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We compute the three-loop four-gluon scattering amplitude in maximally supersymmetric Yang-Mills
theory, including its full color dependence. Our result is the first complete computation of a nonplanar
four-particle scattering amplitude to three loops in four-dimensional gauge theory and consequently
provides highly nontrivial data for the study of nonplanar scattering amplitudes. We present the amplitude
as a Laurent expansion in the dimensional regulator to finite order, with coefficients composed of harmonic
polylogarithms of uniform transcendental weight, and simple rational prefactors. Our computation
provides an independent check of a recent result for three-loop corrections to the soft anomalous
dimension matrix that predicts the general infrared singularity structure of massless gauge theory scattering
amplitudes. Taking the Regge limit of our result, we determine the three-loop gluon Regge trajectory.
We also find agreement with very recent predictions for subleading logarithms.
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Introduction.—In the era of the Large Hadron Collider
our understanding of the fundamental interactions of nature
is probed at an unprecedented level. An incredible variety
of observables is measured at rapidly increasing precision.
To fully exploit the information collected from particle
collisions the experimental progress has to be matched by
an equally rapid theoretical development of our capabilities
to predict the outcome of scattering experiments. Only the
fruitful symbiosis of precise prediction and measurement
can lead to an improved understanding of nature. Meeting
these theoretical challenges pushes the boundaries of
our understanding of the very structure of quantum field
theory to its limits and is often accompanied by conceptual
breakthroughs.
The maximally supersymmetric Yang-Mills theory

serves as a useful testing laboratory for the development
of novel methods for precise predictions and is used to
explore hidden structures of quantum field theory. In many
aspects this theory can be thought of as a toy model for the
standard model of particle physics, very much in analogy to
the hydrogen atom with respect to quantum mechanics [1].
Novel on-shell methods [2–5], new techniques for working
with transcendental functions [6], and for computing them
efficiently [7], were first developed in this theory.
An important catalyst for such advances is readily

available analytic “data” for scattering amplitudes, as such
information makes it possible to test new approaches and to
search for and uncover hidden simplicity. The large majority
of known results for scattering amplitudes are available

for the planar sector of the theory, which has a Yangian
symmetry [8] and is believed to be integrable. For example,
the exact functional form of the four-particle amplitude in the
planar limit is known to all loop orders [9–11]. Moreover,
more general scattering amplitudes can be computed using
integrability methods; see, e.g., Refs. [12,13].
The nonplanar sector of scattering amplitudes is still

much less explored and analytic results are scarce in
comparison. Most studies to date are limited to loop
integrands, uncovering that they exhibit several intriguing
features that hint at more underlying structure, and perhaps
a dual formulation of the theory [14]. A key concept is the
analysis of leading singularities, i.e., multidimensional
residues. For example, it can be shown that loop integrands
of maximally helicity-violating amplitudes have a very
simple leading singularity structure: any of their leading
singularities is proportional to a tree-level amplitude [15].
Moreover, the integrand of these amplitudes can be written
in terms of certain d-log forms [16]. This is closely related
to a further observation, namely, the absence of poles at
infinity in the sense of Refs. [17,18]. In the planar case
this follows from Yangian symmetry, but at the nonplanar
level this interesting property is not yet proven. The above
properties may also hint at a connection to the amplituhe-
dron interpretation of loop integrands [19,20]. Moreover,
there is evidence that the color-kinematics duality found in
Ref. [21] holds at loop level; see, e.g., Ref. [22]. The latter
connects planar and nonplanar terms in the integrand, and
moreover relates loop integrands in Yang-Mills theory to
their (super-)gravity counterparts. This may be significant
for investigations into the possible finiteness of certain
supergravity theories; see, e.g., Ref. [23].
It is important to ask how and if these intriguing loop-

integrand properties propagate to the integrated answer. One
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example where this connection has been made concrete,
albeit at the conjectural level, has to do with the class of
functions expected to appear. Based on explicitly known
results it is believed that scattering amplitudes in N ¼ 4

super-Yang-Mills (SYM) are given by functions of uniform
transcendental weight [24]. A conjecture due to Ref. [15]
links this property to integrands that can bewritten in terms of
d-log forms [16], and, hence, have constant leading singu-
larities. We remark that these concepts have already proven
to be very useful beyond maximally supersymmetric Yang-
Mills theory [7] in computing large classes of planar and
nonplanar loop integrals relevant for collider physics.
On the other hand, it is currently unknown what the

precise implications of the other fascinating integrand
properties mentioned above are for the integrated answer.
It goes without saying that explicit analytic results are very
important for making progress in this direction. To date, the
only known nonplanar amplitudes in the maximally super-
Yang-Mills theory are the two-loop four-point amplitudes
[25–27], as well as a three-loop form factor that was
computed via nonplanar integrals [28].
In this work, we present the complete three-loop four-

gluon amplitude in maximally supersymmetric Yang-Mills
theory. Our result is a new milestone in the advancement of
perturbative quantum field theory as it represents the first
complete computation of a nonplanar four-particle scatter-
ing amplitude at three-loop order in four-dimensional
perturbative quantum field theory. We investigate some
of the remarkable properties of N ¼ 4 SYM introduced
above and study the infrared and high energy properties of
our result.
The Letter is organized as follows. We begin by

explaining how we performed the calculation starting from
several different representations for the integrands of the
scattering amplitude [18,20,22,23,29]. We review the
color structure of the amplitude and explain how the result
can be parametrized by a small number of independent
components. Then, we discuss the structure of infrared
divergences and confirm a recently obtained formula
for contributions depending in a nontrivial way on four
particles. Having removed the infrared divergences, we
define a renormalized finite part. Finally, we study the
Regge limit of our result. All our results are available in the
Supplemental Material [30].
Four-particle amplitudes.—TheN ¼4 super-Yang-Mills

four-gluon scattering amplitudes can be written perturba-
tively as

Aðpi; ϵÞ ¼ K
X∞
L¼0

αLAðLÞðs; t; ϵÞ: ð1Þ

We introduced the expansion parameter
α ¼ 4e−ϵγEg2=ð4πÞ2−ϵ, where ϵ is the dimensional regu-
larization parameter, with D ¼ 4 − 2ϵ. Here the helicity
structure was absorbed into a permutation invariant version
of the tree-level amplitudes K. It is explicitly given by

K ¼ −2stg2
δð8ÞðQÞδð4ÞðPÞ

h12ih23ih34ih41i ; ð2Þ

cf. Ref. [31] for details on the notation. Here, we will only
need that AðLÞ depends on the Lorentz invariants s ¼ 2p1 ·
p2 and t ¼ 2p2 · p3. We also have u ¼ 2p1 · p3 ¼ −s − t.
The integrand for the three-loop four-particle scattering

amplitude was investigated in a number of papers. The
main obstacle for computing the amplitudes were the
complicated three-loop nonplanar Feynman integrals.
Analytic results for the latter are now available [32–34].
They were evaluated via the method of differential equa-
tions [35,36], with a basis of integrals that have unit leading
singularities [7]. We performed the necessary integral
reductions to relate the basis chosen in Ref. [34] to
those of Refs. [18,20,22,23,29]. It is a highly nontrivial
cross-check of the very different methods used to compute
the integrand that we obtained the same result for each
representation.
We present our analytic result for the amplitude, com-

puted in the dimensional reduction scheme, as a Laurent
expansion in the dimensional regulator, to order ϵ0. The
coefficient of each power of the dimensional regulator is
expressed in terms of harmonic polylogarithms [37] and
rational prefactors. The answer has two interesting features
that we would like to highlight before discussing the result
in more detail. First, we show that, to all orders in ϵ, the
amplitude has uniform transcendental weight. Second, the
only rational structures appearing are 1=ðstÞ; 1=ðsuÞ, and
1=ðtuÞ, corresponding to different tree-level channels. This
confirms, in a highly nontrivial case, expectations based on
the properties of leading singularities [15,18]. We also wish
to emphasize that although the latter were only analyzed
in four dimensions, we find the remarkable fact that the
uniform weight property is true to all orders in the ϵ
expansion.
Color decomposition.—The amplitude A is a tensor in

color space. It can be decomposed to all orders in terms
of traces of fundamental color generators of SUðNcÞ.
We abbreviate

trðTa1Ta2Ta3Ta4Þ ¼ trð1234Þ; ð3Þ

and normalize the fundamental generators according to
trðTaTbÞ ¼ δab=2. At any order in the coupling constant,
the amplitude can be expressed in terms of the following six
single and double trace color structures,

C1 ¼ trð1234Þ þ trð1432Þ; C4 ¼ trð12Þtrð34Þ;
C2 ¼ trð1243Þ þ trð1342Þ; C5 ¼ trð13Þtrð24Þ;
C3 ¼ trð1423Þ þ trð1324Þ; C6 ¼ trð14Þtrð23Þ:

Following Refs. [38,39], we further decompose the ampli-
tude in powers of Nc,
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AðLÞ ¼
X3
λ¼1

�X⌊L=2⌋
k¼0

NL−2k
c AðL;2kÞ

λ

�
Cλ

þ
X6
λ¼4

� X⌊L−1=2⌋

k¼0

NL−2k−1
c AðL;2kþ1Þ

λ

�
Cλ; ð4Þ

where AðL;0Þ
λ are leading-order-in-Nc (planar) amplitudes,

and AðL;kÞ
λ , k ¼ 1;…; L, are subleading, yielding (3Lþ 3)

color-ordered amplitudes at L loops.
Some terms in Eq. (4) are related by group theory

identities, such as the Uð1Þ decoupling relation. For
example, at one loop [40],

Að1;1Þ
4 ¼ Að1;1Þ

5 ¼ Að1;1Þ
6 ¼ 2

X3
λ¼1

Að1;0Þ
λ : ð5Þ

Taking into account similar relations [39] allows one to
determine Að2;1Þ and Að3;3Þ in terms of the other components.
This means that, up to three loops, the amplitudes can be
expressed in terms of a small number of functions. Apart

from the leading color terms AðL;0Þ
λ , one only needs the

following components: Að2;2Þ
1 at two loops, and Að3;2Þ

1 and

Að3;1Þ
4 at three loops. All other terms can be obtained either by

group theory relations, or by symmetry. It is interesting to
note that the remaining components still satisfy constraints

coming from group theory, e.g.,
P

3
λ¼1 A

ð2;2Þ
λ ¼ 0. Að2;2Þ

1 was
determined in Ref. [27]. In the present Letter we compute the

new components Að3;2Þ
1 and Að3;1Þ

4 at the three loop order.
Infrared divergence structure.—The structure of infrared

divergences of massless scattering amplitudes is well
understood. Their main features are described by ultraviolet
divergences of Wilson loops, see, e.g., Refs. [41–43].
An amplitude for the scattering of massless, SUðNcÞ color
charged fields in dimensional regularization can be
written as

Aðpi; ϵÞ ¼ Zðpi; ϵÞAfðpi; ϵÞ; ð6Þ
where AfðpiÞ represents a finite hard amplitude. To
indicate an operator in color space we use bold letters.
The factor Zðpi; ϵÞ contains all infrared divergences. It is
given by the exponential

Zðpi; ϵÞ ¼ P exp

�
−
1

2

Z
μ2

0

dμ2

μ2
Γ(pi; μ2; αðμ2Þ)

�
; ð7Þ

where αðμ2Þ is the renormalized coupling constant, and Γ is
the soft anomalous dimension [43–47], up to terms taking
into account the different collinear properties of Wilson
lines and jets [43].
In N ¼ 4 super-Yang-Mills, the renormalization of the

coupling is trivial, and, hence, the integral in the exponent
of Eq. (7) can be carried out explicitly. For four-gluon
scattering one obtains

1

2

X∞
L¼1

αL
�
γðLÞc

2L2ϵ2
D0 −

γðLÞc

2Lϵ
Dþ 2

Lϵ
γðLÞJ Iþ 1

64Lϵ
ΔðLÞ

�
: ð8Þ

Here, γc is the cusp anomalous dimension and γJ is the
collinear anomalous dimensions (associated with the exter-
nal gluons). To three loops [10,48–50] they read

γc ¼ α −
1

2
α2Ncζ2 þ

11

8
α3N2

cζ4 þOðα4Þ; ð9Þ

γJ ¼
1

4
α2N2

cζ3 −
1

2
α3N3

c

�
5

6
ζ2ζ3 þ ζ5

�
þOðα4Þ: ð10Þ

The first two color operators in Eq. (8) correspond to dipole
terms; i.e., they depend only pairwise on the incoming
particles. They are given by

D0 ¼
X
i≠j

i;j¼1;…;4

Ti · Tj; D ¼
X
i≠j

i;j¼1;…;4

Ti · Tj log

�
−sij
μ2

�
; ð11Þ

with sij ¼ 2pi · pj. The color operators act according
to Ta5

1 Ta1 ¼ −ifa5a1a6Ta6 .
Up to two loops [44–46], the soft anomalous dimension

is given by a dipole formula Δð1Þ ¼ Δð2Þ ¼ 0. Three loop
corrections to the latter are universal in any gauge theory, as
the matter dependent terms cancel [51]. They can be split
into contributions connecting three- and four-color charged

external fields, and we refer to the latter as Δð3Þ
3 and Δð3Þ

4 ,
respectively. These corrections were obtained recently in
Ref. [52] for the case of n-particle scattering. Restricting
the general formula to the case of four-particle scattering
we find

Δð3Þ
4 ¼ 128fabefcde½Ta

1T
b
2T

c
3T

d
4SðxÞ þ Ta

4T
b
1T

c
2T

d
3Sð1=xÞ�;

ð12Þ
Δð3Þ

3 ¼ −16Cfabefcde
X
i¼1;…;4
1≤j<k≤4
j;k≠i

fTa
i ;T

d
i gTb

jT
c
k: ð13Þ

Here, C ¼ ζ5 þ 2ζ3ζ2, and SðxÞ is given by

S ¼ 2H−3;−2 þ 2H−2;−3 − 2H−3;−1;−1 þ 2H−3;−1;0

− 2H−2;−2;−1 þ 2H−2;−2;0 − 2H−2;−1;−2 −H−1;−2;−2

−H−1;−1;−3 þ 4H−2;−1;−1;−1 − 2H−2;−1;−1;0

−H−1;−2;−1;0 −H−1;−1;−2;0 þ ζ3H−1;−1 þ 4ζ3ζ2 − ζ5

þ ζ2ð6H−3 − 10H−2;−1 þ 6H−2;0 −H−1;−2 −H−1;−1;0Þ
þ iπ½2H−3;−1 − 2H−3;0 þ 2H−2;−2 − 4H−2;−1;−1

þ 2H−2;−1;0 − 2H−2;0;0 þH−1;−2;0 þH−1;−1;0;0

þ ζ2ð3H−1;−1 − 4H−2Þ − ζ3H−1�: ð14Þ

Here, H are harmonic polylogarithms, and we have sup-
pressed the argument x ¼ t=s. The imaginary part in
Eq. (14) deserves a comment. It arises when analytically
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continuing the result of Ref. [52], which is written for
sij < 0, where the the soft anomalous dimension matrix is
real valued, to four-particle kinematics with u¼−s− t > 0.
Given Eq. (8) we can obtain explicitly all the entire infrared
pole structure of our four point amplitudes. Comparing
the above predictions of the infrared singularities for the
four-particle amplitude with our result we find perfect
agreement.
Results for the amplitude.—Using the knowledge about

the universal infrared structure of our amplitude we can
inspect in detail the finite remainder after subtracting the
divergences.

H ¼ lim
ϵ→0

Af: ð15Þ
We will use the color decomposition as before, and define
H equivalently to A in Eq. (4) but for infrared finite
amplitudes. In the planar limit, the finite part is given by a
remarkably simple formula that was conjectured in
Refs. [9,10] and proven in Ref. [11], using the duality
between Wilson loops and scattering amplitudes [53],

X
L

αLHðL;0Þ
1 ¼ Hð0;0Þ

1 exp

�
−
NcγcðαÞ

2
log

−s
μ2

log
−t
μ2

−
γJðαÞ
2

�
log

−s
μ2

þ log
−t
μ2

�
þ CðαÞ

�
; ð16Þ

to all loop orders. The coupling dependence enters only
through kinematic-independent constants.
In the present Letter we evaluated the nonleading

coefficients in the large Nc expansion. The two-loop

function Hð2;2Þ
1 is expressed in terms of weight four

harmonic polylogarithms, while the two new functions

Hð3;2Þ
1 andHð3;1Þ

4 at three loops are given by uniform weight
six harmonic polylogarithms. Their expressions, as well as
those for the unrenormalized amplitude, can be found in the
Supplemental Material [30].
Regge limit.—Our analytic three-loop result gives us the

opportunity to investigate the Regge behavior of the ampli-
tude, i.e., the kinematic regime of s ≫ t. In the following, we
work at leading power in t=s, and set μ2¼−t for simplicity.
We found it useful to work in a color basis corresponding

to irreducible SUðNÞ representations in the tensor product
of the representations of two gluons in the t channel,
following Refs. [54–57]. Labeling the channels by their
dimensions for Nc ¼ 3 (but continuing to work with
general Nc), they are 1; 8s; 8a; 10þ 1̄0; 27; 0.
In the octet channel 8a, we find that the amplitude

behaves as A8a ∼ sw8a , with the gluon Regge trajectory at
three loops,

w8a jα3 ¼ N3
c

�
11ζ4
48

1

ϵ
þ 5

24
ζ2ζ3 þ

1

4
ζ5 þOðϵÞ

�

þNc

�
ζ2
4

1

ϵ3
−
15ζ4
16

1

ϵ
−
77

4
ζ2ζ3 þOðϵÞ

�
: ð17Þ

The leading color term is well known [10,58,59]. At
subleading color, the infrared divergent terms were dis-
cussed in Ref. [57]; the finite term is new. As far as other
channels are concerned, we find perfect agreement with the
result of Refs. [60,61] for next-to-leading logarithms.
Moreover, we successfully compared against very recent
results at the next-to-next-to leading logarithmic level for
the 10þ 1̄0 channel [62].
Let us discuss in more detail the Regge limit of the finite

part H, as defined in Eq. (15). We write it in terms of color
operators T ¼ ðT2 þ T3Þ2 and S ¼ ðT1 þ T2Þ2 acting
on the tree-level amplitude Hð0Þ. All the logarithmically
enhanced terms are given by

H ¼
X
k;q

αk
�
log

s
t

�
q
Ok;qHð0Þ þOð1Þ; ð18Þ

where the sum includes the following operators,

O2;1 ¼ −
1

8
ζ3T2; ð19Þ

O3;2 ¼ iπ
11

24
ζ3½½S;T�;T�; ð20Þ

O3;1 ¼ iπ
1

16
ζ4ð3½S;T�Tþ 58½½S;T�;T�Þ

þ 11

6
ζ2ζ3ð3½S;T�Tþ 2½½S;T�;T� − ½S2;T�Þ

þ
�
1

4
ζ5 −

1

24
ζ2ζ3

�
T3 − 4ζ2ζ3T: ð21Þ

It is interesting to note that there is no contribution to the 8s
channel; the only term contributing to 10þ 1̄0 is ½S2;T�,
and the contribution to 8a comes from the T;T2, and T3

terms only.
Conclusion.—We have computed for the first time a

complete three-loop four-gluon scattering amplitude
including all subleading color contributions. This allowed
us to verify a recent result for the universal structure of
infrared divergences at the three-loop order. The four
particle scattering amplitude in N ¼ 4 SYM is a uniform
weight combination of harmonic polylogarithms, to any
order in the ϵ expansion. We analyzed the Regge limit and
determined the three-loop Regge trajectory. Our full results
are given in the Supplemental Material [30], and provide a
nontrivial new data point in the systematic exploration of
properties of nonplanar scattering amplitudes.
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