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We compute the three-loop four-gluon scattering amplitude in maximally supersymmetric Yang-
Mills theory, including its full color dependence. Our result is the first complete computation of a
non-planar four-particle scattering amplitude to three loops in four-dimensional gauge theory and
consequently provides highly non-trivial data for the study of non-planar scattering amplitudes. We
present the amplitude as a Laurent expansion in the dimensional regulator to finite order, with
coefficients composed of harmonic poly-logarithms of uniform transcendental weight, and simple
rational prefactors. Our computation provides an independent check of a recent result for three-
loop corrections to the soft anomalous dimension matrix that predicts the general infrared singularity
structure of massless gauge theory scattering amplitudes. Taking the Regge limit of our result, we
determine the three-loop gluon Regge trajectory. We also find agreement with very recent predictions
for sub-leading logarithms.

PACS numbers: 12.38Bx

INTRODUCTION

In the era of the Large Hadron Collider our under-
standing of the fundamental interactions of nature is
probed at an unprecedented level. An incredible vari-
ety of observables is measured at rapidly increasing pre-
cision. To fully exploit the information collected from
particle collisions the experimental progress has to be
matched by an equally rapid theoretical development of
our capabilities to predict the outcome of scattering ex-
periments. Only the fruitful symbiosis of precise predic-
tion and measurement can lead to an improved under-
standing of nature. Meeting these theoretical challenges
pushes the boundaries of our understanding of the very
structure of quantum field theory to its limits and is often
accompanied by conceptual breakthroughs.

The maximally supersymmetric Yang-Mills theory
serves as a useful testing laboratory for the development
of novel methods for precise predictions and is used to ex-
plore hidden structures of quantum field theory. In many
aspects this theory can be thought of as a toy model for
the Standard Model of particle physics, very much in
analogy to the hydrogen atom with respect to quantum
mechanics [1]. Novel on-shell methods [2–5], new tech-
niques for working with transcendental functions [6], and
for computing them efficiently [7], were first developed in
this theory.

An important catalyst for such advances is readily
available analytic ‘data’ for scattering amplitudes, as
such information makes it possible to test new approaches
and to search for and uncover hidden simplicity. The
large majority of known results for scattering amplitudes
are available for the planar sector of the theory, which
has a Yangian symmetry [8] and is believed to be inte-
grable. For example, the exact functional form of the
four-particle amplitude in the planar limit is known to

all loop orders [9–11]. Moreover, more general scattering
amplitudes can be computed using integrability methods,
see e.g. [12, 13].
The non-planar sector of scattering amplitudes is still

much less explored and analytic results are scarce in com-
parison. Most studies to date are limited to loop in-
tegrands, uncovering that they exhibit several intrigu-
ing features that hint at more underlying structure, and
perhaps a dual formulation of the theory [14]. A key
concept is the analysis of leading singularities, i.e. mul-
tidimensional residues. For example, it can be shown
that loop integrands of maximally-helicity-violating am-
plitudes have a very simple leading singularity structure:
any of their leading singularities is proportional to a tree-
level amplitude [15]. Moreover, the integrand of these
amplitudes can be written in terms of certain d-log forms
[16]. This is closely related to a further observation,
namely the absence of poles at infinity in the sense of
[17, 18]. In the planar case this follows from Yangian
symmetry, but at the non-planar level this interesting
property is not yet proven. The above properties may
also hint at a connection to the amplituhedron interpre-
tation of loop integrands [19, 20]. Moreover, there is
evidence that the color-kinematics duality found in [21]
holds at loop level, see e.g. [22]. The latter connects
planar and non-planar terms in the integrand, and more-
over relates loop integrands in Yang-Mills theory to their
(super-)gravity counterparts. This may be significant for
investigations into the possible finiteness of certain su-
pergravity theories, see e.g. [23].
It is important to ask how and if these intriguing loop-

integrand properties propagate to the integrated answer.
One example where this connection has been made con-
crete, albeit at the conjectural level, has to do with the
class of functions expected to appear. Based on explicitly
known results it is believed that scattering amplitudes in
N = 4 super Yang-Mills (SYM) are given by functions of
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uniform transcendental weight1. A conjecture due to [15]
links this property to integrands that can be written in
terms of d-log forms [16], and hence have constant lead-
ing singularities. We remark that these concepts have
already proven to be very useful beyond maximally su-
persymmetric Yang-Mills theory [7] in computing large
classes of planar and non-planar loop integrals relevant
for collider physics.

On the other hand it is currently unknown what the
precise implications of the other fascinating integrand
properties mentioned above are for the integrated answer.
It goes without saying that explicit analytic results are
very important for making progress in this direction. To
date, the only known non-planar amplitudes in the max-
imally super Yang-Mills theory are the two-loop four-
point amplitudes [24–26], as well as a three-loop form
factor that was computed via non-planar integrals [27].

In this work, we present the complete three-loop four-
gluon amplitude in maximally supersymmetric Yang-
Mills theory. Our result is a new milestone in the ad-
vancement of perturbative quantum field theory as it rep-
resents the first complete computation of a non-planar
four-particle scattering amplitude at three-loop order in
four-dimensional perturbative quantum field theory. We
investigate some of the remarkable properties of N = 4
SYM introduced above and study the infrared and high
energy properties of our result.

The paper is organized as follows. We begin by ex-
plaining how we performed the calculation starting from
several different representations for the integrands of
the scattering amplitude. We review the color struc-
ture of the amplitude and explain how the result can be
parametrized by a small number of independent compo-
nents. Then, we discuss the structure of infrared diver-
gences and confirm a recently obtained formula for con-
tributions depending in a non-trivial way on four parti-
cles. Having removed the infrared divergences, we define
a renormalized finite part. Finally, we study the Regge
limit of our result. All our results are available in elec-
tronic form as ancillary files.

FOUR-PARTICLE AMPLITUDES

The N = 4 super Yang-Mills four-gluon scattering am-
plitudes can be written perturbatively as

A(pi; ǫ) = K
∞
∑

L=0

αLA(L)(s, t; ǫ) . (1)

1 For multiple polylogarithms, the weight is defined as the num-
ber of integrations. The dimensional regularization parameter is
assigned weight −1 [7].

We introduced the expansion parameter α =
4e−ǫγEg2/(4π)2−ǫ, where ǫ is the dimensional regu-
larization parameter, with D = 4− 2ǫ. Here the helicity
structure was absorbed into a permutation invariant
version of the tree-level amplitudes K. It is explicitly
given by

K = −2stg2
δ(8)(Q)δ(4)(P )

〈12〉〈23〉〈34〉〈41〉
, (2)

cf. [28] for details on the notation. Here we will only need
that A(L) depends on the Lorentz invariants s = 2p1 · p2
and t = 2p2 · p3. We also have u = 2p1 · p3 = −s− t.

The integrand for the three-loop four-particle scat-
tering amplitude was investigated in a number of pa-
pers. The main obstacle for computing the amplitudes
were the complicated three-loop non-planar Feynman in-
tegrals. Analytic results for the latter are now available
[29–31]. They were evaluated via the method of differen-
tial equations [32, 33], with a basis of integrals that have
unit leading singularities [7]. We performed the neces-
sary integral reductions to relate the basis chosen in [31]
to those of references [18, 20, 22, 23]. It is a highly non-
trivial cross-check of the very different methods used to
compute the integrand that we obtained the same result
for each representation.

We present our analytic result for the amplitude, com-
puted in the dimensional reduction scheme, as a Laurent
expansion in the dimensional regulator, to order ǫ0. The
coefficient of each power of the dimensional regulator is
expressed in terms of harmonic polylogarithms [34] and
rational prefactors. The answer has two interesting fea-
tures that we would like to highlight before discussing
the result in more detail. First, we show that, to all
orders in ǫ, the amplitude has uniform transcendental
weight. Second, the only rational structures appearing
are 1/s/t, 1/s/u and 1/t/u, corresponding to different
tree-level channels. This confirms, in a highly non-trivial
case, expectations based on the properties of leading sin-
gularities [15, 18]. We also wish to emphasize that al-
though the latter were only analyzed in four dimensions,
we find the remarkable fact that the uniform weight prop-
erty is true to all orders in the ǫ expansion.

COLOR DECOMPOSITION

The amplitude A is a tensor in color space. It can be
decomposed to all orders in terms of traces of fundamen-
tal color generators of SU(Nc). We abbreviate

tr(T a1T a2T a3T a4) = tr(1234) , (3)

and normalize the fundamental generators according to
tr(T aT b) = δab/2. At any order in the coupling constant,
the amplitude can be expressed in terms of the following
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six single and double trace color structures,

C1 = tr(1234) + tr(1432) , C4 = tr(12)tr(34) ,

C2 = tr(1243) + tr(1342) , C5 = tr(13)tr(24) ,

C3 = tr(1423) + tr(1324) , C6 = tr(14)tr(23) .

Following [35], we further decompose the amplitude in
powers of Nc,

A(L) =
3

∑

λ=1





⌊L

2
⌋

∑

k=0

NL−2k
c A

(L,2k)
λ



Cλ

+

6
∑

λ=4





⌊L−1

2
⌋

∑

k=0

NL−2k−1
c A

(L,2k+1)
λ



Cλ , (4)

where A
(L,0)
λ are leading-order-in-Nc (planar) ampli-

tudes, and A
(L,k)
λ , k = 1, · · · , L, are subleading, yielding

(3L+ 3) color-ordered amplitudes at L loops.
Some terms in eq. (4) are related by group theory iden-

tities, such as the U(1) decoupling relation. For example,
at one loop [36],

A
(1,1)
4 = A

(1,1)
5 = A

(1,1)
6 = 2

3
∑

λ=1

A
(1,0)
λ . (5)

Taking into account similar relations [35] allows one to
determine A(2,1) and A(3,3) in terms of the other compo-
nents. This means that, up to three loops, the amplitudes
can be expressed in terms of a small number of functions.

Apart from the leading color terms A
(L,0)
λ , one only needs

the following components: A
(2,2)
1 at two loops, and A

(3,2)
1

and A
(3,1)
4 at three loops. All other terms can be ob-

tained either by group theory relations, or by symmetry.
It is interesting to note that the remaining components
still satisfy constraints coming from group theory, e.g.
∑3

λ=1 A
(2,2)
λ = 0. A

(2,2)
1 was determined in ref. [26]. In

the present paper we compute the new components A
(3,2)
1

and A
(3,1)
4 at the three loop order.

INFRARED DIVERGENCE STRUCTURE

The structure of infrared divergences of massless scat-
tering amplitudes is well understood. They can be
mapped to ultraviolet divergences of Wilson loops, with
the latter being controlled by renormalization group
equations, see e.g. [37, 38]. An amplitude for the scat-
tering of massless, SU(Nc) color charged fields in dimen-
sional regularisation can be written as

A(pi, ǫ) = Z(pi, ǫ)A
f (pi, ǫ) , (6)

where Af (pi) represents a finite hard amplitude. To in-
dicate an operator in color space we use bold letters.

The factor Z(pi, ǫ) contains all infrared divergences. It is
given by the exponential

Z(pi, ǫ) = Pexp

{

−
1

2

∫ µ2

0

dµ2

µ2
Γ(pi, µ

2, α(µ2))

}

, (7)

where α(µ2) is the renormalised coupling constant, and
Γ is the soft anomalous dimension.

In N = 4 super Yang-Mills, the renormalization of the
coupling is trivial, and hence the integral in the exponent
of eq. (7) can be carried out explicitly. For four-gluon
scattering one obtains

1

4

∞
∑

L=1

αL

[

γ
(L)
c

L2ǫ2
D0 −

γ
(L)
c

Lǫ
D+

4

Lǫ
γ
(L)
J I+

1

Lǫ
∆

(L)

]

.(8)

Here γc is the cusp anomalous dimension and γJ is the
collinear anomalous dimensions (associated with the ex-
ternal gluons). To three loops [39–41], they read

γc = α−
1

2
α2Ncζ2 +

11

8
α3N2

c ζ4 +O
(

α4
)

, (9)

γJ =
1

4
α2N2

c ζ3 −
1

2
α3N3

c

(

5

6
ζ2ζ3 + ζ5

)

+O
(

α4
)

.(10)

The first two color operators in eq. (8) correspond to
dipole terms, i.e. they depend only pairwise on the in-
coming particles. They are given by

D0 =
∑

i6=j

Ti ·Tj , D =
∑

i6=j

Ti ·Tj log

(

−sij
µ2

)

,(11)

with sij = 2pi · pj . The color operators act according to
T

a5

1 T a1 = −ifa5a1a6T a6 .

Up to two loops [42, 43], the soft anomalous dimen-
sion is given by a dipole formula, ∆

(1) = ∆
(2) = 0.

Three loop corrections to the latter are universal in any
gauge theory, as the matter dependent terms cancel [45].
They can be split into a contributions connecting three
and four color charged external fields, and we refer to

the latter as ∆
(3)
3 and ∆

(3)
4 , respectively. These correc-

tions were obtained recently in ref. [44] for the case of
n-particle scattering. Restricting the general formula to
the case of four-particle scattering we find

∆
(3)
4 =

1

4
fabefcde

[

T
a
1T

b
2T

c
3T

d
4 S(x)

+T
a
4T

b
1T

c
2T

d
3 S(1/x)

]

, (12)

∆
(3)
3 = −C fabefcde

∑

i=1...4
1≤j<k≤4

j,k 6=i

{

T
a
i ,T

d
i

}

T
b
jT

c
k . (13)
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Here C = ζ5 + 2ζ3ζ2, and S(x) is given by

S(x) = (14)

2H−3,−2 + 2H−2,−3 − 2H−3,−1,−1 + 2H−3,−1,0

−2H−2,−2,−1 + 2H−2,−2,0 − 2H−2,−1,−2 −H−1,−2,−2

−H−1,−1,−3 + 4H−2,−1,−1,−1 − 2H−2,−1,−1,0

−H−1,−2,−1,0 −H−1,−1,−2,0 + ζ3H−1,−1 + 4ζ3ζ2 − ζ5

+ζ2(6H−3 − 10H−2,−1 + 6H−2,0 −H−1,−2 −H−1,−1,0)

+iπ
[

2H−3,−1 − 2H−3,0 + 2H−2,−2 − 4H−2,−1,−1

+ 2H−2,−1,0 − 2H−2,0,0 +H−1,−2,0 +H−1,−1,0,0

+ ζ2(3H−1,−1 − 4H−2)− ζ3H−1

]

.

Here H are harmonic polylogarithms, and we have sup-
pressed the argument x = t/s. The imaginary part in
eq. (14) deserves a comment. It arises when analytically
continuing the result of [44], which is written for sij < 0,
where the the soft anomalous dimension matrix is real-
valued, to four-particle kinematics with u = −s− t > 0.
Given eq. (8) we can obtain explicitly all the entire in-
frared pole structure of our four point amplitudes. Com-
paring the above predictions of the infrared singularities
for the four-particle amplitude with our result we find
perfect agreement.

RESULTS FOR THE AMPLITUDE

Using the knowledge about the universal infrared
structure of our amplitude we can inspect in detail the
finite remainder after subtracting the divergences.

H = lim
ǫ→0

Af . (15)

We will use the color decomposition as before, and de-
fine H equivalently to A in eq. (4) but for infrared finite
amplitudes. In the planar limit, the finite part is given
by a remarkably simple formula that was conjectured in
[9, 10] and proven in [11],

∑

L

αLH
(L,0)
1 = H

(0,0)
1 exp

{

−
Ncγc(α)

2
log

−s

µ2
log

−t

µ2

−
γJ(α)

2

[

log
−s

µ2
+ log

−t

µ2

]

+ C(α)
}

, (16)

to all loop orders. The coupling dependence enters only
through kinematic-independent constants.
In the present paper we evaluated the non-leading co-

efficients in the large Nc expansion. The two-loop func-

tion H
(2,2)
1 is expressed in terms of weight four harmonic

polylogarithms, while the two new functions H
(3,2)
1 and

H
(3,1)
4 at three loops are given by uniform weight six

harmonic polylogarithms. Their expressions, as well as
those for the unrenormalized amplitude, can be found in
an ancillary file.

REGGE LIMIT

Our analytic three-loop result gives us the opportunity
to investigate the Regge behaviour of the amplitude, i.e.
the kinematic regime of s ≫ t. In the following, we work
at leading power in t/s, and set µ2 = −t for simplicity.

We found it useful to work in a color basis correspond-
ing to irreducible SU(N) representations in the tensor
product of the representations of two gluons in the t-
channel, following [46–49]. Labelling the channels by
their dimensions for Nc = 3 (but continuing to work with
general Nc), they are 1,8s,8a,10+ 10,27,0.

In the octet channel 8a, we find that the amplitude
behaves as A8a

∼ sw8a , with the gluon Regge trajectory
at three loops

w8a
|α3 =N3

c

[

11ζ4
48

1

ǫ
+

5

24
ζ2ζ3 +

1

4
ζ5 +O(ǫ)

]

+Nc

[

ζ2
4

1

ǫ3
−

15ζ4
16

1

ǫ
−

77

4
ζ2ζ3 +O(ǫ)

]

. (17)

The leading color term is well known [50, 51]. At sub-
leading color, the infrared divergent terms were discussed
in [49]; the finite term is new. As far as other channels
are concerned, we find perfect agreement with the result
of [52, 53] for next-to-leading logarithms. Moreover, we
successfully compared against very recent results at the
next-to-next-to leading logarithmic level for the 10+ 10

channel [54].

Let us discuss in more detail the Regge limit of the
finite part H, as defined in eq. (15). We write it in
terms of color operators T = (T2 +T3)

2 and S = (T1 +
T2)

2 acting on the tree-level amplitude H(0). All the
logarithmically enhanced terms are given by

H =
∑

k,q

αk
(

log
s

t

)q

Ok,qH
(0) +O(1) , (18)

where the sum includes the following operators,

O2,1 =−
1

8
ζ3T

2 , (19)

O3,2 =iπ
11

24
ζ3[[S,T],T] , (20)

O3,1 =iπ
1

16
ζ4 (3[S,T]T+ 58[[S,T],T])

+
11

6
ζ2ζ3

(

3[S,T]T+ 2[[S,T],T]− [S2,T]
)

+

(

1

4
ζ5 −

1

24
ζ2ζ3

)

T
3 − 4ζ2ζ3T . (21)

It is interesting to note that there is no contribution to
the 8s channel; the only term contributing to 10+ 10 is
[S2,T], and the contribution to 8a comes from the T,T2,
and T

3 terms only.
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CONCLUSION

We have computed for the first time a complete three-
loop four-gluon scattering amplitude including all sub-
leading color contributions. This allowed us to verify a
recent result for the universal structure of infrared diver-
gences at the three-loop order. The four particle scat-
tering amplitude in N = 4 SYM is a uniform weight
combination of harmonic polylogarithms, to any order in
the ǫ expansion. We analyzed the Regge limit and deter-
mined the three-loop Regge trajectory. Our full results
are given in ancillary files, and provide a non-trivial new
data point in the systematic exploration of properties of
non-planar scattering amplitudes.
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