM Higgs

- Suppose that this is not the Standard Model Higgs... just one of several Higgs bosons?
 - More complicated Higgs sector? ⇒ 2HDM, MSSM, Doubly-charged Higgs, Composite
 - Light scalar Higgs? \Rightarrow NMSSM
- Searching for additional Higgs bosons at a higher mass (using fermions) is the focus of this talk
- Please see the other low- and high-mass Higgs search talks from ATLAS at ICHEP-2016:
 - Search for a high mass diphoton resonance (Bruno Lenzi; "Joint BSM & Higgs", Friday at 09:00)
 - Search for di-Higgs production (Tulin Varol; "Higgs Physics: 4", Friday at 11:50)
 - Search for high mass Higgs bosons (Karsten Koeneke; "Higgs Physics: 4", Friday at 13:10)
 - Search for the decay of the Higgs boson into two nMSSM pseudo-scalar particles (Lidija Zivkovic; "Higgs Physics: 5", Friday at 15:45)
 - Search for a high mass Zγ resonance (Giovanni Marchiori; "Higgs Physics: 6", Friday at 17:50)
 - Charged Higgs boson searches (Carl Gwilliam; "Higgs Physics: 7", Saturday at 09:15)

MSSM Higgs Sector and a 125 GeV Higgs

- The MSSM (h, A, H, H^{\pm}) is compatible with a 125 GeV Higgs... for example:
 - hMSSM scenario: the measured value of 125 GeV can be used to predict masses and decay branching ratios of the other Higgs bosons
 - mh^{mod+} scenario: the lightest CP-even Higgs is assigned to be the 125 GeV boson
- We have two new ATLAS high-mass neutral Higgs searches using fermions to show you...
 - A/H to TT using 13.3 fb⁻¹ of 13 TeV pp collision data <u>ATLAS-CONF-2016-085</u>
 - A/H to ttbar using 20.3 fb⁻¹ of 8 TeV pp collision data <u>ATLAS-CONF-2016-073</u>

MSSM Higgs Search (A/H \rightarrow T⁺T⁻)

- New ATLAS MSSM neutral Higgs search for ICHEP uses 13.3 fb⁻¹ of 13 TeV data
 - 3.2 fb⁻¹ from 2015 and 10.1 fb⁻¹ from 2016
 - Improvement on the limits from the 2015 result submitted to EPJC: <u>arXiv:1608.00890</u>
- Can use different categories to target main production mechanisms
 - "no b-tag" targets gluon-fusion (dominant mode at small tanβ)
 - "b-tag" targets b-associated production (dominant mode at large tan β)

- Can also separate based on the τ lepton decay mode (here lepton-hadron or hadron-hadron)
 - The addition of a high-MET trigger category in lep-had is new for the 2016 analysis
 - So in total, there are 5 categories considered by the analysis
- Monte Carlo samples used:
 - A/H to ττ signal: Powheg+Pythia8 (ggH) and aMC@NLO + Pythia8 (bbH)
 - Backgrounds:
 - Powheg+Pythia8 (W+jets in lep-had, Z+jets and top)
 - Sherpa (W+jets in had-had and dibosons)

Background Estimation $(A/H \rightarrow \tau^+\tau^-)$

lepton-hadron final state

Jet \rightarrow I, τ fakes	•
Ζ → ττ	
tt, single top	
Diboson	
Z \rightarrow ee / $\mu\mu$	

- Jets faking leptons (e, μ) and taus are not well modeled in Monte Carlo
 - Separate fake factors are derived from data control regions for W+jets/top and QCD
 - These fake factors are parameterized by tau p_T and number of tracks
 - The fake factors are combined by using a data-driven estimate for the multi-jets fraction taken from the anti-tau ID region (otherwise same as signal region)
 - The combined fake factors are obtained as a function of e/μ, category and hadronic tau p_T

hadron-hadron final state

- Multi-jet backgrounds faking taus are not well modeled in Monte Carlo
 - A fake factor is derived from data control regions, and then applied to the anti-ID regions to obtain estimates for the signal regions
 - This fake factor is parameterized by tau p_T and number of tracks
- For W-jets and top backgrounds, different dedicated fake-rate corrections to MC are used
 - These corrections to MC are estimated from data

Post-fit Plots for the 5 Categories $(A/H \rightarrow \tau^+\tau^-)$

MSSM Neutral Higgs Search $(A/H \rightarrow \tau^+\tau^-)$

- Dominant systematics: T energy scale, T trigger, jet fake-related (lep-had), top modeling (had-had)
- Statistically combine the T_{lep} - T_{had} and T_{had} - T_{had} channels for one exclusion limit
 - NB: Limit from had-had starts at a higher m_A due to limited acceptance below 300 GeV
- We determine a $\sigma \propto BR$ limit (A/H $\rightarrow \tau \tau$) for gluon-fusion and b-associated production separately; exclusions range from ~2.0 pb to 13-14 fb, depending on the Higgs mass and production mechanism

MSSM Neutral Higgs Search $(A/H \rightarrow \tau^+\tau^-)$

- We also show limits in the mh^{mod+} and hMSSM benchmark scenarios
- In the m_h^{mod+} scenario, we exclude tan $\beta > 16$ for $m_A = 600$ GeV and tan $\beta > 35$ for $m_A = 1$ TeV
- In the hMSSM, we have sensitivity to exclude the low m_A -low tan β corner and the island around 350 GeV. Note: the features around 350 GeV are related to the $\sigma \propto BR$ evolution near the A/H \rightarrow ttbar threshold
- hMSSM plot shows Run-I couplings exclusion (κ_ν, κ_u and κ_d)

High-mass Higgs Search (A/H→ttbar)

- We revisit a Run-I ttbar resonance search that used 20.3 fb⁻¹ of 8 TeV proton-proton collision data: <u>ATLAS collaboration, JHEP 08 (2015) 148</u>
- This analysis uses the ttbar lepton+jets channel, and takes the interference between the signal and ttbar background production modes into account for the first time

- Monte Carlo samples used:
 - A/H to ttbar signal: MadGraph5+Pythia6
 - Backgrounds:
 - ttbar: Powheg-Box+Pythia6
 - ttbar + V: Madgraph5+Pythia6
 - single top: Powheg+Pythia6
 - W+jets and Z+jets: Alpgen+Pythia6
 - Diboson: Sherpa

MadGraph5 used for both Direct and Indirect A/H signal generation (Direct used; difference taken as a modeling systematic)

Signal Modeling (A/H→ttbar)

- The signal process is simulated using the generator MadGraph5 v2.0.1 with the Higgs Effective Couplings Form Factor model (implements the production of scalar and pseudoscalar particles through loop-induced gluon fusion)
 - Loop contributions from both bottom and top quarks are taken into account
 - Signal shape is distorted from a simple Breit-Wigner peak, to a peak-dip structure
 - Statistical interpretation of measured event rates in data are compared to the total sum of Signal + Interference + Background (S + I + B)
 - The mass of the SM-like Higgs boson, h, is chosen to be 125 GeV and sin(β - α) is set to 1

Event Selection / Mass Reconstruction (A/H→ttbar)

- Analysis targets the ttbar lepton+jets channel (one W to hadrons one to leptons)
 - Single electron or single muon triggers are used—2 categories (one for e; one for μ)
 - One high p_T electron or muon; high MET from the escaping neutrino; presence of at least 4 high p_T jets in the event; at least one jet originating from b duarks must be tagged (70%); Sum of MET and $m_T > 60$ GeV (multi-jets suppression) $m_T^W = \sqrt{2 \cdot p_T^\ell \cdot E_T^{miss} \cdot (1 \cos \phi_{\ell_T})}$
- A chi-squared fit is used for assignment of the decay products, then m_{tt} is reconstructed
 - Events further classified depending on the b-tagged jet(s) assignment—3 categories

High-mass Higgs Search Results (A/H→ttbar)

- No significant excess over Standard Model background expectations is observed
- We set upper limits on the signal strength parameter μ as a function of the parameter tan β for a neutral pseudoscalar A with a mass of 500 GeV and 750 GeV
- NB:The blue line at µ=1 corresponds to the signal strength in the Type-II 2HDM

For a neutral pseudoscalar A, with a mass of m_A =500 GeV, parameter values of tan β < 0.85 in the Type-II 2HDM are excluded at the 95% CL. No tan β values can be excluded for the higher mass point at 750 GeV.

High-mass Higgs Search Results (A/H→ttbar)

- No significant excess over Standard Model background expectations is observed
- We set upper limits on the signal strength parameter μ as a function of the parameter tan β for a neutral scalar H with a mass of 500 GeV and 750 GeV
- NB:The blue line at μ =1 corresponds to the signal strength in the Type-II 2HDM

For a neutral scalar H, with a mass of m_H=500 GeV, parameter values of tanβ < 0.45 in the Type-II 2HDM are excluded at the 95% CL. No tanβ values can be excluded for the higher mass point at 750 GeV.

Conclusions and Outlook

- ATLAS has performed new searches for high-mass neutral Higgs bosons decaying to fermions
 - The new A/H→TT analysis uses up to 13.3 fb⁻¹ of 13 TeV collision data recorded in 2015 and 2016; this result improves on a recent ATLAS paper submitted to EPJC
 - The A/H→ttbar analysis is an extension of a Run-I search in 20.3 fb⁻¹ of 8 TeV data and takes the interference between A/H signal and ggF ttbar into account for the first time
- No significant excess is observed in the data from either search, and 95% CL limits are set
 - $A/H \rightarrow \tau \tau$: We determine a $\sigma \times BR$ limit for gluon-fusion and b-associated production separately; exclusions range from ~2.0 pb at m_A=200 GeV to 13-14 fb for m_A between 600 GeV and 1 TeV
 - A/H $\rightarrow \tau \tau$: We also show limits in the m_h^{mod+} and hMSSM benchmark scenarios; e.g., in the m_h^{mod+} scenario, lowest tan β constraint excludes tan $\beta > 9$ for m_A = 200 GeV
 - A/H→ttbar: For a neutral pseudoscalar A, with a mass of m_A =500 GeV, parameter values of tan β < 0.85 in the Type-II 2HDM are excluded at the 95% CL.
 - A/H→ttbar: For a neutral scalar H, with a mass of m_H =500 GeV, parameter values of tan β < 0.45 in the Type-II 2HDM are excluded at the 95% CL.
- Stay tuned for more results from Run-II of the LHC; these are very exciting times!

