
C. Leggett 2016-08-05
1

Managing Asynchronous Data in
ATLAS's Concurrent Framework

John Baines, Tomasz Bold, Paolo Calafiura, Jack Cranshaw,
Andrea Dotti, Steven Farrell, Charles Leggett, David Malon,

Graeme Stewart, Scott Snyder, Peter Van Gemmeren, Vakhtang
Tsulaia, Benjamin Wynne

for the ATLAS Collaboration

ICHEP 2016

C. Leggett 2016-08-05
2

Asynchronous Data and Events
► Data that can change during the course of a job, but less

frequently than once per Event (beam collision)
• period for which any piece of data is valid is referred to as an

Interval Of Validity (IOV)

► Classify into 3 broad types:
• Conditions

• eg high voltages, calibrations, etc
• Detector Geometry and Alignments

• eg: position changes
• Asynchronous Callbacks (Incidents)

• functions that need to be executed at non-predetermined intervals
• eg: respond to a file open/close

► These are often inter-related
• a condition change can trigger a callback

time

Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7

C. Leggett 2016-08-05
3

Asynchronous Data and Concurrency
► Serial processing:

• one Event at a time
• all framework elements process data from the same IOV

• clients are blind to the IOV, and cache data locally
• Services handle updating the data given the current Event time/ID. Only

one copy (the current one) of any object needs to maintained

► Concurrent processing:
• multiple Events processed simultaneously
• different elements of the framework may have to process data

from different IOVs
• Services must now handle multiple versions of the same data, and deliver

the appropriate one to each client, depending on which Event the client is
processing

► AthenaMT allows cloning of Algorithms to enhance sub-event
parallelism. Association between Algorithm instance and an
Event is never guaranteed.

C. Leggett 2016-08-05
4

Further Complications for Concurrency
► Two types of Asynchronous Data

• Raw – read directly from a database
• Calibrated – after reading from database, the data is processed

in some way by a function

► In Athena, this processing is managed by a Service (IOVSvc),
and performed by special functional objects (usually AlgTools)
• at the start of every Event, before Algorithms are processed, IOVs

are checked and any necessary updates are triggered by the
execution of these IOVSvc callback functions

• shared instance of each AlgTool
• the AlgTools tend to cache data

► The current callback AlgTools are NOT thread-safe, and even if
they were made thread-safe, could NOT run with multiple
concurrent Events from different IOVs due to the local caches
• IOV infrastructure needs to be modified for MT

C. Leggett 2016-08-05
5

Requirements for AthenaMT
► AthenaMT: ATLAS's next generation, multi-threaded

reconstruction/simulation framework
• multiple simultaneous Events
• sub-Event concurrency
• multi-threaded

• each Algorithm processes its Event in its own thread

► Try to minimize changes to User code
• there's lots and lots of it!
• avoid forcing Users to implement fully thread-safe code by

handling most thread-safety issues at the framework / Services
level

► Leverage MT design to minimize memory footprint
• ATLAS reconstruction is very large
• ratio of physical memory / CPU is constantly decreasing

► All access to Event data via DataHandles, which also declare
data dependency relationship to the framework

C. Leggett 2016-08-05
6

Possible Solutions: Scheduling Barrier
► Event Scheduling Barrier

• The framework only concurrently processes Events from within
one IOV at a time. When a boundary is reached, it finishes
processing all Events from the first IOV before starting to
schedule Events from the next IOV

► BENEFIT:
• completely transparent to Users
• no code changes for Services
• could make callbacks (inefficiently) thread safe with a big mutex

► PROBLEMS:
• loss of concurrency / throughput if boundaries are frequent –

processor is often idle
• requires Events to be processed in order, or the ability to cache

and shuffle incoming Events to avoid bouncing back and forth

C. Leggett 2016-08-05
7

Possible Solution: Multiple Stores
► Multiple Conditions Data Stores

• Data is stored in EventStore-like structures, with one Store per
concurrent Event

• Clients access data via smart DataHandles, which point to the
correct Store

• Services update the data in the appropriate Store, depending on
the associated Event

► BENEFIT:
• only small changes needed to Client code (use of DataHandles),

mostly hidden behind a layer of indirection

► PROBLEMS:
• large memory overhead due to duplicate stores
• duplication of re-calculations

C. Leggett 2016-08-05
8

Solution: Multi-Cache Condition Store
► Single multi-cache Store for Conditions data

► Each Store element is a container that holds multiple
instances of the Conditons data objects (ConditionContainer),
one per IOV

► Clients access the data via smart ConditionHandles, that point
to the appropriate entry in the ConditionContainer objects for a
given Event
• ConditionHandles are constructed with an EventContext object
• from the Client's point of view, these objects look like any other

object in the EventStore (keyed with a unique identifier)
• Client Algorithms declare a data dependency on the conditions data object

► Updating functions are scheduled by the framework, that load
new elements from the DB, and perform any necessary
computations
• IOVSvc callback functions are migrated into ConditionAlgorithms
• these Algorithms are only scheduled when they enter a new IOV

C. Leggett 2016-08-05
9

Alg_A
 In:
 Out: a1, a2

ConditionHandles

a1

a2

x1

CondDbSvc

z1

Alg_B
 In: a1
 Out:

Alg_C
 In: a2, x1
 Out:

CondAlg_X
 In:
 Out: x1

WriteCondHandle
[IOV2]

ReadCondHandle
(t in IOV2)

ConditionStore

y1
y1[IOV1]
y1[IOV2]
y1[IOV3]
y1[IOV4]

x1
x1[IOV1]
x1[IOV2]
x1[IOV3]

CondSvc
regHandle(x1)

EventStores

a1

a2

a3

C. Leggett 2016-08-05
10

Memory Management
► While this makes optimal use of memory (no duplication of

objects), the store will continue to grow with time

► Depending on memory constraints, may become necessary to
perform garbage collection
• prune ConditionContainers of old, unused entries

• only keep N copies
• keep reference count of which entries are in use, purge old entries

C. Leggett 2016-08-05
11

Detector Geometry Alignment

► GeoModel tree is not
exposed to Detector
Description clients

► Readout geometry layer
consists of subsystem
specific Detector Elements

► Each Detector Element has
a pointer to Full Physical
Volume

Detector
Element

DD CC

PVPV

PVPVTFTF ATFATF FPVFPV

TFTF PVPV

Client

PVPV

FPVFPV

TFTF

ATFATF

Physical Volume
(basic GeoModel
building block)

Full Physical
Volume

Transform
(fixed after construction)

Alignable Transform
(modifiable at will)

DD Delta TransformCC Cached Position

Serial

C. Leggett 2016-08-05
12

Geometry Alignments in AthenaMT

► The Alignment Object is a regular ConditionContainer, so it should be handled
as any other Conditions Object in AthenaMT
• Created by a ConditionAlgorithm (replacement of current callback function)

• Accessed from the FPV and ATF via Conditions Handle

► By making Detector Elements aware of the Alignment Objects we can make the
transition transparent to Detector Description clients

ConditionStore

DD

CC

PVPV

PVPVTFTF ATFATF FPVFPV

TFTF PVPV

Detector
Element

Client

DD

CC

DD

CC

DD

CC Alignment
ObjectConcurrent

C. Leggett 2016-08-05
13

Absolutely disastrous
 in an environment with

 multiple concurrent
 events, and multiple

 instances of each
 Algorithm

Asynchronous Incidents
► IncidentSvc: manages asynchronous callbacks for clients

which register as observers to specific events
• eg: BeginEvent, EndInputFile, MetaDataStop
• very flexible: callbacks can be triggered at any time
• Clients can be anything: Algorithms, Services, Tools

BeginEvent
observersAlg_1

Alg_2

Alg_3

Alg_4

IncidentSvc

Alg_1

Alg_3

Svc_A

Alg_5

Tool_X

fire BeginEvent

C. Leggett 2016-08-05
14

IncidentSvc in AthenaMT
► Study: IncidentSvc is overused / abused

• mostly fired outside of the event loop
• Incidents can be re-classified as discrete state changes

► Incidents become schedulable, managed by framework
• Incident handlers / observers become discrete Algorithms, that

interact with Services which are aware of the EventContext

EventLoopMgr

IP_Alg

Alg_1

Alg_3 Alg_4Alg_2

Alg_5

IncidentSvc

Svc_ASvc_A Svc_B

schedules incidents

BeginEvent, etc

gets incidents

calls handlers

query Svc w/ EventContext

schedules

C. Leggett 2016-08-05
15

Conclusions
► Managing Asynchronous data in a concurrent environment will

require a paradigm shift
• no solution is fully transparent or plug-and-play, unless we choose

to sacrifice concurrency and performance
• dealing with multiple threads as well as multiple concurrent events

is doubly challenging

► Have been able to minimize impact on User code via strategic
modifications at the framework and Service level

► New versions of all three aspects of Asynchronous Data and
Event infrastructure have been implemented, and migration of
client code is ongoing, in conjunction with universal migration to
DataHandles
• so far, migration has been relatively straight-forward, and

anticipate finishing by end of 2016

