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Abstract. The double phase Liquid Argon (LAr) Time Projection Chamber (TPC) is the
state-of-art technology for neutrino detection thanks to its superb 3 Dimensional (3D) tracking
and calorimetry performance. Based on this technology, the Giant Liquid Argon Charge
Imaging ExpeRiment (GLACIER) is proposed to be the far detector for the Long Baseline
Neutrino Oscillation (LBNO) experiment aiming at studying neutrinos 2300 km away from their
production point. We report recent R&D results on the charge readout system for GLACIER
and the plans to build the GLACIER demonstrators at CERN.

1. Introduction
With the last mixing angle θ13 measured [1, 2, 3], neutrino physics enters a new era. Thanks to
the large θ13 value, determining the ordering of the 3 neutrino mass eigenstates (mass hierarchy)
and measuring the charge parity violation (CPV) phase δCP of the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix become possible. The proposed LBNO [4] experiment will perform these
measurements by studying the νµ → νe and ν̄µ → ν̄e oscillations. The LBNO experiment fully
exploits the dependence of the oscillation probability as a function of L/E. The energy spectrum
of the neutrino beam and the 2300 km baseline are chosen so that the νµ → νe oscillation covers
its first and second maxima. With its first 5 years running with GLACIER 20 kton as the far
detector, LBNO could determine the mass hierarchy to 5σ confidence level (C.L.) over the full
δCP range and provide evidence of CPV at 3σ C.L. [5]. With 10 years running with GLACIER
20 and 50 kton as the far detectors and a high power PS beam, LBNO could determine δCP
at 5σ C.L. over 54% of the true δCP value [5]. Besides studying accelerator neutrinos, LBNO
also has the unprecedented potential for detection of atmospherical and solar neutrino as well
as proton decay searches.

The LAr TPC has the unique advantage of being both a 3D tracking detector and a
calorimeter. The electron and muon created from νe and νµ interaction with argon nucleus
have distinct behaviours when travelling in the LAr and are easily identified. Thanks to its
fine granularity, the LAr TPC has a good separation power for electron from π0 which is
one of the largest backgrounds for νe appearance signal. The sub-mm transverse diffusion for
drifting electrons over several meters enables building giant LAr TPCs without charge imaging
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distortion. The 128 nm scintillation light provides a very precise event starting time for 3D
track reconstruction.

Unlike traditional single phase LAr TPC using wire planes to readout the drifting electrons,
GLACIER uses the micro-patten gas detector technology [6] to provide charge amplification in
the gas phase. The amplified charge is then collected on a novel 2 dimensional (view) anode.
Unlike the bi-polar signals from the induction views of the single phase TPC, the two views of
GLACIER both have the same unipolar signals which greatly facilitates the event reconstruction.
Thanks to its adjustable gain, GLACIER lowers the detection threshold and covers a broad
energy range from MeV to multi-GeV. This feature enables GLACIER to be also sensitive to
solar and super-nova neutrinos. Despite the many appealing advantages, the technical challenges
towards GLACIER need intensive R&D and prototyping efforts.

2. R&D results of the charge readout system
The charge readout system of GLACIER 20 and 50 kton detector is in a modularised
configuration [7]: each modular is a 4 × 4 m2 charge readout plane (CRP) consisting of 64
50× 50 cm2 anodes and Large Electron Multiplier (LEM) panels respectively and one 4× 4 m2

extraction grid. 4 anodes are bridged together to form a readout length of 2 m, and each
LEM is functioning independently. Issues associate with the increased detector size appear and
need to be addressed: 1. the increased inter-strip capacitance will bring significant noise to
the front-end electronics; 2. the increased probability of badly drilled holes of the LEM will
limit the maximal gain and might prevent the LEM from stable operation due to more frequent
discharges; 3. the worsen matching between the extraction grid and the anode strips will degrade
the charge collection uniformity. All these issues closely relate to the charge imaging performance
of GLACIER thus need to be solved on smaller prototypes.

The R&D for the GLACIER charge readout system was carried out with the so called “3
liter” setup [8]. It is a double phase LAr LEM TPC with a readout area of 10×10 cm2 and a drift
length of 21 cm. It’s a small setup and could be easily operated with a fast turn-around thus
very useful to test new ideas. After being evacuated for several days, the chamber is filled with
filtered liquid argon and then exposed to cosmic muons for several days data taking. The high
quality muon samples with a known energy lose per unit length (dE/dx) are used to calibrate
the chamber in terms of effective gain, charge sharing and long term stability. The recorded
data was reconstructed using the software package QScan [9] which does hit finding, clustering,
2D and 3D tracking, etc.

2.1. The low capacitance anode
As reported in [8], we successfully developed the 2D readout anode consisting of two sets of
orthogonal copper strips separated by a layer of Kapton (polyamide) with a typical thickness of
50 µm. Though well functioning at a readout length of ∼10 cm, this technology is not suitable
to scale up to meter level as required by the GLACIER. The difficulties come from: 1. due to
the small gap thus a big capacitance (∼600 pF/m [10]) between the X and Y strips, the noise
level of the pre-amplifier will increase dramatically; 2. since the X strips lay above the Y strips,
the anode can not be produced from a standard PCB production procedure and etching the
Kapton will bring extra complexity.

Figure 1 shows the novel anode layout and the schematic as the solution. The red pads and
tracks denote the readout in one direction and the unfilled ones for the other direction. For both
views, the pads and tracks are printed on the same layer and the connection is done through
vias and tracks on the other layer. Due to the fully symmetric layout between the two views, the
charge sharing asymmetry is kept within 1% as seen from Fig. 2 right. Thanks to the additional
pads in between the readout pads and tracks, we are able to keep a uniform charge collection
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between neighbouring strips within the same view. A direct result is the similar measured
∆Q/∆s for tracks with different azimuth angles as shown in Fig. 2 left and middle.

The capacitance of this novel anode is measured to be ∼150 pF/m, which is a factor of 4
reduction compared with the Kapton type anode. Thanks to its integration of two views on
the same layer, the anode could be produced by PCB industry using standard copper etching
technique. As reported in [10], we also tried other geometry layout and the one showed in this
paper gave the best results in terms of capacitance and resolution.

Figure 1. The novel 2D anode (left) and the schematic (right). The red pads and tracks denote
one view and the white for the other view.

Figure 2. Performance of the novel anode. Left: the measured ∆Q0/∆s0 vs. track azimuth
angle; middle: distributions of ∆Q0/∆s0 for three azimuth angle ranges; right: the distribution
of the difference of charge collection between two views.

2.2. The LEM
The LEM or Thick GEM (THGEM) is the key apparatus of the double phase LAr TPC. Its
function is to amplify the electrons produced in the LAr medium in the gas phase before being
collected on the anode. Holes at a constant pitch are mechanically drilled through a copper-
cladded FR4, and rims are later etched around the holes to prevent discharges occuring between
the top and bottom electrodes. A high electrical potential over 3 kV is applied across the two
electrodes resulting in an electric field high enough to trigger the Townsend avalanche for the
entering electrons. The holes absorb the UV photons produced in the avalanche process and
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thus act as the mechanical quencher to prevent the photon feedback phenomenon. This property
makes the LEM suitable to operate in ultra pure argon gas in the absence of quenching gas.

The design parameters of the LEM include the FR4 thickness, the hole diameter, the
arrangement of the holes, and the size of the rim. These parameters affect both the gain at
a certain potential difference and the maximal achievable gain. The effective gain is defined as
the sum of ∆Q/∆s of both views divided by that of the muon. The effective gain takes account of
the transparencies of the extraction grid-LEM, LEM itself, LEM-anode and the gain of the LEM.
Thus, it could be described by Geff (E, p, T ) = T × ex·α(p,T,E) with first term the transparency,
second term the gain of the LEM. x denotes the amplification length, α is the first Townsend

coefficient with the form of α(p, T,E) = Ap
T e

−Bp
E , where A and B are parameters depending on

the gas. Fits to the gain curves as shown in Fig. 3 give trend both in the transparency and
amplification length consistent with expectation from electrostatic simulations [11]. In terms
of maximal achievable gain, the one with 1mm thick FR4, 500 µm hole in diameter, hexagonal
hole layout and 40 µm rim gives the best result of a gain over 160.

As described in [10], we observed the behaviour of the initial decreasing and final stabilisation
of the gain which is concluded to be the charging-up of the FR4 dielectric surface. In this study,
we found both the charging-up time and the ratio between the final and initial gain depend on
the geometry parameters. For a detailed discussion, please refer to [11]. Though charged up,
the LEMs could still be operated at a stable gain over 20, which fully meets the requirement for
GLACIER. One notable observation is that the LEMs have very few or no discharges over an
operation of several days. This “discharge-free” behaviour promises us to step forward to the
50× 50 cm2 LEM as proposed for the GLACIER.

Figure 3. Performance of the LEMs with different geometry parameters. Left: effective gain
vs. LEM electric field; right: the stabilisations of the effective gain over time.

2.3. The extraction grid
In the initial stage of the “3 liter” setup, there were two extraction grids placed in both liquid
and gas phase [8]. Though being able to keep the charge image distortion minimised, it requires
more high voltage channels and additional alignment between the two grids. As reported in [10],
we successfully extracted electrons and kept the charge image undistorted by means of a single
extraction grid placed in the liquid phase. By precisely aligning the stainless steel wires with
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respect to the anode strips, we are able to maintain a good gain uniformity to the level of ±10%
as seen from Fig. 4.

Figure 4. ∆Q/∆S normalised to 100 fQ/cm as a function of X and Y for view0 (left) and
view1 (right).

3. Plan for the GLACIER demonstrators
With good performance achieved by the small prototypes, it’s of fundamental importance to
demonstrate that we could build and operate larger LAr LEM TPCs before going to the
GLACIER scale. Thus, two demonstrators are proposed to demonstrate the feasibilities of
the LAr LEM TPC technology in the multi-ton and multi-hundred-ton scales respectively.

3.1. The 3×1×1 m3 demonstrator
The 3× 1× 1 m3 demonstrator has a fiducial volume of 3× 1× 1 m3 corresponding to a 4.2 ton
fiducial mass. The charge readout system covers an area of 3× 1 m2 and the drift length is 1 m.
The TPC is hanging from the so called “top cap” and contained inside a membrane tank with
a dimension of 7.3× 4.9× 4.7 m3 as shown in Fig.5. The total liquid argon mass will be 20 ton.
The 3× 1× 1 m3 demonstrator is being built and will be tested with cosmic muons at building
182 of CERN beginning of 2016. As a purely technical demonstrator, the 3× 1× 1 m3 will give
vital feedback on the following aspects:

(i) Purity in non-evacuated membrane tank.
As required by GLACIER to drift the electrons over 20 m, the oxygen equivalent impurity
should be kept within 100 ppt level. This is challenging since the membrane tank could
not be evacuated since it does not sustain vacuum inside. Alternatively, by means of argon
gas “piston-purge” we should be able to remove the air and achieve the required purity
following continuously purifying both the gas and liquid. The 3× 1× 1 m3 will be used to
test this principle.

(ii) The large area charge readout system.
The 3 × 1 × 1 m3 TPC will be implemented with 12 50 × 50 cm2 anode and LEM panels
respectively. It will give information on the gain, charge sharing uniformity, signal to noise
ratio and so on for such a large area readout system.

(iii) Accessible cold front-end electronics.
The 3 × 1 × 1 m3 TPC will be implemented with 1920 readout channels. These front-end
cards will be placed near the argon vapour phase in order to reduce the noise. Furthermore,
these cards could be accessed and replaced without polluting the argon in the tank.
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(iii) Cryogenic and purification system.
For the membrane tank, the rated pressure is very small. Thus the cryogenic system needs
to be designed to safely compensate the boiling-off gas without reaching the rating pressure.
A scalable boiling-off compensation principle and sub-immersed liquid argon recirculation
system will be tested.

Figure 5. Left: 3D drawings of the 3 × 1 × 1 m3 TPC, the top cap and the membrane tank;
right: the completed outer structure to host the membrane inner tank and the insulation panels.

3.2. The 6×6×6 m3 demonstrator
In the mean time of building and testing the 3× 1× 1 m3 prototype, the 6× 6× 6 m3 LAr LEM
TPC will be built and tested in a beam at the CERN north area. It has a LAr fiducial mass
around 300 ton and a total mass around 700 ton. As a technical demonstrator, it will further
prove the feasibilities as listed for the 3× 1× 1 m3. Moreover, with a drift length of 6 m, it’ll be
able to test the image distortion over such a long drift together with the high voltage generation
and feedthrough. With a typical drift field of 1 kV/cm, it requires a negative potential of 600 kV
at the cathode. How to generate and feed in such a high voltage without discharging against the
membrane tank is not clear and thus needs further R&D. This is the way towards GLACIER,
since the cathode voltage will be as high as 2 mega-volts for a drift length of 20 m.

Besides the technical goals, the 6 × 6 × 6 m3 TPC programme also has rich physics topics.
It’ll be the first double phase LAr TPC in a test beam. Its fiducial mass is big enough to fully
contain the hadronic shower from the multi-GeV pion interactions. This allows us to precisely
calibrate the energy resolution of liquid argon in an energy range of 0-10 GeV as proposed by
LBNO. With a large data set collected, we’ll be able to develop and improve the existing particle
tracking and identification algorithms. Due to the similarity in the event topology between a
neutrino and pion interaction, the data will be used to develop the automatic neutrino event
reconstruction algorithm.

The activities of the 6× 6× 6 m3 go in parallel with the 3× 1× 1 m3. A detailed technical
design report was drafted [12], and it is approved by CERN with an official experiment name of
WA105 [13]. Within an affordable timescale, we are able to build and operate this device before
the long shutdown of the LHC in 2018.
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Figure 6. The 6× 6× 6 m3 LAr LEM TPC to be put in a test beam at the CERN north area.

4. Conclusions
The LAr LEM TPC is the state-of-art technology for neutrino detection thanks to its superb
tracking and calorimetry performance. The LBNO experiment is competitive in its physics
potential to discover the neutrino mass hierarchy and measure the δCP within an affordable
timescale. Good R&D on the charge readout system have been performed in the sense of
reducing the anode capacitance, optimising the LEM geometry for a higher gain, simplify the
extraction grid and improve the gain uniformity. Having achieved the desired performance, we’re
moving forward for the 3× 1× 1 m3 and 6× 6× 6 m3 demonstrators to prove the feasibility of
the LAr LEM TPC technology to extend to the multi-ton and multi-hundred-ton scales. These
demonstrators will bring vital input for the design and operation of the GLACIER 20 and 50
kton for LBNO.
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