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1 Introduction

Looking for indirect evidence of physics beyond the Standard Model (SM) has become a

strong component of the Large Hadron Collider (LHC) physics program. Run I of the LHC

revealed the existence of a Higgs boson (H) with characteristics very similar to the Higgs

boson of the SM. Identifying the H particle with the SM Higgs boson fully determines the

SM Lagrangian, so that all electroweak precision observables (EWPO) and all Higgs-boson

couplings can be predicted within the SM. Thus, EWPO and Higgs-boson observables play

a key role in constraining extensions of the SM and in searching for new physics (NP).

In this paper we present a global fit of both EWPO and Higgs-boson signal strengths,

based on results obtained at LEP, SLC, the Tevatron, and during Run I of the LHC,

at both 7 and 8 TeV center-of-mass energies. The fit is carried out using the HEPfit

package [1, 2], a general tool to combine direct and indirect constraints on the SM and

its extensions. In particular, we use HEPfit to perform a statistical analysis of EWPO

and Higgs-boson signal-strength measurements in the SM and beyond. Most importantly,

we obtain constraints on possible deviations of the Higgs-boson couplings to both gauge

bosons and fermions from the SM prediction. Finally, we investigate the impact of the high-

luminosity upgrade of the LHC and of future e+e− colliders on the precision of the fit in the

SM and beyond. Our analysis updates the study of ref. [3] and extends it to include recent

Higgs-boson physics results. Results from the initial stages of this project were presented

in [4–7] and have by now been updated to reflect all the most recent developments in

theoretical calculations and experimental measurements. A model-independent study of
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NP effects on both EWPO and Higgs-boson couplings based on an effective-field-theory

approach will be presented in a forthcoming paper [8].

Recent updates of global fits to EWPO in the SM and beyond, as well as constraints

on Higgs-boson couplings, have been presented in refs. [9, 10]. In spite of the different

statistical methods and of the different inputs, we obtain compatible results for the EWPO

fit. We however consider more NP parameterizations, implement constraints from Higgs-

boson signal strengths, and extend the analysis of future accuracies to more scenarios.

The paper is organized as follows. In section 2 we briefly describe the HEPfit package.

In sections 3 and 4 we summarize results for the electroweak (EW) precision fits of the

SM and its extensions, while we illustrate in section 5 the constraints we obtain for non-

standard Higgs-boson couplings. The impact of future colliders on our analysis is discussed

in section 6. In section 7 we present our conclusions.

2 The HEPfit package

The HEPfit package1 is a general tool to combine direct and indirect constraints on the

Standard Model and its extensions, available under the GNU General Public License

(GPL) [2]. The HEPfit code can be extended to include new observables and NP models

which can be added to the main core as external modules. Exploiting the Markov-Chain

Monte-Carlo implementation provided in the Bayesian Analysis Toolkit (BAT) [11], HEPfit

can be used as a standalone program to perform Bayesian statistical analyses. Alterna-

tively, it can be used in library mode to compute observables in any implemented model,

allowing for phenomenological analyses in any statistical framework. The interested reader

can find more details on HEPfit in refs. [1, 2]. The first application of the HEPfit code has

been to update the EW precision fit presented in ref. [5], a detailed explanation of which

can be found in [3] and references therein.

In this paper we use HEPfit to perform a Bayesian statistical analysis of EWPO

and Higgs-boson observables in the SM and beyond. The code for the EWPO and Higgs

observables has been written from scratch. The EWPO results have been successfully

validated against ZFITTER [12].

3 Electroweak precision fit in the Standard Model

In this section we update the fit of EWPO presented in refs. [3, 5], where all relevant

formulæ and a detailed overview of the literature can be found. With respect to ref. [3],

we include the full two-loop fermionic EW corrections to Z partial decay widths computed

in ref. [25], and the four-loop approximate QCD corrections to the W mass computed in

ref. [26–28] (we use the updated semi-analytical formula given in ref. [29]).

Among the input parameters, Gµ and α are fixed (Gµ = 1.1663787× 10−5 GeV−2, and

α = 1/137.035999139 [10]), while αs(MZ), ∆α
(5)
had(MZ), MZ , mt, and mH are taken as float-

ing. We use flat priors for all the SM input parameters, and include the information of their

1Formerly known as SUSYfit, the package has now grown to include more physical observables and

multiple models.
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Ref. Measurement Posterior Prediction 1D Pull nD Pull

αs(MZ) [10] 0.1179± 0.0012 0.1180± 0.0011 0.1185± 0.0028 -0.2

∆α
(5)
had(MZ) [13] 0.02750± 0.00033 0.02747± 0.00025 0.02743± 0.00038 0.04

MZ [GeV] [14] 91.1875± 0.0021 91.1879± 0.0020 91.199± 0.011 -1.0

mt [GeV] [15] 173.34± 0.76 173.61± 0.73 176.6± 2.5 -1.3

mH [GeV] [16] 125.09± 0.24 125.09± 0.24 102.8± 26.3 0.8

MW [GeV] [17] 80.385± 0.015 80.3644± 0.0061 80.3604± 0.0066 1.5

ΓW [GeV] [18] 2.085± 0.042 2.08872± 0.00064 2.08873± 0.00064 -0.2

sin2 θlept
eff (Qhad

FB ) [14] 0.2324± 0.0012 0.231464± 0.000087 0.231435± 0.000090 0.8

P pol
τ =A` [14] 0.1465± 0.0033 0.14748± 0.00068 0.14752± 0.00069 -0.4

ΓZ [GeV] [14] 2.4952± 0.0023 2.49420± 0.00063 2.49405± 0.00068 0.5

σ0
h [nb] [14] 41.540± 0.037 41.4903± 0.0058 41.4912± 0.0062 1.3 0.7

R0
` [14] 20.767± 0.025 20.7485± 0.0070 20.7472± 0.0076 0.8

A0,`
FB [14] 0.0171± 0.0010 0.01631± 0.00015 0.01628± 0.00015 0.8

A` (SLD) [14] 0.1513± 0.0021 0.14748± 0.00068 0.14765± 0.00076 1.7

Ac [14] 0.670± 0.027 0.66810± 0.00030 0.66817± 0.00033 0.02

Ab [14] 0.923± 0.020 0.934650± 0.000058 0.934663± 0.000064 -0.6

A0,c
FB [14] 0.0707± 0.0035 0.07390± 0.00037 0.07399± 0.00042 -0.9 1.5

A0,b
FB [14] 0.0992± 0.0016 0.10338± 0.00048 0.10350± 0.00054 -2.6

R0
c [14] 0.1721± 0.0030 0.172228± 0.000023 0.172229± 0.000023 -0.05

R0
b [14] 0.21629± 0.00066 0.215790± 0.000028 0.215788± 0.000028 0.7

sin2 θeeeff [19] 0.23248± 0.00052

0.231464± 0.000087 0.231435± 0.000090

2.1

sin2 θµµeff [20] 0.2315± 0.0010 0.07

sin2 θeeeff [21] 0.23146± 0.00047 0.1

sin2 θee,µµeff [22] 0.2308± 0.0012 -0.5

sin2 θµµeff [23] 0.2287± 0.0032 -0.8

sin2 θµµeff [24] 0.2314± 0.0011 -0.1

Table 1. Experimental measurement, result, prediction, and pull for the five input parameters

(αs(MZ), ∆α
(5)
had(MZ), MZ , mt, mH), and for the set of EWPO considered in the SM EW fit.

The values in the column Prediction are determined without using the corresponding experimental

information (see text). Pulls are calculated both as individual pulls (1D Pull) and as global pulls

(nD Pull) for sets of correlated observables (see text), and are given in units of standard deviation.

Groups of correlated observables are identified by shades of grey.

experimental measurements in the likelihood. We assume all experimental distributions are

Gaussian. Parameters and results for the various EWPO included in the fit are summarized

in table 1, where we also give the references from which the measurements have been taken.

With respect to refs. [3, 5], we have updated mH [16] and we use the top-quark mass as

given by the most up-to-date world average [15]. The values of MZ [14] and ∆α
(5)
had(MZ) [13]

are unchanged. Concerning αs(MZ), we notice that the most recent PDG average [10]

(αs(MZ) = 0.1179± 0.0012), excluding the result of the EW fit is compatible but sizeably

different from the previous one (αs(MZ) = 0.1185± 0.0006), showing both a lower central

value and a larger uncertainty. This is mainly due to the fact that now the uncertainty
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of the combined lattice result for αs(MZ) is calculated using the same unweighted average

procedure as done for the determination of αs(MZ) in other sub-fields (e.g. hadronic τ de-

cays, DIS, etc.). A χ2 averaging procedure is then applied to combine the values of αs(MZ)

from the different sub-fields. Previously, the PDG world average for αs(MZ) had been ob-

tained using a χ2 averaging procedure also to obtain the value of αs(MZ) from lattice

QCD alone [10]. The new procedure turns out to be more conservative and increases the

uncertainty on the lattice determination of αs(MZ) (which was previously dominating the

average), leading to a larger final uncertainty of the new world average, and to a reduced

fixing power towards the central average value that is now shifted towards lower values in-

duced by measurements in other sub-fields, like the newly added CMS measurement of the

tt̄ cross section at
√
s = 7 TeV [30]. Oddly, the new error of the PDG lattice average is com-

parable to the uncertainty of αs(MZ) by FLAG [31], although the FLAG error is dominated

by an estimate of the uncertainty associated with the truncation of the perturbative series.

In the following, we will use the new PDG average (obtained excluding the EW fit

determination) αs(MZ) = 0.1179 ± 0.0012 as a reference value. However, in view of the

impact on the EW fit of the increased error, we also present the results for the SM fit with

the previous PDG average αs(MZ) = 0.1185± 0.0005 to allow the reader to appreciate the

effect of the new average. Finally, we have included in the fit the latest determinations of

the effective leptonic angle, sin2 θlept
eff , obtained at the Tevatron and at Run I of the LHC.

For each observable, we give the experimental information used as input (Measure-

ment), together with the output of the combined fit (Posterior), and the Prediction of the

same quantity. The latter is obtained from the posterior predictive distribution derived

from a combined analysis of all the other quantities. The compatibility of the constraints

is then tested computing the Pull for each observable as the difference between the cor-

responding prediction and measurement in units of the combined standard deviation (1D

Pull). Care must be taken in defining the pull for experimentally correlated observables.

In this case, we remove from the fit one set of correlated observables at a time and compute

the prediction for the set of observables together with their correlation matrix. Adding

the experimental covariance matrix to the one obtained from the fit, we compute the log

likelihood and the corresponding p-value, which we then convert into a global pull for the

correlated set of observables assuming Gaussian distributions (nD Pull).

In figure 1, we show a comparison of the direct measurement (Measurement in table 1),

the posterior probability distribution (Posterior in table 1), and the indirect prediction or

predictive posterior probability distribution (Prediction in table 1) for the five floating

input parameters. These plots show at a glance the impact of the precision of each input

parameter on the fit, as well as the agreement between the values preferred by the fit and

the direct determinations.

Two of the most important observables in the SM fit are the effective mixing angle,

sin2 θlept
eff , and the W mass, MW . In figure 2 we show the consistency of the predictions

for these observables with the direct experimental measurements, their dependence on

the top mass, and the impact of other measurements, such as mH (varied in the range

10 GeV < mH < 1 TeV) and ΓZ .

– 4 –



J
H
E
P
1
2
(
2
0
1
6
)
1
3
5

Figure 1. Comparison among the direct measurement, the posterior, and the posterior predictive

(or indirect) probability distributions for the input parameters in the SM fit. The latter is obtained

from the fit by assuming a flat prior for the parameter under consideration. Dark (light) regions

correspond to 68% (95%) probability ranges.

Figure 2. Left: comparison of the indirect constraints on sin2 θlept
eff and MW with the direct

experimental measurements. Dark (light) regions correspond to 68% (95%) probability. Right: the

same for mt and MW .
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Prediction αs ∆α
(5)
had MZ mt

MW [GeV] 80.3618± 0.0080 ±0.0008 ±0.0060 ±0.0026 ±0.0046

ΓW [GeV] 2.08849± 0.00079 ±0.00048 ±0.00047 ±0.00021 ±0.00036

ΓZ [GeV] 2.49403± 0.00073 ±0.00059 ±0.00031 ±0.00021 ±0.00017

σ0
h [nb] 41.4910± 0.0062 ±0.0059 ±0.0005 ±0.0020 ±0.0005

sin2 θlept
eff 0.23148± 0.00012 ±0.00000 ±0.00012 ±0.00002 ±0.00002

P pol
τ = A` 0.14731± 0.00093 ±0.00003 ±0.00091 ±0.00012 ±0.00019

Ac 0.66802± 0.00041 ±0.00001 ±0.00040 ±0.00005 ±0.00008

Ab 0.934643± 0.000076 ±0.000003 ±0.000075 ±0.000010 ±0.000005

A0,`
FB 0.01627± 0.00021 ±0.00001 ±0.00020 ±0.00003 ±0.00004

A0,c
FB 0.07381± 0.00052 ±0.00002 ±0.00050 ±0.00007 ±0.00010

A0,b
FB 0.10326± 0.00067 ±0.00002 ±0.00065 ±0.00008 ±0.00013

R0
` 20.7478± 0.0077 ±0.0074 ±0.0020 ±0.0003 ±0.0003

R0
c 0.172222± 0.000026 ±0.000023 ±0.000007 ±0.000001 ±0.000009

R0
b 0.215800± 0.000030 ±0.000013 ±0.000004 ±0.000000 ±0.000026

Table 2. SM predictions computed using the theoretical expressions for the EWPO without the

corresponding experimental constraints, and individual uncertainties associated with each input

parameter, except for mH (see text).

Looking at the pulls in table 1, one can notice that there is an overall agreement

between EWPO and SM predictions. Only A0,b
FB shows some tension between existing

measurements and the result of the SM precision fit. Care must be taken when interpreting

this as a possible hint of NP, for deviations at this level (∼ 2σ) are likely to occur when

fitting this many observables. Having this in mind, this anomaly will be taken into account

in exploring possible parameterizations of NP effects in section 4.

In table 2 we present the full predictions for all EWPO (computed using the theoret-

ical expressions used in the fit without the experimental constraints on the observables)

with the breakdown of the parametric uncertainty induced by 1σ variations of the input

parameters. We do not include in that table the corresponding column for mH , since its

leading contributions to the EWPO are logarithmic, and hence its error does not induce a

significant uncertainty in the predictions. In several cases, the largest contribution to the

parametric errors comes from the uncertainty in ∆α
(5)
had(MZ). This is the dominant source

for sin2 θlept
eff and hence for the different asymmetries. The uncertainties of MW and the

pseudo-observables involving decay widths, on the other hand, receive sizeable contribu-

tions from several or all input parameters. In particular, with the new PDG value, αs(MZ)

becomes the dominant source of uncertainty in all observables involving the hadronic decay

width, with the exception of R0
b , whose error is controlled by that of mt.

For the sake of comparison, we repeat the fit using the old PDG determination of

αs(MZ) and report the results in tables 3 and 4. The effect is particularly visible in all

observables involving the hadronic decay width.
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Ref. Measurement Posterior Prediction 1D Pull nD Pull

αs(MZ) [10] 0.11850± 0.00050 0.11850± 0.00049 0.1186± 0.0028 0.1

∆α
(5)
had(MZ) [13] 0.02750± 0.00033 0.02747± 0.00025 0.02743± 0.00038 -0.2

MZ [GeV] [14] 91.1875± 0.0021 91.1879± 0.0021 91.198± 0.011 -0.9

mt [GeV] [15] 173.34± 0.76 173.61± 0.73 176.7± 2.5 1.1

mH [GeV] [16] 125.09± 0.24 125.09± 0.24 102.4± 26.4 -0.6

MW [GeV] [17] 80.385± 0.015 80.3641± 0.0060 80.3601± 0.0066 -1.7

ΓW [GeV] [18] 2.085± 0.042 2.08893± 0.00051 2.08893± 0.00051 0.0

sin2 θlept
eff (Qhad

FB ) [14] 0.2324± 0.0012 0.231466± 0.000086 0.231437± 0.000090 -0.8

P pol
τ = A` [14] 0.1465± 0.0033 0.14746± 0.00068 0.14751± 0.00069 0.1

ΓZ [GeV] [14] 2.4952± 0.0023 2.49445± 0.00040 2.49439± 0.00041 0.4

σ0
h [nb] [14] 41.540± 0.037 41.4878± 0.0031 41.4880± 0.0032 1.3 0.7

R0
` [14] 20.767± 0.025 20.7516± 0.0034 20.7513± 0.0035 0.6

A0,`
FB [14] 0.0171± 0.0010 0.01631± 0.00015 0.01627± 0.00015 0.9

A` (SLD) [14] 0.1513± 0.0021 0.14746± 0.00068 0.14762± 0.00076 1.7

Ac [14] 0.670± 0.027 0.66809± 0.00030 0.66816± 0.00033 0.03

Ab [14] 0.923± 0.020 0.934648± 0.000058 0.934661± 0.000064 -0.4

A0,c
FB [14] 0.0707± 0.0035 0.07389± 0.00037 0.07398± 0.00042 -0.9 1.5

A0,b
FB [14] 0.0992± 0.0016 0.10337± 0.00048 0.10348± 0.00054 -2.5

R0
c [14] 0.1721± 0.0030 0.172238± 0.000013 0.172239± 0.000013 -0.1

R0
b [14] 0.21629± 0.00066 0.215784± 0.000025 0.215783± 0.000026 0.8

sin2 θeeeff [19] 0.23248± 0.00053

0.231466± 0.000086 0.231437± 0.000090

2.1

sin2 θµµeff [20] 0.2315± 0.0010 0.1

sin2 θeeeff [21] 0.23146± 0.00047 0.2

sin2 θee,µµeff [22] 0.2308± 0.0012 -0.5

sin2 θµµeff [23] 0.2287± 0.0032 -0.8

sin2 θµµeff [24] 0.2314± 0.0011 -0.3

Table 3. Same as table 1 using the old PDG determination of αs(MZ).
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Prediction αs ∆α
(5)
had MZ mt

MW [GeV] 80.3615± 0.0080 ±0.0003 ±0.0060 ±0.0027 ±0.0046

ΓW [GeV] 2.08872± 0.00066 ±0.00020 ±0.00047 ±0.00021 ±0.00036

ΓZ [GeV] 2.49433± 0.00049 ±0.00025 ±0.00031 ±0.00021 ±0.00017

σ0
h [nb] 41.4881± 0.0032 ±0.0024 ±0.0005 ±0.0020 ±0.0005

sin2 θlept
eff 0.23149± 0.00012 ±0.00000 ±0.00012 ±0.00002 ±0.00002

P pol
τ = A` 0.14730± 0.00094 ±0.00001 ±0.00091 ±0.00012 ±0.00019

Ac 0.66802± 0.00041 ±0.00001 ±0.00040 ±0.00005 ±0.00008

Ab 0.934642± 0.000076 ±0.000001 ±0.000075 ±0.000010 ±0.000005

A0,`
FB 0.01627± 0.00021 ±0.00000 ±0.00020 ±0.00003 ±0.00004

A0,c
FB 0.07380± 0.00052 ±0.00001 ±0.00050 ±0.00007 ±0.00010

A0,b
FB 0.10325± 0.00067 ±0.00001 ±0.00065 ±0.00008 ±0.00013

R0
` 20.7515± 0.0037 ±0.0031 ±0.0020 ±0.0003 ±0.0003

R0
c 0.172234± 0.000015 ±0.000010 ±0.000007 ±0.000001 ±0.000009

R0
b 0.215794± 0.000027 ±0.000006 ±0.000004 ±0.000000 ±0.000026

Table 4. Same as table 2 using the old PDG determination of αs(MZ).

4 Electroweak precision fit beyond the Standard Model

We now generalize the SM fit considering different sets of parameters which account for

NP contributions in several extensions of the SM.

4.1 Non-standard oblique corrections

In this section, we use the fit of EWPO to constrain the oblique parameters S, T , U

introduced in ref. [32, 33] and the ε1,2,3,b parameters introduced in refs. [34–36].

The S, T , U parameters account for NP effects in the vacuum-polarization amplitudes

of the EW gauge bosons and modify all EWPO considered here. The explicit dependence of

the EWPO on S, T , and U can be found in appendix A of ref. [3] where it was also noticed

how the EWPO considered here depend only on the following three specific combinations

of the S, T , and U parameters (where sW = sin θW and cW = cos θW ),

A = S − 2c2
W T −

(c2
W − s2

W )U

2s2
W

,

B = S − 4c2
W s

2
W T , (4.1)

C = −10(3− 8s2
W )S + (63− 126s2

W − 40s4
W )T .

Therefore the extracted values of S, T , and U are correlated. For this reason, we give in

tables 5 and 6 the results of the fit together with the correlation matrix. We also remind the

reader that A, the only parameter depending on U , describes NP contributions to MW and

ΓW , the parameter C describes NP contributions to ΓZ , and NP contributions to all other

– 8 –
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Result Correlation Matrix

S 0.09± 0.10 1.00

T 0.10± 0.12 0.86 1.00

U 0.01± 0.09 −0.54 −0.81 1.00

Table 5. Results of the fit for the oblique parameters S, T , and U .

Result Correlation Matrix

S 0.10± 0.08 1.00

T 0.12± 0.07 0.86 1.00

Table 6. Results of the fit for the oblique parameters S and T , taking U = 0.

Result Correlation Matrix

δε1 0.0007± 0.0010 1.00

δε2 −0.0002± 0.0008 0.82 1.00

δε3 0.0007± 0.0009 0.87 0.56 1.00

δεb 0.0004± 0.0013 −0.34 −0.32 −0.24 1.00

Table 7. Results of the fit for the δεi parameters (i = 1, 2, 3, b).

EWPO are proportional to B. As illustrated in figure 3, S, T , and U are compatible with

zero, implying the absence of sizeable oblique corrections beyond those predicted by the SM.

In general, in models of new physics with linearly realized electroweak symmetry breaking

U is largely suppressed relative to S and T . For this reason we also specify our fit to the

case in which U = 0 and give the corresponding results in table 6, and in the bottom plots of

figure 3. The results of table 9 later in this section are are also given in the U = 0 scenario.

Next we consider the ε1,2,3,b parameters introduced in refs. [34–36]. Unlike the S, T ,

and U parameters discussed above, the εi parameters involve SM contributions associated

with the top quark and the Higgs boson, SM flavour non-universal vertex corrections, and

further vacuum-polarization corrections [37]. Since the SM is now fully known and there is

no need to disentangle top-quark and Higgs-boson contributions anymore, we separate the

genuine NP contribution from the SM one by introducing δεi = εi − εi,SM for i = 1, 2, 3, b,

where εi are the original parameters and εi,SM contain the SM contribution only. The

expressions of the EWPO in terms of δεi can be found in ref. [3, 5].

The results of our fit for the δεi parameters are summarized in table 7. Some two-

dimensional probability distributions are plotted in figure 4. All results are consistent with

the SM. Note that, as mentioned above, the δεi parameters include oblique corrections
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Figure 3. Two-dimensional probability distributions for the oblique parameters S and T (upper-

left panel), and T and U (upper-right panel). From darker to lighter the different regions correspond

respectively to 68%, 95%, and 99% probability. In the lower panel we show the two-dimensional

distributions for S and T fixing U = 0, together with the individual constraints from MW , the

asymmetry parameters sin2 θlept
eff , P pol

τ , Af , and A0,f
FB with f = `, c, b, and ΓZ . In this last plot the

dark (light) region corresponds to 68% (95%) probability.

beyond those connected to the S, T , and U parameters. More precisely,

δε1 = αT −W + 2X
sin θW
cos θW

− Y sin2 θW
cos2 θW

, (4.2)

δε2 = − α

4 sin2 θW
U −W + 2X

sin θW
cos θW

− V, (4.3)

δε3 =
α

4 sin2 θW
S −W +

X

sin θW cos θW
− Y, (4.4)
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Figure 4. Two-dimensional probability distributions for δε1 and δε3 (left), and δε1 and δεb (right)

varying all δεi parameters. From darker to lighter the different regions correspond to 68%, 95%,

and 99% probability.

where V, W, X, Y are part of the extended set of oblique parameters defined in [37].

With the results in table 7 and the above equations, one can therefore obtain approximate

constraints on NP scenarios with vanishing contributions to S, T , and/or U but non-zero

values of some of the other parameters (V , W , X, and Y ).

4.2 Modified Zbb̄ couplings

Motivated by the apparent discrepancy between the SM prediction for A0,b
FB and the corre-

sponding experimental result, we also consider here the case where dominant NP contribu-

tions appear in the Zbb̄ couplings. We parameterize NP contributions to the Zbb̄ couplings

as follows:

gbi = gbi,SM + δgbi for i = L, R or V, A , (4.5)

and we present results for both V , A, and L, R couplings. Details on the definitions of

these couplings can be found in ref. [3]. The EW precision fit finds four solutions for these

couplings, but two of them are disfavoured by the off-peak measurement of the forward-

backward asymmetry in e+e− → bb̄ [38]. In table 8 and figure 5, we present only the solution

closer to the SM. The observed deviations from zero of the parameters δgbi reflect the

deviation from the SM of the measured value of A0,b
FB. While the agreement between the SM

and R0
b results in a preferred value of δgbL consistent with the SM at the 2σ level, a sizeable

contribution to δgbR is required to explain the A0,b
FB, and the resulting 95% probability region

in the δgbL-δgbR plane is only marginally compatible with the SM predictions.

4.3 Modified Zbb̄ couplings and oblique corrections

In several extensions of the SM, oblique corrections and modifications of the Zbb̄ vertex oc-

cur simultaneously, possibly affecting only a specific chirality of the vertex (see for example
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Result Correlation Matrix

δgbR 0.016± 0.006 1.00

δgbL 0.002± 0.001 0.90 1.00

δgbV 0.018± 0.007 1.00

δgbA −0.013± 0.005 −0.98 1.00

Table 8. Results of the fit for the shifts in the Zbb̄ couplings.

Figure 5. Two-dimensional probability distributions for δgbR, δgbL (left), and δgbV , δgbA (right). In

the left plot, the dark (light) regions correspond to 68% (95%) probability regions.

refs. [39, 40]). We therefore consider the following cases: oblique contributions with i) δgbL
and δgbR, ii) δgbL only and iii) δgbR only. The corresponding results are presented in table 9.

5 Constraints on Higgs-boson couplings

In addition to the standard set of EWPO, we have considered all most recent measurements

of Higgs-boson signal strengths, i.e. the ratio between the measured effective cross section

and the corresponding SM prediction (µ ≡ σ/σSM), taken from refs. [41, 42] for H → γγ,

refs. [43, 44] for H → τ+τ−, refs. [45–47] for H → ZZ, refs. [48–50] for H →W+W−, and

refs. [51–54] as well as the Tevatron papers [55, 56] for H → bb̄. The Higgs-boson signal

strength µ of a specific Higgs-search analysis can be calculated as

µ =
∑
i

wiri with ri =
(σ ×Br)i

(σSM ×BrSM)i
and wi =

εi(σSM ×BrSM)i∑
j εj(σSM ×BrSM)j

, (5.1)

where εi are the experimental efficiencies, and the sums run over all channels which can

contribute to the final state of the specific analysis. The SM Higgs-boson production cross
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Result Correlation Matrix

S 0.04± 0.09 1.00

T 0.08± 0.07 0.86 1.00

δgbL 0.003± 0.001 −0.24 −0.15 1.00

δgbR 0.017± 0.008 −0.29 −0.22 0.91 1.00

δgbR = 0

S 0.10± 0.09 1.00

T 0.12± 0.07 0.85 1.00

δgbL −0.0001± 0.0006 0.07 0.13 1.00

δgbL = 0

S 0.08± 0.09 1.00

T 0.10± 0.07 0.86 1.00

δgbR 0.004± 0.003 −0.19 −0.21 1.00

Table 9. Results of the combined fit of the oblique parameters S and T , and of the modified Zbb̄

couplings, in the case when both δgbR and δgbL are non zero, and in the case in which either δgbR = 0

or δgbL = 0.

sections (including QCD and, when available, EW corrections) are taken from ref. [57] and

the SM Higgs-boson decay rates are taken from ref. [58].

In this section, we specialize our discussion to a minimal NP scenario consisting of an

effective theory with only one Higgs boson below the cutoff scale Λ. Following ref. [59],

we assume that custodial symmetry is approximately realized, and that the NP scale is

sufficiently large compared to the energies we are testing, so we can truncate the effective

Lagrangian at the 2-derivative level. We also assume that gauge fields couple to the NP

sector via weak gauging, in which case the coefficients of operators involving field strengths

are loop suppressed and we can neglect them. Finally, we assume that fermions are only

coupled to the NP via proto-Yukawa interactions, and we take all corrections from NP

to be flavor diagonal and universal. This scenario can be described by a general effective

Lagrangian of the form (see e.g. [59–62]):

Leff =
v2

4
tr
(
DµΣ†DµΣ

)(
1 + 2κV

H

v
+ · · ·

)
−mif̄

i
L

(
1 + 2κf

H

v
+ · · ·

)
f iR + · · · , (5.2)

where v is the vacuum expectation value of the Higgs field, and the longitudinal com-

ponents of the W and Z bosons, χa(x), are described by the two-by-two matrix Σ(x) =

exp(iτaχa(x)/v), with τa being the Pauli matrices. The deviations in the Higgs-boson

couplings to weak gauge-bosons, HV V (V = Z,W±), and to fermions, Hff̄ , are parame-

terized by the scale factors κV and κf respectively, defined as the ratio between the total

Higgs-boson couplings, including NP effects, and the corresponding couplings in the SM

(such that κV = κf = 1 in the SM). We only consider the modification of couplings already

existing in the SM and, for loop-induced couplings (Hgg, Hγγ, and HZγ), we do not
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Result 95% Prob.

κV 1.02± 0.02 [0.98, 1.07]

Table 10. Results of the fit for the scale factor κV at 68% and 95% probabilities.

assume NP contributions in loops.2 This class of models is not fully general but it is more

directly constrained by the experimental measurements of Higgs-boson couplings. It is also

the scenario assumed in both ATLAS and CMS studies of Higgs-boson couplings and allows

us to directly compare to their results, giving us the possibility to test both the HEPfit

framework and our correct use of the experimental data for Higgs-boson signal-strengths.

For a detailed description of the relations between scale factors and the Higgs-boson signal

strengths we refer the reader to ref. [57].

In this context we first perform a fit of the EWPO with the only addition of the

scale factor κV . The only corrections to EWPO are then given by the following 1-loop

contributions to the oblique S and T parameters3 [63]:

S =
1

12π
(1− κ2

V ) ln

(
Λ2

m2
H

)
, T = − 3

16πc2
W

(1− κ2
V ) ln

(
Λ2

m2
H

)
, (5.3)

where we set the cutoff of the effective Lagrangian to the scale of violation of perturbative

unitarity in WW scattering, i.e. Λ = 4πv/
√
|1− κ2

V |. We present the results of the fit for

κV in table 10 and figure 6.

The lower bound on κV at 95% corresponds to a cutoff scale Λ = 13 TeV if κV is

assumed to be smaller than 1, Λ = 8.7 TeV if κV is assumed to be larger than 1, and

Λ = 8.8 TeV marginalizing over the sign of 1 − κV . The fit disfavours values of κV < 1

(10% probability), expected for example in composite Higgs models. This problem can be

alleviated by adding extra contributions to the oblique parameters [64–67].

The two-dimensional probability distributions for κV and κf obtained from the fit to

Higgs-boson signal strengths are summarized in table 11 and shown in figure 7. The left

panel of of figure 7 shows the 95% probability contours obtained from a fit including only

each individual channel (e.g. H → γγ), as well as the result from the global fit. Since both

production cross sections and decay rates depend on the modified couplings via products

of the form κiκj , theoretical predictions are symmetric under the simultaneous exchange

{κV , κf} ↔ {−κV , −κf}. We therefore restrict the parameter space to positive κV only.

2We notice that, in the presence of NP, the relative experimental efficiencies, εi, will in general be different

from their values in the SM. In particular, the appearance of new tensor structures in the vertices could

modify the kinematic distributions of the final-state particles, thereby changing the efficiencies. However,

since in this work we only consider rescalings of the SM Higgs-boson couplings, we will use SM efficiencies

εSM
i (and hence weight factors wSM

i ) throughout.
3Even if we assume that custodial symmetry is preserved by the new interactions, there is still a non-

zero contribution to the T parameter. Note that custodial symmetry breaking is actually parameterized

by ∆ρ = αT , which, in this scenario, is proportional to the square of U(1)Y gauge coupling, g′. Indeed

g′ is one of the parameters that breaks custodial symmetry in the SM, and the new effective interactions

only modify the way custodial symmetry is broken. In the limit of g′ → 0 there is no contribution to T ,

consistently with the assumption of custodial symmetry in the new physics.
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Figure 6. Probability distribution for κV derived from precision EW measurements. The dark

and light regions correspond respectively to 68% and 95% probabilities.

Result 95% Prob. Correlation Matrix

κV 1.01± 0.04 [0.93, 1.10] 1.00

κf 1.03± 0.10 [0.83, 1.23] 0.31 1.00

Table 11. SM-like solution in the fit of κV and κf to the Higgs-boson signal strengths.

Result 95% Prob. Correlation Matrix

κV 1.02± 0.02 [0.99, 1.06] 1.00

κf 1.03± 0.10 [0.85, 1.23] 0.14 1.00

Table 12. Same as table 11 but considering both the Higgs-boson signal strengths and the EWPO.

Note also that, when performing the global fit to all channels, the region with negative κf
is not populated even at 99% probability, so that we only show positive values of κf in the

right-hand-side plot of figure 7. The effect of performing a combined fit of both Higgs-boson

signal strengths and EWPO is summarized in table 12 and illustrated in figure 8 (note that

in tables 11 and 12 we only show the results corresponding to the SM-like solution, i.e.

κV,f > 0). It is interesting to notice that the constraint on κV from EWPO is stronger

than the one obtained from the Higgs-boson signal strengths alone.

We then lift the assumption of custodial symmetry and rescale the HZZ and HW+W−

couplings independently, introducing two parameters κZ and κW , while keeping a unique

rescaling factor for all fermionic couplings, κf . We obtain the results summarized in table 13

and the corresponding probability distributions shown in figure 9, which are consistent

with custodial symmetry. We notice that theoretical predictions are symmetric under
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Figure 7. Left: constraints from individual channels at 95% probability. Right: two-dimensional

probability distributions for κV and κf at 68%, 95%, and 99% (darker to lighter), obtained from

the fit to the Higgs-boson signal strengths.

Figure 8. Two-dimensional 68% (dark) and 95% (light) probability contours for κV and κf (from

darker to lighter), obtained from the fit to the Higgs-boson signal strengths and the EWPO.

the exchanges {κW , κf} ↔ {−κW , −κf} and/or κZ ↔ −κZ , where κZ can flip the

sign independent of κW , since the interference between the W and Z contributions to the

vector-boson fusion cross section is negligible. Hence we have considered only the parameter

space where both κW and κZ are positive. In this case, we ignore EWPO in the fit, since

setting κW 6= κZ generates power divergences in the oblique corrections, indicating that the

detailed information on the UV theory is necessary for calculating the oblique corrections.

– 16 –



J
H
E
P
1
2
(
2
0
1
6
)
1
3
5

Result 95% Prob. Correlation Matrix

κW 1.00± 0.05 [0.89, 1.10] 1.00

κZ 1.07± 0.11 [0.85, 1.27] −0.17 1.00

κf 1.01± 0.11 [0.80, 1.22] 0.41 −0.14 1.00

Table 13. SM-like solution in the fit of κW , κZ , and κf to the Higgs-boson signal strengths.

Figure 9. Two-dimensional probability distributions for κW and κf (left), for κZ and κf (center),

and for κW and κZ (right) at 68%, 95%, and 99% (darker to lighter), obtained from the fit to

the Higgs-boson signal strengths. Note that a small region with κf < 0 is still allowed at 99%

probability.

We also consider the case in which we only lift fermion universality and introduce

different rescaling factors for charged leptons (κ`), up-type quarks (κu), and down-type

quarks (κd), while keeping a unique parameter κV for both HV V couplings. In this case,

from the Higgs-boson signal strengths we obtain the constraints on the scale factors pre-

sented in table 14 and in the top plots of figure 10. By adding the EWPO to the fit, the

constraints become stronger, as shown in table 15 and in the bottom plots of figure 10.

In this case, the Higgs-boson signal strengths are approximately symmetric under the ex-

changes κ` ↔ −κ`, κd ↔ −κd and/or {κV , κu} ↔ {−κV , −κu}. These approximate

symmetries follow from the small effect of the interference between tau and/or bottom-

quark loops with top-quark/W loops in the Higgs-boson decay into two photons, as well

as the relatively small interference between bottom- and top-quark loops in gluon-fusion,

for |κV,u,d,`| ∼ 1. Moreover, we find that negative values of κu are disfavoured in the fit.

Hence, in figure 10 we consider only the parameter space where all κ’s are positive. Again,

the results on table 13 correspond to the SM-like solution, i.e. κV,u,d,` > 0.

Finally, we consider the case in which both the assumptions of custodial symmetry

and fermion universality are lifted, and perform a five-parameter fit of κW , κZ , κ`, κu, and

κd reported in table 16. Following the previous discussion, we restrict all the parameters

but κu (which has an important interference with κW in H → γγ) to be positive.

The results presented in this section agree with the recent LHC combination of Higgs

couplings in ref. [68], taking into account that the coupling to down quarks in our analysis

also includes the Tevatron measurements. See also refs. [69–76] for other recent Higgs

couplings analyses.
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Result 95% Prob. Correlation Matrix

κV 0.97± 0.08 [0.80, 1.13] 1.00

κ` 1.01± 0.14 [0.73, 1.30] 0.54 1.00

κu 0.97± 0.13 [0.73, 1.25] 0.42 0.41 1.00

κd 0.91± 0.21 [0.48, 1.35] 0.81 0.61 0.77 1.00

Table 14. SM-like solution in the fit of κV , κ`, κu, and κd to the Higgs-boson signal strengths.

Figure 10. Two-dimensional probability distributions for κV and κ`, for κV and κu, and for κV
and κd, at 68%, 95%, and 99% (darker to lighter), obtained from the fit to the Higgs-boson signal

strengths only (top plots) or the combination of Higgs-boson signal strengths and EWPO (bottom

plots).

Result 95% Prob. Correlation Matrix

κV 1.02± 0.02 [0.98, 1.06] 1.00

κ` 1.07± 0.12 [0.82, 1.32] 0.15 1.00

κu 1.01± 0.12 [0.79, 1.27] 0.10 0.24 1.00

κd 1.01± 0.13 [0.76, 1.30] 0.31 0.38 0.78 1.00

Table 15. Same as table 14, but considering both the Higgs-boson signal strengths and the EWPO.

– 18 –



J
H
E
P
1
2
(
2
0
1
6
)
1
3
5

Result 95% Prob. Correlation Matrix

κW 0.94± 0.10 [0.73, 1.13] 1.00

κZ 1.03± 0.13 [0.77, 1.28] 0.34 1.00

κ` 1.02± 0.15 [0.73, 1.33] 0.55 0.22 1.00

κu 0.95± 0.13 [−0.96,−0.72] ∪ [0.68, 1.28] 0.49 0.04 0.44 1.00

κd 0.91± 0.22 [0.46, 1.36] 0.81 0.36 0.62 0.78 1.00

Table 16. Results of the simultaneous fit of κW , κZ , κ`, κu, and κd, considering only Higgs-boson

signal strengths.

6 Expected sensitivities at future lepton colliders

Future lepton colliders represent an opportunity to reach the ultimate precision both on

EWPO and Higgs-boson couplings. In this work, we assess the impact of this improve-

ment in precision by considering the following proposed e+e− colliders: the Future Cir-

cular Collider (FCCee) project at CERN [77], the International Linear Collider (ILC) in

Japan [78, 79], and the Circular Electron Positron Collider (CepC) in China [80, 81]. For

completeness in the comparison we also consider the improvements in the measurements

of EWPO and Higgs-boson signal strengths expected at the High Luminosity LHC (HL-

LHC) [82–85]. In this section we describe the different physics scenarios we will consider,

and estimate the improvements they offer in terms of sensitivity to the different NP models

described in sections 4 and 5, comparing the results with those obtained using current data.

See refs. [9, 86–89] for earlier analyses of this kind.

Across its years of operation, the FCCee design includes running at the Z pole, and

at the WW , HZ, and tt̄ production thresholds, with the possibility of a dedicated run

at center-of-mass energy
√
s & 350 GeV to explore the top-quark couplings. Compared

to other options for future e+e− colliders, the FCCee also offers the largest integrated

luminosity and allows to assess an optimistic best-case scenario. The expected performance

of the FCCee machine is documented in refs. [77, 90], and summarized in table 17. The

values of integrated luminosity presented there are a useful baseline for our study. Further

improvements in performance are under consideration, including an increase in center-of-

mass energy. Within the context of our analyses, these improvements would further reduce

the statistical uncertainties. On the other hand, since the precision on the observables

considered in our study will be mainly dominated by the systematic uncertainties, our

conclusions would still hold to a large extent.

The ILC project consists of a linear e+e− collider optimized for Higgs-boson and top-

quark precision measurements, and would initially run at energies
√
s = 250, 350, and

500 GeV [78]. The current proposed scenarios would involve approximately 20 years of

operation, including a luminosity upgrade. There is also the possibility of extending the

energy reach of the machine up to 1 TeV, and we include this in our list of physics scenar-

ios. The energy and luminosity settings of the Higgs-boson runs that we study in this work

are given in table 18 [91]. Improved measurements of the properties of the Z lineshape
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FCCee Z pole WW HZ tt̄ Above tt̄

threshold threshold threshold threshold
√
s [GeV] 90 160 240 350 > 350

L [ab−1/year] 88 15 3.5 1.0 1.0

Years of operation 0.3 / 2.5 1 3 0.5 3

Events 1012/1013 108 2× 106 2.1× 105 7.5× 104

Table 17. Expected performances of the FCCee machine, taken from ref. [90].

ILC Phase 1 Phase 2

(Luminosity upgrade)
√
s [GeV] 250 500 1000 250 500 100∫
L dt [ab−1] 0.25 0.5 1 1.15 1.6 2.5∫
dt (107 s) 3 3 3 3 3 3

Table 18. Expected performances of the ILC machine, taken from ref. [91].

at
√
s ≈ 91 GeV, on the other hand, would require a machine upgrade from the Technical

Design Report to achieve an optimal luminosity performance [78]. We therefore do not

consider this scenario here. As far as EWPO are concerned, we only include the improve-

ments in the Higgs-boson, top-quark, and W masses, where the latter is obtained from the

measurements of e+e− →W+W− above threshold with a target overall uncertainty at the

level of approximately 3 MeV.

Finally, the CepC project is designed as a Higgs-boson and/or Z factory [80, 81].

Running at
√
s ≈ 240 GeV the CepC would produce about 106 Higgs-boson particles,

allowing measurements of its couplings at the percent level or better. During the
√
s ≈

91 GeV run, on the other hand, up to 1011 Z bosons could be produced, improving the

sensitivity to the Z couplings to the 10−4 level. With this statistics, the overall uncertainty

for most observables is expected to be dominated by systematic effects. For the run at the

Z-pole energy, we will assume a total integrated luminosity larger than 150 fb−1, necessary

to achieve the expected precision for all the different EWPO in table 4.1 of ref. [80, 81].

As in the case of the ILC, an improved measurement of the W mass is possible at center-

of-mass energies above the W+W− production threshold. For the
√
s = 250 GeV run a

direct MW measurement is expected with a similar uncertainty of approximately 3 MeV.

The expected experimental uncertainties on the different EWPO at the future colliders

introduced above are summarized in table 19 [77, 79–81, 92]. When no input is provided

for FCCee [77, 92], we adopted conservative numbers, depending on the experimental

observable. The corresponding information for the expected accuracies in Higgs-boson

signal strengths are summarized in table 20. In both tables 19 and 20, we have also

included projections for the HL-LHC [82–85].
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On the theory side, while the theoretical uncertainties associated to unknown higher-

order corrections to EWPO in perturbation theory are subdominant compared with current

experimental errors, this is no longer the case when we take into account the projected fu-

ture experimental precision summarized in table 19. The present theoretical uncertainties

for the most relevant EWPO are shown in table 21, where we compare them to the cor-

responding current and future experimental errors. It is clear that we need to improve

SM calculations in order for theoretical uncertainties in the predictions of EWPO not to

become a limiting factor at future experiments. The future projected theoretical errors in

table 21 assume that the complete O(αα2
s) corrections, the fermionic O(α2α2

s) and O(α3)

corrections, and the leading 4-loop corrections entering via the ρ parameter in the differ-

ent observables will become available [87, 93, 94]. There are other sources of theoretical

uncertainties not considered in the previous discussion. First, as explained in section 3,

the parametric uncertainties on the theoretical predictions for the different EWPO re-

ceive important contributions from the current errors in the experimental measurements

of ∆α
(5)
had(MZ) and αs(MZ) (see table 2). Apart from the experimental improvements

summarized in table 19, we also assume in all future scenarios that a measurement of

∆α
(5)
had is possible with a precision of ±5 × 10−5. Such an improvement is expected to

be within the reach of ongoing and future experiments measuring the e+e− → hadrons

cross section. This requires measuring the ratio R of the hadronic to the muonic e+e−

cross sections with a relative uncertainty of 1% [95]. Likewise, for the strong coupling con-

stant at the Z pole, we use future lattice QCD projections, which estimate an uncertainty

δαs(MZ) = ±0.0002 [96].4 Another observable which suffers of additional theoretical un-

certainties is the top-quark mass. At e+e− colliders the top-quark mass can be extracted

by reconstructing the tt̄ production cross section in a scan around the production thresh-

old. From the shape of the differential cross section one can derive the top-quark mass in

different theoretically well-defined schemes, e.g. the potential-subtracted (PS) top-quark

mass [98], or the so-called 1S top-quark mass [99]. In both schemes the top-quark mass

can be extracted with a theoretical uncertainty . 50 MeV [100, 101], to be added to the

projected experimental uncertainties shown in table 19. The relation between the PS or

1S top-quark mass and the MS top-quark mass has been calculated to 4 loops in pertur-

bative QCD [102], and introduces an additional uncertainty of approximately ∼ 20 MeV

(∼ 10 MeV) in the translation from the PS (1S) mass. In our fits we will assume a combined

uncertainty in the top-quark mass of 50 MeV for both the ILC and FCCee-tt̄ scenarios.

In what follows we estimate the sensitivity to the different new physics scenarios at the

above-mentioned future experiments. To do so, we assume that the future experimental

measurements will be fully compatible with the SM predictions. In particular, we use the

following reference values of the SM input parameters (see column Posterior in table 1),

mH = 125.09 GeV, mt = 173.61 GeV, MZ = 91.1879 GeV,

αs(MZ) = 0.1180 and ∆α
(5)
had(MZ) = 0.02747,

(6.1)

and take as errors the ones given in tables 19 and 20. In our analysis we assume that the

theoretical calculations necessary to match the experimental precision will be available, and

4Based on [97].
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Current HL-LHC ILC FCCee CepC

Data (Run)

αs(MZ) 0.1179±0.0012

∆α
(5)
had(MZ) 0.02750±0.00033

MZ [GeV] 91.1875±0.0021 ±0.0001 (FCCee-Z) ±0.0005

mt [GeV] 173.34±0.76 ±0.6 ±0.017 ±0.014 (FCCee-tt̄)

mH [GeV] 125.09±0.24 ±0.05 ±0.015 ±0.007 (FCCee-HZ) ±0.0059

MW [GeV] 80.385±0.015 ±0.011 ±0.0024 ±0.001 (FCCee-WW ) ±0.003

ΓW [GeV] 2.085±0.042 ±0.005 (FCCee-WW )

ΓZ [GeV] 2.4952±0.0023 ±0.0001 (FCCee-Z) ±0.0005

σ0
h [nb] 41.540±0.037 ±0.025 (FCCee-Z)

sin2 θlept
eff 0.2324±0.0012 ±0.0001 (FCCee-Z) ±0.000023

P pol
τ 0.1465±0.0033 ±0.0002 (FCCee-Z)

A` 0.1513±0.0021 ±0.000021 (FCCee-Z [pol])

Ac 0.670±0.027 ±0.01 (FCCee-Z [pol])

Ab 0.923±0.020 ±0.007 (FCCee-Z [pol])

A0,`
FB 0.0171±0.0010 ±0.0001 (FCCee-Z) ±0.0010

A0,c
FB 0.0707±0.0035 ±0.0003 (FCCee-Z)

A0,b
FB 0.0992±0.0016 ±0.0001 (FCCee-Z) ±0.00014

R0
` 20.767±0.025 ±0.001 (FCCee-Z) ±0.007

R0
c 0.1721±0.0030 ±0.0003 (FCCee-Z)

R0
b 0.21629±0.00066 ±0.00006 (FCCee-Z) ±0.00018

Table 19. Expected experimental sensitivities to the different EWPO at future colliders.

Apart from the improvements quoted in this table, we also assume that future measurements of

∆α
(5)
had(MZ) and αS(MZ), whose errors dominate in the parametric uncertainties of the theoretical

predictions, are possible with an error of approximately ±5× 10−5 and ±0.0002, respectively. This

assumption is particularly relevant for the FCCee and CepC fits, where the experimental precision

for the bulk of electroweak precision measurements will be largely improved.

Current HL-LHC ILC FCCee CepC

Phase 1 Phase 2

250 500 1000 250 500 1000

H → bb̄ & 23% 5-36% 1.2% 1.8-28% 0.3-6% 0.56% 0.37-16% 0.3-3.8% 0.2-0.6% 0.28%

H → cc̄ 8.3% 6.2-13% 3.1% 3.9% 3.5-7.2% 2% 1.2% 2.2%

H → gg 7% 4.1-11% 2.3% 3.3% 2.3-6% 1.4% 1.4% 1.6%

H →WW & 15% 4-11% 6.4% 2.4-9.2% 1.6% 3% 1.3-5.1% 1% 0.9% 1.5%

H → ττ & 25% 5-15% 4.2% 5.4-9% 3.1% 2% 3-5% 2% 0.7% 1.2%

H → ZZ & 24% 4-17% 19% 8.2-25% 4.1% 8.8% 4.6-14% 2.6% 3.1% 4.3%

H → γγ & 20% 4-28% 38% 20-38% 7% 16% 13-19% 5.4% 3.0% 9%

H → Zγ 10-27%

H → µµ 14-23% 31% 20% 13% 17%

Table 20. Future expected sensitivity to Higgs-boson observables at various future colliders con-

sidered in this study.
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Current Future Current ILC FCC-ee CepC

Observable Th. Error Th. Error Exp. Error

MW [MeV] 4 1 15 3− 4 1 3

sin2 θlept
eff [10−5] 4.5 1.5 16 0.6 2.3

ΓZ [MeV] 0.5 0.2 2.3 0.1 0.5

R0
b [10−5] 15 10 66 6 17

Table 21. Projected theoretical uncertainty for the different EWPO and comparison with the

corresponding experimental sensitivity at various future colliders considered in this study.

in our fits we use the future projected uncertainties in table 21. To illustrate the impact

of theoretical uncertainties, we also consider another scenario where, as in the current

EWPO fit, theoretical uncertainties are subdominant and are neglected in the analysis.

In this scenario we also assume that the only uncertainty affecting the top-quark mass

parameter is the one given in table 19.

With these settings we have performed fits to the main NP scenarios studied in sec-

tions 4 and 5, and compared the results with those obtained in a fit assuming the errors

of current data.5 The results of the fits to EWPO only are summarized in table 22, while

those from the fits to EWPO plus Higgs-boson observables are reported in table 23. In

these tables we illustrate the sensitivity to each NP parameter introduced in sections 4

and 5 by showing the 1-σ uncertainty on the corresponding parameter from the fit. A

comparison of the projected sensitivity on EW parameters and Higgs coupling constants

for various future colliders is shown in figure 11.

From the results in table 22 we observe how the FCCee, with dedicated runs aimed at

improving the measurements of the different EWPO, offers the best performance in terms

of constraints on NP. We show the results obtained with the Z-pole runs, with and without

polarization, and also show the effect of adding the improved measurement of the W mass

(WW column) as well as the sensitivity reached after the completion of the whole FCCee

program (tt̄ column). Several things are apparent from this table. The first one is that,

for the NP models considered here, the use of polarized beams at the FCCee would have

only a minor impact on the constraining power of the machine. Looking into the results

for the different models we observe how, as expected, the major improvement in sensitivity

comes from the more precise properties of the Z lineshape. After this first run, one can

still achieve notable improvements in the sensitivity to the U parameter (δε2) from the

measurement of MW (notice that this is essentially the only EWPO that depends on U).

Likewise, the sensitivity to κV can be reduced by a factor of ∼ 2 with the measurement

of mt. This can be understood from eq. (5.3), the lower-right panel of figure 3, and the

positive correlation between MW and mt.

In general, the FCCee program would improve current constraints by about an order of

magnitude. The CepC also offers good prospects to obtain more stringent NP constraints

5For consistency in the comparison, in this fit we also set the central values to the SM predictions

summarized in eq. (6.1).
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from EWPO. However, given the information currently available about the machine per-

formance, the CepC bounds would only be a factor of approximately 4-5 better than the

bounds derived from current EWPO. Notice also that the current physics program lacks a

dedicated run to improve the measurement of the top-quark mass, which plays a significant

role in some cases as explained above. In fact, at the ILC, even without a dedicated run

at the Z pole, the precise determinations of MW and mt are enough to reach the same

sensitivity to κV as at the CepC.

In table 22 we have also illustrated the effect of the theoretical uncertainties in the

results of electroweak fits with the information from future e+e− colliders. In this table,

the results in the columns with grey background have been computed using the projected

theoretical uncertainties, while such uncertainties have been neglected in the columns with

white background. As one expects from looking at table 21, the effect of the future the-

oretical uncertainties on the CepC results are mild, but they are clearly non-negligible

compared to the FCCee precision. Indeed, in the case of the FCCee, theoretical uncertain-

ties can reduce the sensitivity to NP in some cases by up to a factor of 2 compared to cases

in which the theoretical errors are subdominant.

Finally, in table 23, we show the level of sensitivity to modified Higgs-boson couplings

achievable at the various future colliders considered in this study, in the different scenarios

explained in section 5. In this case, let us emphasize however that, even before any future

lepton collider, the HL-LHC will provide much better determinations of the Higgs-boson

properties compared to what has been so far obtained with current data. Using the fermion-

universal custodial-symmetric scenario as a reference, i.e. κW = κZ ≡ κV and κu = κd =

κ` ≡ κf , the HL-LHC would be twice as sensitive to deviations from κV = 1, and up to

6-7 times as sensitive to deviations from κf = 1. These results would be further improved

at lepton colliders by a factor of 9 (5) for κV (κf ). The much larger gain in sensitivity

for κf than for κV can be understood by noticing that the measurement of Higg-boson

couplings to vector bosons will be systematic dominated within the current LHC program,

while the measurement of Higgs-boson couplings to fermions will need the full HL-LHC

luminosity for the systematic uncertainty to be comparable to the statistical one. Focusing

on the results obtained at the different lepton colliders we observe how, assuming custodial

symmetry, the FCCee would offer a somewhat better performance than CepC in terms of

measuring the Higgs-boson couplings to both vector bosons and fermions (in part because

of the more precise determination of κV via EWPO). At the ILC the results indicate that,

again assuming custodial symmetry, the initial phase would not be enough to match the

FCCee or CepC precision. Matching the CepC would be possible after a luminosity upgrade

even in the absence of a dedicated run at
√
s = 1 TeV. Including such a run in the physics

program would make the ILC performances comparable to the FCCee physics reach for

this scenario. For the scenario with κZ 6= κW we observe that, while the CepC Higgs-boson

run will only explore center-of-mass energies
√
s ≈ 240 GeV, where Higgs-boson production

occurs mostly via ZH associated production, running at the FCCee with
√
s = 350 GeV

or at the ILC with
√
s = 500 GeV or

√
s = 1000 GeV gives also access to W -boson fusion

production (as well as tt̄H associated production in the ILC case). This results in a FCCee

(ILC) determination of κW approximately 3 (10) times more precise than at the CepC.
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Figure 11. Comparison of expected sensitivities to oblique parameters (left) and modified Higgs

couplings (right) from future collider experiments. Different shades of the same colour correspond

to results including or neglecting the future theoretical uncertainties.

7 Conclusions

With the discovery of a SM-like Higgs boson during Run I of the LHC, the possibility

of using EW and Higgs-boson precision measurements as a portal to NP has become a

reality. Through the steady improvement of both theoretical and experimental accuracies,

electroweak and Higgs-boson precision physics could lead us a long way towards determining

the UV completion of the SM and the more fundamental origin of the spontaneously-broken

realization of the electroweak symmetry.

Indirect searches for NP are indeed as important as ever in the physics program of

Run II of the LHC: they will probe physics at inaccessible high scales and provide clues

on the nature of new particles. In this context, it is very valuable, if not essential, to

provide a complete and consistent framework in which all available experimental data, from

precision measurements of electroweak observables and Higgs-boson couplings to flavour-

physics results, can be analyzed to constrain the theory in a statistically significant way.

The study presented in this paper illustrates how this can be achieved in the context

of the HEPfit package, and provides results for a global fit of EWPO and Higgs-boson

signal-strength measurements obtained from LHC Run I data collected at 7 and 8 TeV.

At the moment, the constraints derived for Higgs-boson couplings to SM gauge bosons

and fermions are overall compatible with SM predictions within the current accuracy.

From the results of section 5 we see that the combined study of EWPO and Higgs-boson

observables can provide more stringent constraints on Higgs-boson couplings. We can

foresee that the higher statistics expected in Run II of the LHC will offer the possibility to

isolate potential NP effects from global fits of SM precision observables. This will become

even more crucial at the HL-LHC and at a future generation of e+e− colliders (FCCee,

ILC, CepC) where very high experimental precision for EWPO and Higgs-boson couplings

will be achievable. We have dedicated a section of this paper to a study of the sensitivity

of different future experimental facilities to NP effects, and have determined at what point

more accurate theoretical predictions will be needed (see also ref. [103]).
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Finally, we notice that deviations from the SM predictions of EWPO and Higgs-boson

couplings constitute indirect evidence of new physics that still need to be interpreted in

terms of specific physical degrees of freedom. A more refined theoretical approach, which

entails a generalization of the SM Lagrangian to systematically include all effective inter-

actions generated by the presence of NP at the UV scale, will then be necessary in order

to explore the nature of such deviations. In a following paper [8] we will explore the pos-

sibility of using an effective field theory approach to build a model-independent study of

NP effects in Higgs-boson couplings and use the HEPfit framework to combine it with a

fit of all available electroweak precision data.
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