
C. Leggett 2016-08-05
1

Managing Asynchronous Data in
ATLAS's Concurrent Framework

John Baines, Tomasz Bold, Paolo Calafiura, Jack Cranshaw,
Andrea Dotti, Steven Farrell, Charles Leggett, David Malon,

Graeme Stewart, Scott Snyder, Peter Van Gemmeren, Vakhtang
Tsulaia, Benjamin Wynne

for the ATLAS Collaboration

ICHEP 2016

C. Leggett 2016-08-05
2

Asynchronous Data and Events
► Data that can change during the course of a job, but less frequently than once

per Event (beam collision)
• period for which any piece of data is valid is referred to as an Interval Of Validity

(IOV)

► Classify into 3 broad types:

• Conditions
• eg high voltages, calibrations, etc

• Detector Geometry and Alignments
• eg position changes

• Asynchronous Callbacks (Incidents)
• functions that need to be executed at non-predetermined intervals
• eg respond to a file open/close

► These are often inter-related
• a condition change can trigger an Incident callback

time

Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7

C. Leggett 2016-08-05
3

Serial Processing with Conditions

Alg_A ConditionStore

c1

c2

c3Alg_B
c1

Alg_C
c2

IOVSvc

c1

c2

CF1

CF2

c1

BeginEvent

Event 1

► All framework elements process
data from the same IOV

► Algorithms are blind to the IOV,
retrieve data from
ConditionStore

► At the start of every Event,
IOVSvc checks IOVs, and
triggers any necessary updates
• handled by the Callback Functions
• Callback Functions are shared

instances

► Only one copy of any
Conditions object is maintained
in the Store

C. Leggett 2016-08-05
4

Serial Processing with Conditions

Alg_A ConditionStore

c1

c2

c3Alg_B
c1

Alg_C
c2

IOVSvc

c1

c2

CF1

CF2

c1

BeginEvent

Event 1

Event 2

Event 3

Event 4

C. Leggett 2016-08-05
5

ATLAS's Concurrent Framework
► AthenaMT: ATLAS's next generation, multi-threaded reconstruction/simulation

framework
• Leverage multi-threaded design to minimize memory footprint

• ATLAS reconstruction is very large
• ratio of physical memory / CPU is constantly decreasing

• multiple simultaneous Events
• sub-Event concurrency
• each Algorithm processes its Event in its own thread

► Requirement: Try to minimize changes to User code
• there's lots and lots of it!
• avoid forcing Users to implement fully thread-safe code by handling most thread-safety

issues at the framework / Services level

► Requirement: All access to Event data via DataHandles, which also declare data
dependency relationship to the framework

C. Leggett 2016-08-05
6

Concurrent Processing with Conditions

Alg_A

Alg_B
c1

Alg_C
c2

Event 1

IOVSvc

c1

c2

CF1

CF2

c1

BeginEvent

ConditionStore

c1

c2

c3

Alg_A

Alg_B
c1

Alg_C
c2

Event 2

c1

BeginEvent

IOVSvc, and Callback
Functions are shared

between all Events

C. Leggett 2016-08-05
7

Concurrent Processing with Conditions

Alg_A

Alg_B
c1

Alg_C
c2

Event 1

IOVSvc

c1

c2

CF1

CF2

c1

BeginEvent

ConditionStore

c1

c2

c3

Alg_A

Alg_B
c1

Alg_C
c2

Event 2

c1

BeginEvent

IOVSvc, and Callback
Functions are shared

between all Events
► The current callback functions

are NOTNOT thread-safe

► Even if they were made thread-
safe, could NOTNOT run with
multiple concurrent Events
from different IOVs due to the
single ConditionStore

► IOV infrastructure needs to be
significantlysignificantly modified for MT

► The current callback functions
are NOTNOT thread-safe

► Even if they were made thread-
safe, could NOTNOT run with
multiple concurrent Events
from different IOVs due to the
single ConditionStore

► IOV infrastructure needs to be
significantlysignificantly modified for MT

C. Leggett 2016-08-05
8

Concurrent: Scheduling Barrier

Event 1 Event 2 Event 3

Event 4

Event 5 Event 6

one ConditionStore
shared by all Events

Scheduler only concurrently
process events which have
allall Conditions in the same

IOV

C. Leggett 2016-08-05
9

Concurrent: Scheduling Barrier

Event 1 Event 2 Event 3

Event 4

Event 5 Event 6

one ConditionStore
shared by all Events

Scheduler only concurrently
process events which have
allall Conditions in the same

IOV

► loss of Concurrency when Scheduler
is drained at a barrier
• barrier is at intersectionintersection of all IOVs
• significant impact on Event

throughput if IOVs change often

► Events must be processed in order,
or reshuffled by the Scheduler to
avoid bouncing back and forth

C. Leggett 2016-08-05
10

Concurrent: Multiple Condition Stores

Event 1

Event 4

Event 2 Event 3

Event 7

Event 5 Event 6

Event 8 Event 9

one Store per
concurrent Event

C. Leggett 2016-08-05
11

Concurrent: Multiple Condition Stores

Event 1

Event 4

Event 2 Event 3

Event 7

Event 5 Event 6

Event 8 Event 9

one Store per
concurrent Event

► duplicationduplication of ConditionStores
• large memory overhead

► duplicationduplication of work for execution of
callback functions

C. Leggett 2016-08-05
12

Concurrent: Single Multi-Cache Condition Store

Event 1 Event 2 Event 3

Event 5 Event 6 Event 7

➔ One ConditionStore,
shared by all Events.

➔ Store elements are
ConditionContainers,
with one entry per IOV

➔ Data access via
ConditionHandles
that point to
appropriate entry

➔ Callback Functions
become Algorithms,
scheduled by
framework

C. Leggett 2016-08-05
13

Alg_A
 In:
 Out: a, b

ConditionHandles

a

b

x

CondDbSvc

w

Alg_B
 In: a
 Out:

Alg_C
 In: b, x
 Out:

CondAlg_X
 In:
 Out: x

ConditionStore

x1 x2 x3

y1 y2

z1 z2 z3

CondSvc
regHandle(x)

EventStoresEventStoresEventStores

a

b

c

C. Leggett 2016-08-05
14

Detector Geometry Alignment

► GeoModel tree is not exposed to
Detector Description clients

► Readout geometry layer consists of
subsystem specific Detector Elements

► Each Detector Element has a pointer to
Full Physical Volume

Detector
Element

DD CC

TFTF ATFATF

TFTF PVPV

PVPV

PVPV FPVFPV

Client

TFTF

ATFATF

Physical Volume
(basic GeoModel
building block)

Full Physical
Volume

Transform
(fixed after construction)

Alignable Transform
(modifiable at will)

DD Delta TransformCC Cached Position

PVPV

FPVFPV

Serial

C. Leggett 2016-08-05
15

Geometry Alignments in AthenaMT

► The Alignment Object is a regular ConditionObject in a ConditionContainer, so it
should be handled as any other ConditionObject in AthenaMT
• Created by a ConditionAlgorithm (replacement of current callback function)
• Accessed from the FPV and ATF via ConditionHandle

► By making Detector Elements aware of the Alignment Objects we can make the
transition transparent to Detector Description clients

ConditionStore

DD

CC

PVPV

PVPVTFTF ATFATF FPVFPV

TFTF PVPV

Detector
Element

Client

DD

CC

DD

CC

DD

CC Alignment
Object

GeomAlignAlg

Concurrent

C. Leggett 2016-08-05
16

Absolutely disastrousdisastrous
 in an environment with

 multiple concurrent
 events, and multiple

 instances of each
 Algorithm

Asynchronous Incidents
► IncidentSvc: manages asynchronous callbacks for clients using an Observer pattern

• eg: BeginEvent, EndInputFile, MetaDataStop
• very flexible: callbacks can be triggered at any time
• Clients can be anything: Algorithms, Services, Tools

OpenFile
observersAlg_1

Alg_2

Alg_3

Alg_4

IncidentSvc

Alg_1

Alg_3

Svc_A

Alg_5

Tool_X

fire OpenFile

Serial

C. Leggett 2016-08-05
17

IncidentSvc in AthenaMT
► Study: IncidentSvc design more flexible than actual usage

• mostly fired outside of the Algorithm processing loop
► Solution: limit scope of IncidentSvc: Incidents can be re-classified as discrete state

changes
• Incidents become schedulable, managed by framework
• Incident handlers / observers become discrete Algorithms, that interact with Services which

are aware of the EventContext

EventLoopMgr

IP_Alg

Alg_1

Alg_3 Alg_4Alg_2

Alg_5

IncidentSvc

Svc_ASvc_A Svc_B

schedules incidents

BeginEvent, etc

gets incidents

calls handlers

query Svc w/ EventContext

schedules

Concurrent

C. Leggett 2016-08-05
18

Conclusions
► For ATLAS, managing Asynchronous data in a concurrent environment will

require a paradigm shift
• no solution is fully transparent or plug-and-play, unless we choose to sacrifice

concurrency and performance
• dealing with multiple threads as well as multiple concurrent events is doubly

challenging

► We have been able to minimize impact on User code via strategic modifications
at the framework and Service level

► New versions of all three aspects of Asynchronous Data and Event infrastructure
have been implemented, and migration of client code is ongoing, in conjunction
with the universal migration of Event data access to DataHandles
• so far, migration has been relatively straight-forward, and anticipate finishing by end

of 2016

C. Leggett 2016-08-05
19

Extras

C. Leggett 2016-08-05
25

Memory Management
► While a multi-cache store makes optimal use of memory (no

duplication of objects), the store will continue to grow with time

► Depending on memory constraints, may become necessary to
perform garbage collection
• prune ConditionContainers of old, unused entries

► Possible pruning techniques:
• only keep N copies
• keep reference count of which entries are in use, purge old entries

C. Leggett 2016-08-05
26

Incidents in Standard Reconstruction Job
► [AbortEvent]

• unnamed
► [AfterReseedIncident]

• AtRndmGenSvc
► [BeforeFork]

• AthenaEventLoopMgr
► [BeginEvent]

• AlgContextSvc
• PerfMonSvc
• CoreDumpSvc
• DetectorStore
• InputMetaDataStore
• MetaDataStore
• DataModelCompatSvc
• TagMetaDataStore
• StoreGateSvc
• IOVDbSvc
• TagInfoMgr
• IOVSvc.StoreGateSvc
• AtRndmGenSvc
• ToolSvc.CaloLumiBCIDToolDefault
• ToolSvc.InDetMergedPixelsTool
• InDetSCT_FlaggedConditionSvc
• InDetSCT_ByteStreamErrorsSvc
• ToolSvc.SolenoidalIntersector
• ToolSvc.egammatracktovertex
• ToolSvc.Reco::TrackToVertex
• ToolSvc.CaloAffectedTool
• ToolSvc.softetracktovertex
• ToolSvc.DefaultJetVtxTrackHelper
• ToolSvc.MissingCellListTool
• ToolSvc.ClusterRhoKt4EM
• ToolSvc.ClusterRhoKt4LC
• ToolSvc.ClusterRhoKt6EM
• ToolSvc.ClusterRhoKt6LC
• UserDataSvc
• ToolSvc.tauRec_JetVtxTrkHelper
• ThinningSvc
• ToolSvc.CaloAffectedToolDefault
• AlgContextSvc

► [EndInputFile]
• ToolSvc.ByteStreamMetadataTool
• MetaDataSvc
• CreateLumiBlockCollectionFromFile

► [EndOfBeginRun]
• IOVDbSvc

► [EndTagFile]
• MetaDataSvc

► [EndEvent]
• AlgContextSvc
• PerfMonSvc
• CoreDumpSvc
• DetectorStore
• InputMetaDataStore
• MetaDataStore
• TagMetaDataStore
• StoreGateSvc
• xAODMaker::EventFormatSvc
• AtRndmGenSvc
• CoolHistSvc
• ToolSvc.InDetMergedPixelsTool
• ToolSvc.InDetPixelClusterOnTrackTool
• ToolSvc.InDetBroadPixelClusterOnTra

ckTool
• ToolSvc.MuonTruthSummaryTool
• ToolSvc.MuonLayerHoughTool
• MuonStationIntersectSvc
• ToolSvc.MuPatHitTool
• ToolSvc.MuPatCandidateTool
• ToolSvc.egPixelClusterOnTrackTool
• THistSvc
• ToolSvc.JetTrackToVertexAssociator
• ToolSvc.tauRec_JetTrackToVertexAss

ociator
• DecisionSvc

► [FirstInputFile]
• ToolSvc.IOVDbMetaDataTool
• ToolSvc.ByteStreamMetadataTool
• MetaDataSvc

► [MetaDataStop]
• StreamESD
• StreamAOD

► [StoreCleared]
• CoreDumpSvc
• IOVDbSvc
• GeoModelSvc.MuonDetectorTool
• InDetPixelClusterization
• InDetSCT_Clusterization
• ToolSvc.TrackExtrapolatorToCalo
• ToolSvc.extrapolMuonInCaloTool
• JetGlobalEventSetup

► [ModuleLoaded]
• ClassIDSvc

► [PostFinalize]
• PerfMonSvc

► [LastInputFile]
• ToolSvc.ByteStreamMetadataTool
• MetaDataSvc
• CreateLumiBlockCollectionFromFile

► [ReseedIncident]
• AtRndmGenSvc

► [BeginInputFile]
• IoComponentMgr
• ToolSvc.IOVDbMetaDataTool
• ToolSvc.ByteStreamMetadataTool
• MetaDataSvc
• TagInfoMgr
• CreateLumiBlockCollectionFromFile

► [BeginOutputFile]

• IoComponentMgr
► [BeginRun]

• CoreDumpSvc
• IOVDbSvc
• TagInfoMgr
• IOVSvc.StoreGateSvc
• TileInfoLoader
• ToolSvc.LArADC2MeVToolDefault
• EmTowerBldr.LArEmTwrBldr
• LArAffectedRegionAlg
• SCT_CablingSvc
• InDetSCT_ByteStreamErrorsSvc
• ToolSvc.InDetTRT_DriftFunctionTool
• InDetTRTActiveFractionSvc
• RegSelSvc
• CmbTowerBldr.TileCmbTwrBldr
• CmbTowerBldr.LArCmbTwrBldr
• CmbTowerBldr.LArFCalCmbTwrBldr

► [CheckIOV]
• IOVSvc.StoreGateSvc

► [BeginTagFile]

• MetaDataSvc

