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Asynchronous Data and Events
► Data that can change during the course of a job, but less 

frequently than once per Event (beam collision)
• period for which any piece of data is valid is referred to as an 

Interval Of Validity (IOV)

► Classify into 3 broad types:
• Conditions

• eg high voltages, calibrations, etc
• Detector Geometry and Alignments

• eg: position changes
• Asynchronous Callbacks (Incidents)

• functions that need to be executed at non-predetermined intervals
• eg: respond to a file open/close 

► These are often inter-related
• a condition change can trigger a callback

time

Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7
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Asynchronous Data and Concurrency
► Serial processing: 

• one Event at a time
• all framework elements process data from the same IOV

• clients are blind to the IOV, and cache data locally
• Services handle updating the data given the current Event time/ID. Only 

one copy (the current one) of any object needs to maintained

► Concurrent processing:
• multiple Events processed simultaneously
• different elements of the framework may have to process data 

from different IOVs
• Services must now handle multiple versions of the same data, and deliver 

the appropriate one to each client, depending on which Event the client is 
processing

► AthenaMT allows cloning of Algorithms to enhance sub-event 
parallelism. Association between Algorithm instance and an 
Event is never guaranteed.
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Further Complications for Concurrency
► Two types of Asynchronous Data

• Raw – read directly from a database
• Calibrated – after reading from database, the data is processed 

in some way by a function

► In Athena, this processing is managed by a Service (IOVSvc), 
and performed by special functional objects (usually AlgTools)
• at the start of every Event, before Algorithms are processed, IOVs 

are checked and any necessary updates are triggered by the 
execution of these IOVSvc callback functions

• shared instance of each AlgTool
• the AlgTools tend to cache data

► The current callback AlgTools are NOT thread-safe, and even if 
they were made thread-safe, could NOT run with multiple 
concurrent Events from different IOVs due to the local caches
• IOV infrastructure needs to be modified for MT
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Requirements for AthenaMT
► AthenaMT: ATLAS's next generation, multi-threaded 

reconstruction/simulation framework
• multiple simultaneous Events
• sub-Event concurrency
• multi-threaded

• each Algorithm processes its Event in its own thread

► Try to minimize changes to User code
• there's lots and lots of it!
• avoid forcing Users to implement fully thread-safe code by 

handling most thread-safety issues at the framework / Services 
level

► Leverage MT design to minimize memory footprint
• ATLAS reconstruction is very large
• ratio of physical memory / CPU is constantly decreasing

► All access to Event data via DataHandles, which also declare 
data dependency relationship to the framework
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Possible Solutions: Scheduling Barrier
► Event Scheduling Barrier

• The framework only concurrently processes Events from within 
one IOV at a time. When a boundary is reached, it finishes 
processing all Events from the first IOV before starting to 
schedule Events from the next IOV

► BENEFIT:
• completely transparent to Users
• no code changes for Services
• could make callbacks (inefficiently) thread safe with a big mutex

► PROBLEMS: 
• loss of concurrency / throughput if boundaries are frequent – 

processor is often idle
• requires Events to be processed in order, or the ability to cache 

and shuffle incoming Events to avoid bouncing back and forth
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Possible Solution: Multiple Stores
► Multiple Conditions Data Stores

• Data is stored in EventStore-like structures, with one Store per 
concurrent Event

• Clients access data via smart DataHandles, which point to the 
correct Store

• Services update the data in the appropriate Store, depending on 
the associated Event

► BENEFIT:
• only small changes needed to Client code (use of DataHandles), 

mostly hidden behind a layer of indirection

► PROBLEMS:
• large memory overhead due to duplicate stores
• duplication of re-calculations
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Solution: Multi-Cache Condition Store
► Single multi-cache Store for Conditions data

► Each Store element is a container that holds multiple 
instances of the Conditons data objects (ConditionContainer), 
one per IOV

► Clients access the data via smart ConditionHandles, that point 
to the appropriate entry in the ConditionContainer objects for a 
given Event
• ConditionHandles are constructed with an EventContext object 
• from the Client's point of view, these objects look like any other 

object in the EventStore (keyed with a unique identifier)
• Client Algorithms declare a data dependency on the conditions data object

► Updating functions are scheduled by the framework, that load 
new elements from the DB, and perform any necessary 
computations
• IOVSvc callback functions are migrated into ConditionAlgorithms
• these Algorithms are only scheduled when they enter a new IOV 
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Memory Management
► While this makes optimal use of memory (no duplication of 

objects), the store will continue to grow with time

► Depending on memory constraints, may become necessary to 
perform garbage collection
• prune ConditionContainers of old, unused entries

• only keep N copies
• keep reference count of which entries are in use, purge old entries



C. Leggett  2016-08-05
11

Detector Geometry Alignment

► GeoModel tree is not 
exposed to Detector 
Description clients

► Readout geometry layer 
consists of subsystem 
specific Detector Elements

► Each Detector Element has 
a pointer to Full Physical 
Volume
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Geometry Alignments in AthenaMT

► The Alignment Object is a regular ConditionContainer, so it should be handled 
as any other Conditions Object in AthenaMT
• Created by a ConditionAlgorithm (replacement of current callback function)

• Accessed from the FPV and ATF via Conditions Handle

► By making Detector Elements aware of the Alignment Objects we can make the 
transition transparent to Detector Description clients
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Absolutely disastrous
 in an environment with

 multiple concurrent
 events, and multiple

 instances of each
 Algorithm

Asynchronous Incidents
► IncidentSvc: manages asynchronous callbacks for clients 

which register as observers to specific events
• eg: BeginEvent, EndInputFile, MetaDataStop
• very flexible: callbacks can be triggered at any time
• Clients can be anything: Algorithms, Services, Tools

BeginEvent
observersAlg_1

Alg_2

Alg_3

Alg_4

IncidentSvc

Alg_1

Alg_3

Svc_A

Alg_5

Tool_X

fire BeginEvent
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IncidentSvc in AthenaMT
► Study: IncidentSvc is overused / abused

• mostly fired outside of the event loop
• Incidents can be re-classified as discrete state changes

► Incidents become schedulable, managed by framework
• Incident handlers / observers become discrete Algorithms, that 

interact with Services which are aware of the EventContext

EventLoopMgr

IP_Alg

Alg_1

Alg_3 Alg_4Alg_2

Alg_5

IncidentSvc

Svc_ASvc_A Svc_B

schedules incidents

BeginEvent, etc
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query Svc w/ EventContext

schedules
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Conclusions
► Managing Asynchronous data in a concurrent environment will 

require a paradigm shift
• no solution is fully transparent or plug-and-play, unless we choose 

to sacrifice concurrency and performance
• dealing with multiple threads as well as multiple concurrent events 

is doubly challenging
 

► Have been able to minimize impact on User code via strategic 
modifications at the framework and Service level

► New versions of all three aspects of Asynchronous Data and 
Event infrastructure have been implemented, and migration of 
client code is ongoing, in conjunction with universal migration to 
DataHandles
• so far, migration has been relatively straight-forward, and 

anticipate finishing by end of 2016


