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Abstract. We propose a novel mechanism for production of baryonic asymmetry in the
early Universe. The mechanism takes advantage of the strong first order phase transition
that produces runaway bubbles in the hidden sector that propagate almost without fric-
tion with ultra-relativistic velocities. Collisions of such bubbles can non-thermally produce
heavy particles that further decay out-of-equilibrium into the SM and produce the observed
baryonic asymmetry. This process can proceed at the very low temperatures, providing a
new mechanism of post-sphaleron baryogenesis. In this paper we present a fully calculable
model which produces the baryonic asymmetry along these lines as well as evades all the
existing cosmological constraints. We emphasize that the Gravitational Waves signal from
the first order phase transition is completely generic and can potentially be detected by the
future eLISA interferometer. We also discuss other potential signals, which are more model
dependent, and point out the unresolved theoretical questions related to our proposal.
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1 Introduction

Theories of baryogenesis (for a review see [1, 2]) aim at explaining the tiny difference between
the number density of baryons and antibaryons, about 10−10 (in units of the entropy density)
we observe in our universe. Until now, many mechanisms for the generation of the baryon
asymmetry have been proposed. Grand Unified Theories unify the strong and the electroweak
interactions and predict both baryon and lepton number violation at the tree level. They
may be considered perfect candidates for a theory of baryogenesis. The out-of-equilibrium
decay of superheavy particles can explain the observed baryon asymmetry, even though there
remain problems strictly related to the dynamics of reheating after inflation and to the fact
that the baryon asymmetry generated by the decays may be erased by the nonperturbative
sphaleron configurations present already in the Standard Model (SM).

This latter problem is in fact made a virtue in the leptogenesis mechanism where the
cosmic baryon asymmetry originates from an initial lepton asymmetry generated in the decays
of heavy sterile neutrinos in the early universe and then converted into baryon asymmetry
by the sphalerons themselves (for a review see [3]).

If one wishes to resort to much lower energy scales, one should consider the electroweak
baryogenesis (for reviews see [4, 5]), where the baryon number violation takes place during
first-order phase transitions happening at temperatures of the order of the electroweak scale
and the baryon number is preserved against the SM sphalerons if the first-order transition
is sufficiently strong. Of course in the SM as it stands with mh ≈ 125 GeV there is no elec-
troweak phase transition (EWPT) and instead one finds a smooth crossover [6–9]. Therefore
in order to have a viable electroweak (EW) baryogenesis, one should necessarily augment
the SM with new degrees of freedom that strongly couple to the Higgs. Moreover, new CPV
sources at the EW scale are needed. These features make electroweak baryogenesis scenar-
ios attractive because they could be tested or ruled out at the LHC and future colliders.
However, current LHC results and, in particular, the Higgs precision data already corner the
parameter space of the EW baryogenesis [10, 11] and even more gains are expected at HL
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LHC and in future colliders FCC-ee and FCC-pp (see [12] for a recent review of the FCC-pp
potential reach).

Can one generate a baryon asymmetry at temperatures lower than about 100 GeV,
when the baryon number violation provided by the SM sphalerons is switched off? The three
required ingredients for baryogenesis are of baryon number violation, C and CP violation
and out-of-equilibrium dynamics [13]. It is not easy to generate the baryon asymmetry
in a universe that reheats after inflation to a low temperature because the first and third
ingredients are hard to come by: it is difficult to introduce baryon number violation at low
temperatures without contradicting laboratory bounds on baryon number violation, and the
universe is expanding so slowly at low temperatures that it is very close to equilibrium.
However, several examples of such mechanisms exists, noticeably in the context of baryon-
number violating SUSY at the EW scale. In ref. [14] such a scenario demands a notoriously
low reheating scale of order of dozens of MeV. This unappealing feature can be potentially
avoided in a scenario of [15] if very heavy gravitinos are assumed.1

Another interesting example of low-energy baryogenesis, that we will later return to,
was introduced in the context of “darkogenesis” [17]. In the latter scenario the asymmetry
is first produced in the hidden sector, which harbors new particles with the baryon number,
and later on shared with the visible sector. The asymmetry in the hidden sector is produced
due to the strong 1st order phase transition (PT), which provides low-temperature departure
from equilibrium.

In this paper we propose a testable mechanism that overcomes these difficulties and
naturally produces the baryon asymmetry at the low temperatures, when the sphalerons
are not active anymore. The scenario that we propose crucially relies on the existence of a
hidden valley that is endowed with a very non-trivial thermal dynamics and is capable of
producing heavy particles out of equilibrium, which further decay to the SM via interactions
that violate both the baryon number and the CP. The hidden valleys as beyond the SM
(BSM) particle sector with potentially low masses, significantly below the EW scale, but
with weak couplings to the SM via higher-dimensional operators (suppressed, say, by the
TeV scale) have been proposed in refs. [18–20]. The motivation for this kind of physics was
dominantly signature-driven, because production of these new particles promised rare but
spectacular events at LHC. Nonetheless, it was soon understood that the hidden-valleys
scenarios can be highly theoretically motivated, for example, being a necessary ingredient of
various scenarios, addressing the naturalness problem of the SM [21–23].

In this paper we show that the hidden valleys can also be closely related to the problem
of the baryogenesis. The basic idea of our mechanism is that the strong 1st order PT in the
hidden sector can produce non-thermally particles, which are themselves much heavier than
the temperature of the PT, closely following the old idea of ref. [24]. This can happen only in
very strong 1st order PT, when the friction of surrounding plasma is not big enough to stop
the bubble walls of the broken phase from propagating with the speed on light. Collisions
of these ultra-relativistic bubble walls can potentially produce particles much heavier than
the temperature of the PT itself. The decays of these heavy particles, however, dominantly
proceed into the SM rather than the hidden sector due to the accidental symmetries of the
model. The observed baryon asymmetry is produced in these decays. Thus an appealing
and unique feature of this scenario is that one should neither necessarily reheat the Universe
to the temperature of the decaying particle, nor produce the decaying particles during the

1This first of these scenarios is now heavily disfavored by the LHC searches for the RPV SUSY and
displaced vertices [16].
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inflation. Reheating to the temperatures above the temperature of the hidden PT should
be sufficient to trigger the mechanism. In this paper we will both discuss the mechanism in
detail and introduce a particular model, which is fully calculable and perturbative, satisfies
all the existing cosmological constraints and illustrates all the features of the mechanism,
being its existence proof.2

Of course, because one can probably construct lots of pretty different models along
the lines of our proposal, potentially including the models that take advantage of non-
perturbative dynamics, it is hard to talk about generic signatures of this scenario, for ex-
ample any kind of guaranteed signature for the LHC or future colliders (although particular
realizations might have interesting predictions both for the LHC and the di-nucleon decay
experiments). However, one signature of this scenario is completely generic and virtually
inevitable: the gravitational waves. The strong first order PT which must proceed in the
hidden sector necessarily produces gravitational waves. We will show in our paper, that these
gravitational waves are of right intensity and frequency to be observed or excluded by eLISA
experiment, providing a unique opportunity for this future interferometer.

Our paper is structured as follow. In the next section we discuss the basic mechanism
that we propose in details, discussing qualitatively the conditions for the runaway bubbles
during the PT and why one might expect heavy particle production from these collisions.
In section 3 we present an existence proof to the mechanism, described in section 2. We
show that this particular model can satisfy all the cosmological constraints, identify partic-
ular spots in parameter space where phase transition with the runaway bubbles occur and
estimate possible baryonic abundance. We show that the baryonic abundance produced can
be easily be in agreement with the observed one. In section 4 we discuss the experimental
signature with a special emphasis on the primordial gravitational waves and the prospects of
eLISA. Finally, in the last section we conclude and discuss some open questions and possible
future directions.

2 The mechanism description

The mechanism that we propose relies on an assumption, that heavy particles, ψ, which
decay out of equilibrium via CPV and baryon-number violating (BNV) or lepton-number
violating (LNV) operators, are produced non-thermally at temperatures much lower than
their masses. This will allow us to produce these particles abundantly even if the Universe
is reheated to the temperature, which is significantly lower than the mass of the particle ψ,
or, alternatively if the ψ is annihilated too efficiently.

If the decays of the particle ψ proceed at high temperatures, above the temperature
of the EWPT (which, in the absence of the new physics, is simply a crossover), one can
take advantage of, for instance, LNV (or of a production of any other charge asymmetry
as long as is not orthogonal to the baryon number), as long as this does not contradict
the low-energy experimental test. If the asymmetry is formed in the leptonic sector, it will
efficiently moved to the baryonic sector by the SM sphalerons. On the other hand, we will
be in particular interested in the very low temperature baryogenesis, both because this region

2It is not the first time when the runaway bubbles are invoked in the model-building to produce the
Universe baryonic asymmetry. Refs. [25, 26] take advantage of the reheating process which that follows the
runaway bubbles collisions to produce the baryon asymmetry at the EW scale. Ref. [27] advocates low-scale
baryogenesis from the delayed EWPT with the runaway bubbles. In spite of these similarities, as we will see,
our proposal is quite different.
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of the parameter space is less explored and because this is where we can expect interesting
gravity wave signature in the detection range of eLISA. If these decays proceed after the
EWPT, the SM sphalerons are not active anymore and the decay must proceed via the
BNV operator. This is why we will mostly concentrate on the BNV decays, since they can
generically work at any temperature scale, however we should bare in mind that for the
high-temperature decays LNV is also a viable option.

On top of this, the decays of the ψ must proceed via CPV operators in order to produce
the desired baryonic asymmetry. We will show that in particular realizations that we have
in mind this CPV can be very efficiently hidden from the low-energy probes like electron
and neutron EDMs even if the baryogenesis scale is very low. Similar to the common lore of
the leptogenesis and the decays of the “WIMP-like particles”, the sector of the new fermions
should have at least two independent CPV phases.

Many mechanisms are known to produce stable or metastable particles non-thermally.
Usually they rely on decays of another heavy particles out of equilibrium. However, here
we are interested here in low temperature scenario with potentially very low reheating tem-
perature. A non-thermal particle production mechanism, which can efficiently produce the
particles much heavier than the equilibrium temperature, we will take advantage of is the
runaway bubble collisions in the strong first order cosmological phase transition. This mech-
anism has been discovered lots of time ago [24, 28] and was mostly discussed in the context
of the SM and the potentially first order EWPT.

The non-thermal low-temperature production of the heavy particles crucially demands a
strong first-order cosmological PT. Note, that this requirement is very different from the usual
EW baryogenesis requirement of the strong first order PT during the electroweak symmetry
breaking (EWSB). The EW baryogenesis requires quasi-stationary bubbles of the broken
phase, namely that the bubbles do not propagate “too fast” through the plasma [29–31].
Practically for successful EWBG one demands that vw is smaller than the speed of sound
∼ 0.3, while the baryon asymmetry is almost vw-independent for the values of vw between
10−3 and the speed of sound (see ref. [32] and review [5] for detailed discussions).3 In the
our case we do not desire to produce an asymmetry via the phase transition, but rather
an abundant population of heavy states. Therefore we will require bubbles which propagate
almost with the speed of light through the plasma, namely γ � 1, with the regular definitions

γ ≡
(
1− v2

w

)−1/2
(2.1)

It can be intuitively explained why do we expect the collisions of ultra-relativistic bubble
walls to produce particles that might be much heavier than the temperature of the PT. In
the case of the steady bubbles, the bubble wall carries a typical momentum p ∼ T , therefore
their collisions produce only particles with masses of order m . T , which further promptly
thermalize in the primordial plasma. In the case of the runaway bubbles the incoming
momentum is in fact much bigger, p ∼ γT . This in principle allows non-negligible production
of particles of order γT , which is much heavier than the temperature of the surrounding
plasma if γ � 1 [24]. Of course in oder for the mechanism to work, one should make sure
that the particles that are formed do not thermalized in the surrounding plasma and stay
out-of-equilibrium.4

3This requirement is needed because the excitations in plasma must diffuse efficiently in front of the bubble
wall. See also [33] for a related discussion.

4Although the collision of the ultra-relativistic bubbles is a highly non-equilibrium process, in the proposed
mechanism it is responsible for production of heavy particles which do not carry any asymmetry by themselves.
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Potential structure with runaway bubbles

Figure 1. Runaway bubbles in potentials which satisfy Bödeker-Moore criterion. The red line stands
for the full one-loop thermal potential, while the blue line stands for the mean free field approximation.
If the potentials look like on the right panel, the bubbles during the first order phase transition clearly
have runaway behavior. The picture on the left panel does not satisfy the criterion: although the local
symmetry breaking minimum exists both in the full potential and in the mean free field approximation,
the vacuum energy of the symmetry breaking minimum in the mean field approximation is bigger than
the vacuum energy of the symmetry preserving phase.

A condition for sustaining the runaway bubbles in certain cosmological phase transitions
was nicely formulated in ref. [34]. This reference shows, that in a gauge symmetry breaking
phase transition the pressure on the interface between the phases for γ � 1 can be found by
replacing the standard thermal potential by a mean field thermal potential VMF. The latter
can be approximated as

VMF =
T 2

24

∑
a

m2
a(φ) (2.2)

when the sum runs over all the particles which are in thermal equilibrium during the phase
transition. This in turn sets a simple self-consistency criterion for sustaining the runaway
bubbles if they beforehand reach the ultra-relativistic velocity: if at the nucleation tem-
perature one finds that the mean field-approximated potential at the symmetry breaking
minimum point (as determined by the full thermal potential!) has lower energy than the
symmetry preserving local minimum, the bubbles are expected to be runaway.5

We will further use this criterion to establish the parameter space of the model. We
illustrate this criterion on figure 1.

From the very formulation of this criterion it is clear that we will further have to focus on
the calculable models of the symmetry breaking PT. This does not mean that our mechanism
cannot work, for example, in systems with confinement PT. However, since these systems
are inherently uncalculable and the criterion that would be analogous to the Bödeker-Moore
criterion is not known for these systems, we cannot make a firm point that such a system
produces the runaway bubbles. We believe that some of these systems do, but we cannot
show this with our tools and leave this as an open question. It is also worth noticing that

5Another criterion for the runaway bubbles, based on the calculation of [34], was introduced in ref. [35].
We find, in full agreement with [36], that this criterion is stronger than the Bödeker-Moore criterion, although
the models that we consider differ significantly from those, considered in [36]. Given the current theoretical
uncertainties in the treatment of the runaway bubbles, we are going to adopt the Bödeker- Moore criterion
which is the most conservative.
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because our model will rely on the higgs-like phase transition, it will not be natural in the
same sense as the SM is unnatural. Since we would like to present here an existence proof,
we will not try to solve this problem here. However, it can be relatively easily rendered
natural either via supersymmetrization of the hidden sector or via taking advantage of the
confinement PT as we have previously discussed.

Notice, that from the point of view of hidden valley thermal behavior our mechanism
shares some similarities with the idea of the “darkogenesis” [17]: both demand strong order
phase transition in the hidden sector at temperatures that are smaller than the temperature
of the EWPT. However, the “darkogenesis” demands stationary bubbles, because the asym-
metry is produced in during the dark PT itself, and the dark sector must be augmented with
the sufficient sources of the CPV. Our mechanism takes advantage of the different regime
of this kind of models, with the runaway bubbles and demands no CPV sources in the dark
sector itself.

Let us now concentrate on the last part of our mechanism, namely the heavy particle that
we have introduced. In order to be produced abundantly, they should be coupled sufficiently
strong to the particles of the hidden sector that undergoes the strong first order PT. On the
other hand, they should not decay to the particles of that sector. We will concentrate on
the models, in which these heavy particles possess an approximate Z2 symmetry, which is
exact with respect to the particles of the hidden sector and broken by a small coupling to the
SM matter to allow out-of-equilibrium decays. Therefore, these heavy particles can be either
in singlet or adjoint representations of the SM. For simplification purposes we will assume
them to the the SM singlet fermions. The models with the SM adjoints can be potentially
much more challenging, because they can imply other particles with the SM charges in the
hidden sector.

From the structural point of view the sector of the heavy decaying particles very closely
resembles the analogous structure in the baryogenesis for weakly interacting massive parti-
cles [37], which can by itself viewed as an incarnation of “WIMPy baryogeneis” [38]. The
crucial difference between our scenario and these works, is that by assuming a light hidden
valley, we can make the entire mechanism operate at much lower temperature scales that
the standard WIMP-inspired scenario. Moreover, because we can produce even at low scales
much bigger abundances of the heavy decaying particles that one expects from the thermal
scenarios, we will be able to get the observed baryonic asymmetry with much smaller values
of the CPV, than one needs in the “WIMPy” scenarios.

3 A model

Let us now describe a model that can serve as an existence proof to the mechanism, described
in section 2. Consider an SU(2) gauge symmetry in the hidden sector with “dark higgs” Φ
in the fundamental of the dark SU(2) and a pair of fundamental fermions Li with i = 1, 2.
We allow a standard symmetry-breaking potential for Φ

V = −m2|Φ|2 + λ|Φ|4 . (3.1)

We will further use Φ for the full dark-SU(2) doublet and ϕ for the dark higgs excitation,
using following parametrization

Φ =
(

0, f+ϕ√
2

)
(3.2)

and f standing for the VEV d the dark higgs.
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Let us also introduce a pair of singlet fermions ei, again with i = 1, 2. The most generic
couplings involving the fermions that we can write down are

L ⊃ yijΦLiej +mLεijε
abLiaL

j
b + (me)ije

iej . (3.3)

We imagine that the couplings yij ∼ O(1), but non-degenarate, while all the rest of the bare
masses, mL and me, are of the same order of magnitude as y〈Φ〉. As previously, i is a flavor
index and a is an SU(2) index. After the hidden SU(2) breaking and diagonalization of the
fermionic mass matrix one gets 6 Majorana fermion states roughly at the scale ∼ y〈Φ〉. Note
that these particles generically will inherit O(1) couplings to the dark higgs, however the
lightest fermionic states cannot decay into the hidden sector because of the accidental Z2

symmetry, under which they are odd and the rest of the hidden sector is even. Namely they
perfectly satisfy the criteria, that we have laid out in the previous section: heavy particles
with O(1) couplings to the dark sector but unable to decay into it. We will later couple these
particles weakly to the SM particles to ensure their decays via BNV and CPV operators to
produce the visible sector baryonic asymmetry.

The fermions that we have described above have to be produced in the bubbles collisions
during the dark SU(2) breaking phase transition. As we will see later explicitly, this will be
possible if we choose following regime

mfermions � mgauge−bosons � mϕ . (3.4)

Of course this model of the hidden sector is by no mean novel. It strongly resembles the EW
model (without gauging the U(1)Y ), as well as handful of the “darkogenesis” models. The
trick is that in the regime (3.4), which has not been studied in detail beforehand, the model
exhibits a very non-trivial thermal behavior that we will take advantage of.

The structure of the rest of this section is as follow. First, in 3.1 we establish the
parameter space for the runaway bubbles and discuss the production of the heavy fermions
in the collisions. However, because the hidden sector might populate very low mass ranges,
one might worry about undesired relics and late decays in this sector. We address these
questions of the cosmological safety in 3.2. In the subsection 3.3 we discuss the couplings of
the exotic heavy fermions to the SM and the production of asymmetry in decays. Finally,
in 3.4 we will return back to the heavy fermions sector, define the couplings to the SM and
calculate the expected baryonic asymmetry that we produce.

3.1 Runaway bubbles in the hidden sector

We concentrate now on the higgs and gauge bosons part of the hidden sector. As we have
alluded beforehand, we will be interested in regime where the gauge bosons are much heavier
than the dark higgs, triggering gauge bosons driven PT. This in turn, determines the hierar-
chy of couplings g2 � λ, where g is a dark gauge coupling and λ is a dark quartic. It is well
known from the studies of the SM with a very light higgs, that the phase transition in this
case is strong first order, and driven by the gauge bosons. We further calculate the thermal
potential for the dark higgs, which in our case becomes

Vth =
giT

4(−1)Fi

2π2

∫ ∞
0

dx x2 log

(
1− (−1)Fi exp

(√
x2 +

m2
i (ϕ)

T 2

))
(3.5)

It is well known that although qualitatively this expression is sufficient, it misses lots of
numerical effects that have to do with large two-loop corrections, non-perturbative effects
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and further uncertainties that we will latter list in detail. However, since from the SM lesson
we know that it does give qualitatively correct answer, we will proceed with this expression.
Because we are merely trying here to give a existence proof, we will be less worried about
numerical factors of O(1) that we will be likely to miss with our procedure. We also perform
“daisy” resummation [39, 40] by replacing in the thermal potential

m2
a(ϕ)→ m2 + Πa(T ) , (3.6)

with Πa(T ) being the thermal masses squared of the particles, usually of order of the plasma
temperature.

In order to check, if the potential satisfies the Bödeker-Moore criterion, we compare it
at temperature T to the mean field potential, which in our case takes a compact form

Vth,MF =
3 g2T 2h2

32
. (3.7)

Of course, in both cases we add the thermal potential to the tree level potential and the
one-loop Coleman-Weinberg potential.

It is worth now explaining why do we originally choose the regime (3.4) and why does the
system in this regime often satisfy the sufficient criterion for the runaway bubbles. Ref. [34]
pointed out that runaway bubbles in the context of the EWSB is reachable with at least two
scalar fields in the higgs sector and can happen in singlet-catalyzed EWSB. The reason is
very straightforward: one usually gets the system with two different vacua from the cubic
higgs term in high-temperature expansion of eq. (3.5). Because the mean field thermal
potential only cares about the leading term in T 2, it contains no cubic term in the higgs
field, essentially ruling out the possibility of getting two-vacuum structure in the mean field
approximation with a cubic term that is not produced already at the zero temperature. In the
concrete example of ref. [34] the extra singlet has been used to produce a tree level effective
cubic term.

However, our scenario is qualitatively different from the EWSB. Because we insist on
the mass hierarchy (3.4), our quartic coupling in the higgs sector is much smaller than the
gauge coupling g. In this situation we might discover, that in the T = 0 potential the 1-
loop Coleman-Weinberg terms are as important, as the tree level terms. This is indeed the
case when

λ ∼ g2

16π2
(3.8)

and this is precisely a regime that we are going to further focus on. For this choice of
parameter space, the T = 0 potential has a much more complicated structure, because it also
includes the Coleman-Weinberg term

VCW =
Ng

64π2
m4
g(ϕ)

(
log

mg(ϕ)2

v2
− 5

6

)
(3.9)

where Ng is the total number of heavy gauge bosons degrees of freedom, which is 9 in the
case of our simple SU(2) toy model and mg = gϕ√

2
is the higgs-dependent mass of the heavy

gauge bosons. Of course, in order to make sure, that the values of the T = 0 higgs mass
and its VEV do not move from the values that we have chosen, we add appropriate one-loop
counter-terms to the λ and m2.
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Figure 2. The upper bound on the nucleation temperature (red line) and the highest temperature
at which BM criterion for the runaway bubbles is satisfied (blue line). Below the black line the
barrier between the real vacuum and the false vacuum disappears. In the most pessimistic scenario
the relevant parameter space lies to the right of the intersection between the blue and the red curves,
while in the most optimistic scenario it is to the right of the intersection between the black and the
blue curves.

This is not the first time that it noticed that significant changes in the structure of
T = 0 potential might have an important impact on the nature of the symmetry breaking.
Similarly to our structure, it was noticed in [41] that the changes in the zero-temperature
potential can trigger the first order PT in the EWSB. This picture is very different from the
standard EW first order PT, driven by the thermal loops of the new particles. In the picture
of [41] the barrier between the symmetry-breaking and the symmetry-preserving vacuum
may persist even at the zero temperature, while the thermal loops play relatively a minor
role in shaping the thermal potential (the effect was also discussed in detail in [42]). In
the SM case this is not that easy to achieve because for the mh ≈ 125 GeV the quartic of
the SM is λSM ≈ 0.12. If one would like to have a Coleman-Weinberg (CW) potential that
is numerically comparable to the tree level one, he would need essentially non-perturbative
couplings of the new particles to the higgs. Ref. [41] suggests overcoming this problem by
putting large number of new scalars at the EW scale with O(1) couplings to the SM higgs.
However, it is not clear weather the model, presented by this reference is in fact calculable
in ’t Hooft sense, namely Nλ� 1.

Nevertheless, one can easily envision this scenario without dubiously large couplings or
high-multiplicity fields in the hidden sector. Moreover, the situation emerges naturally in
the regime (3.8) where the corrections to the 1-loop CW potential at T = 0 from the gauge
bosons are so significant, that they in fact reproduce the picture of the zero-temperature
produced barrier.

To check further for the candidate points in the parameter space we proceed as follow.
We identify the points which satisfy the Bödeker-Moore criterion for a certain temperature
and calculate the upper bound on the nucleation temperature for these points. If the O(3)
solution has the least action, the tunneling probability per unit time per unit volume is given
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by [43, 44]

Γ

ν
= A(T )e−S3/T (3.10)

where S3 is the three-dimensional bounce action and A(T ) is a prefactor of order ∼ T 4. In
order to calculate the bounce action, we should solve for φ the Euclidian equation of motion

d2ϕ

dr2
+

2

r

dϕ

dr
=
dV (ϕ;T )

dϕ
, (3.11)

which is a boundary value problem with the boundary conditions ϕ(∞) = 0 and ϕ̇(0) = 0.
One further calculates the 3D bounce action using this approximation.

One can make a further approximation by assuming that the thickness of the bubble
wall at the moment of its formation is much smaller than the radius of the bubble [43, 44].
In this case the 3D actions can be approximated as

S3 ≈ −
4π

3
r3∆V + 4πr2S1, where S1 ≡

∫
dϕ
√

2V (ϕ;T ) (3.12)

where r stands for the radius which extremizes the 3D action, ∆V is the energy difference
between the false minimum and the global one, and the integration in the surface term S1 runs
from zero to the point at which V (ϕend) = V (ϕ = 0). In fact, this approximation is decent if
∆V is much smaller than the barrier between the minima. This corresponds to the weak first
order PT, which is not our case. Therefore, strictly speaking the approximation (3.12) never
works in our case. However, it had been shown in ref. [45] that this approximation always
overestimates the temperature of the PT, henceforth it always underestimates the strength
of the PT. The underestimation is in fact as big as O(1).

Finally after the we have calculated the 3D action as a function of temperature, the
probability for a single bubble to nucleate within the horizon volume is order-one when
following condition holds [46]:

ξ ≡
∫ ∞
Tnuc

dT

T

(
2ζMpl

T

)4

e−
S3(T )
T ∼ O(1) , (3.13)

where

ζ−1 ≡ 4π

√
πg∗(T )

45
. (3.14)

We show the bound on the nucleation temperature vs the minimal temperature at which
the Bödeker-Moore criterion for the runaway bubbles is satisfied for a particular choice of
mϕ and f on figure 2. Clearly we see that the upper bound on the nucleation temperature is
lower than the highest possible temperature at which the bubbles run away for an appropriate
choice of the gauge coupling g. Note also that because the PT is very strong first order in the
entire range presented on the figure, the bound on the nucleation temperature is expected
to overestimate the real nucleation temperature vastly. Therefore, it is not unlikely that the
entire parameter space, or much bigger portion of it, where the minimal PT temperature
does not exceed the bound on the BM criterion (g & 0.103), is suitable for the runaway
bubble collisions. Note also, that the bound on the nucleation temperature that we find, is
in fact significantly bigger than the dark higgs mass, while at least naively we expect it to
scale as the higgs mass.
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3.2 Cosmological safety of the hidden sector

Although the model that we propose in this paper is merely an existence proof to the larger
new mechanism, and probably should not be taken too seriously for the phenomenological
purposes, one should still check that it is not in conflict with the basic cosmological observa-
tions. Here we show that all the potential problems can be resolved in the relevant regions
of the parameter space.

The potential problems are twofold:

1. The dark higgs is the lightest dark particle without any obvious efficient annihilation
channels. We should introduce new couplings, to make sure that the higgs decays into
the SM faster than within 1 sec to ensure the Big Bang Nucleosynthesis (BBN) safety

2. The SU(2) gauge bosons themselves are dark-stable. A-priori this might be a worry.
We will show, that in the full theory, where we include the fermions and the interactions
with the SM, they decay to the SM states faster than within 1 sec.

The first problem on this list can be addressed in several different ways. The most
straightforward one that we will focus on is simply via introducing a tiny higgs-portal coupling
to the SM higgs portal:

L = κ|H|2|Φ|2 (3.15)

One should be careful with this kind of coupling because it also induces an undesired mix-
ings between the visible and the dark higgs, as well as it induces invisible higgs decays,
which are now constrained by the LHC data. Moreover, while such a coupling induces new
mass parameters both to the visible and the hidden higgses. We explicitly check that the
induced T = 0 mass does not exceed the bare mass, triggering a potential instability of the
higgses potentials.

In the mass insertion approximation the coupling (3.15) induces following decay rates
of φ into the SM fermions

Γ(ϕ→ ff̄) =
κ2f2m2

fmϕ

4πm4
h

(
1−

4m2
f

m2
ϕ

)3/2

(3.16)

while the invisible decay width of the SM higgs into the hidden higgses is

Γ(h→ ϕϕ) =
1

8π

κ2v2

mh

√
1−

4m2
ϕ

m2
h

. (3.17)

The invisible higgs width has been looked for both by ATLAS and CMS collabora-
tions [47, 48], reporting exclusion of the SM-like higgs invisible branching ratios of 65% and
75% respectively at 95% confidence level. Of course a proper combination of these results is
beyond the scope of this work and we will crudely assume for the further analysis that the
invisible higgs BR should not exceed 50%, providing us with an upper bound on κ.

The lower bound on κ comes from the requirement that ϕ should decay with at 1 sec
in order not to spoil the BBN predictions, or in other words Γ(ϕ→ ff̄) < 6.58× 10−25 GeV.
Although this constraint looks pretty innocuous at the first glance, it turns out to set a
meaningful and important bound on the light scalar mass. Note that below the mass of 1 GeV
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Figure 3. Constraints on the value of κ in the higgs portal coupling for different values of f . Above
the blue line the structure of the hidden sector potential may be altered without appropriate fine-
tuning due to too large induced dark higgs mass. Below the purple line the decay time of the dark
higgs exceeds 1 sec. The shaded region is allowed. The constraints from the invisible higgs decays
κ . 0.01 are completely subdominant and they are not shown on these plots.

the scalar is allowed to decay only into the light fermions, suffering both from the small κ
suppression and from the SM Yukawa suppression.6 On top of this, one gets an upper bound
on κ from the demand of the stability of the dark higgs potential. We summarize all these
constraints for representative choices of f on figure 3.

As we see, the constraints coming from the higgs invisible width are completely sub-
dominant and the constraints are dominated by considerations of the structure of the dark
higgs potential and the fast enough decay of the dark higgs. The parameter space widely
opens up around mϕ ∼ 100 MeV. Here we emphasize that the bound that we get here is
only relevant for this particular model, otherwise the scale of the mechanism, rather than the
model can be as low as the BBN scale 1 MeV.

Another potential cosmological worry is the dark-stability of the massive gauge bosons.
However, even in the dark sector itself the accidental Z2 symmetry which protects the stability
of the dark gauge bosons, will be broken by the couplings to the dark fermions. Further,
when the interactions with the SM fermions will be taken into account, we will see that these
dark massive gauge bosons can potentially decay way faster than 1 sec into the SM fermions
and therefore pose no real cosmological threat.

3.3 Couplings to the SM

After establishing the parameter space of the runaway bubbles PT and setting the scales
which do not contradict the existing cosmological observations, we are now ready to introduce
the heavy fermions sector and later to estimate the final baryon asymmetry.

Let us see how can we couple it to the BNV operators in the SM and estimate the
baryon asymmetry that they produce. Clearly, we cannot couple Li particles to the SM,
because such a coupling would necessarily be non-gauge invariant under the hidden SU(2).
However, the gauge singlets ei come here to our rescue. The most generic couplings to the

6Although the decays into di-photons are kinematically allowed, their branching ratio (BR) never exceeds
the the BR into the fermions, as long as the decays into e+e− are kinematically allowed. The same is true for
the decay into the gluons above the ΛQCD scale.
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BNV SM operators one can introduce are

L ⊃ 1

Λ2

(
λαijkeαu

c
id
c
jd
c
k + ηαijkeαQiQj(d

c
k)
†
)
. (3.18)

It does not really matter at this stage what is precisely the operator that we further proceed
with. Note, however, that these operators have a slightly different flavor structure, which will
be important for our further discussion in section 4. While the first operator is antisymmetric
in the color space, and therefore demand also anti-symmetrization over j and k indices in the
λ coefficients, the second operator is anti-symmetrized in the color space and in the SU(2)
space, allowing non-zero i = j coefficients inside η.

We further analyze the decays of the heavy hidden fermions, which eventually produce
the baryon asymmetry. Let us collectively call all the Majorana fermions, that we get from
the diagonalization of the fermion matrix ψ. For concreteness we concentrate on the couplings
λαijk in eq. (3.18) and set all the coupling η to zero.7

To simplify further the discussion let us UV-complete the four-fermi effective opera-
tor (3.18) via introducing an exotic colored scalar ∆ with the hypercharge −2/3:

L ⊃ λ′αi∆eαuci + λ′′jk∆
∗dcjd

c
k +M2

∆|∆|2 . (3.19)

In general, all the coefficients λ′ and λ′′ are complex. Note also that the fermions eα are real
due to the Majorana mass term (cf. eq. (3.3)) and therefore they cannot be re-phased.

If we forget for a moment about the SM Yukawa couplings, all the imaginary phases of
the coupling λ′′ can be absorbed into the re-phasing of the RH down-type fermions. If we
had been forced to rely only on those couplings, the only CPV effects would be proportional
to the Jarlskog invariant, forcing our CP-efficiency to be as small as εCP . 10−8.

To avoid this marginal possibility, one can rely on the coefficients λ′. If we had had only
one generation of eα, we would have faced the same problem here, because all the imaginary
phases could be absorbed into redefinitions of uci . However, if we can two generations of the
fermions eα we have three irremovable phases, very similar to the common lore of the standard
leptogenesis scenario. Also, similar to the standard leptogenesis scenario, one gets the CPV
violating effect from the interference between the tree level and the one-loop diagram as
schematically shown on figure 4. With the assumption that the phases can be as big order-
1 and the splittings between various Majorana states are comparable to the masses of the
fermions ψ, the maximal value of the CP-efficiency we can get in a non-resonant perturbative
scenario is

εCP .
1

8π

(
mψ

m∆

)2

. (3.20)

As we will see in the next subsection, this allows us lots of freedom with choosing
parameters, before we even get close to the collider bounds imposed by the LHC. First, we
will see that we do not need very high value of εCP, and the values as small as 10−4 . . . 10−7

can be perfectly sufficient in order to get an observed relic abundance. This safely allows

7Our following discussion has a handful of similarities to TeV-scale model baryogenesis of refs. [49, 50]
because of the very similar couplings structure. However, there are important differences. First, it will
be much simpler, because we neither involve the neutrino masses in our discussion nor invoke the resonant
processes. Second, more important, we introduce two generation of Majorana fermions eα, which allows us,
similar to the leptogenesis scenario, to get irremovable phases in the exotic fermions sector, without relying
on the tiny Jarlskog invariance.
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Figure 4. CP violating decays of the heavy fermions. In order to produce the asymmetry, one needs
the interference between the (first) tree level diagram and the loop level diagrams, which are sensitive
to the irreducible phases of the couplings of the scalar ∆. The blobs stand for the mixings between the
Majorana particles, that we necessary have in the most generic model. These mixings are unavoidable
because all the phases in the single-generation couplings are removable.

us to keep the colored scalar ∆ more than an order of magintude heavier than the fermions
ψ. Second in order not to suppress εCP further, it is sufficient to keep the couplings λ′ to
be ∼ O(1). The couplings λ′′ essentially play no role in contributing to the CP-aymmetry.
On the other hand the scale Λ from the eq. (3.18) maps onto Λ2 ∼ M2

∆/(λ
′λ′′). Hence by

keeping λ′′ small, we can make the scale Λ almost arbitrarily large without suppressing the
CPV effects, easily above the generic bounds of ∼ 100 TeV, which apply from the double-
nucleon decay (see section 4 for more details).

At this point we can return to the dark gauge bosons and briefly comment on their
lifetime. We will explicitly see that it poses no cosmological worry. When the effects of
the heavy fermions and the scalar ∆ are properly taken into account, we find that the dark
gauge bosons can decay to a pair of the SM fermions already at the one loop level. The decay
proceeds via the gauge coupling and the couplings λ′αi in eq. (3.19) (see figure 5). The decay
rate is parametrically

Γ(W ′ → uū) ∼ 1

8π

(
gλ′2

16π2

)2
m5
W ′

m4
∆

(3.21)

Note, that although we assume that the gauge coupling is small, say g ∼ 10−2, the coupling
λ′ is not necessarily small, and it can easily be O(1), while the scale Λ can be easily small
because λ′′ is small. For representative values m∆ ∼ 1 TeV, mW ′ ∼ 10 GeV and g ∼ 10−2

we get that the decay width is approximately 10−16 GeV, clearly faster than 1 sec, posing
no cosmological problem.

3.4 Production of heavy matter in bubble collisions and estimation of the asym-
metry

Now we can finally calculate the abundance of the heavy fermions produced in the bubble
collisions. Because we expect dominantly post-sphaleron decays and no important sources of
the washout, we expect final produced baryon asymmetry to be ΩBh

2 ≈ εCP × Ωψh
2.

The abundance of heavy particles produced in runaway bubble have been explicitly
calculated in ref. [51] with assumptions of either purely elastic or purely inelastic collisions.8

In general, the energy produced in these collisions per unit area in the form of particle a is

8In this subsection, when we discuss the elastic vs. inelastic collisions of the DM, we mean the collisions
of the bubble walls rather than the particles.
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Figure 5. Dark gauge boson decay at one-loop, induced by the couplings of the heavy fermions and
the scalar ∆ to the SM. The coupling to the fermions is gauge coupling suppressed, but assuming
λ′ ∼ 1 there are no suppressions in the Yukawa interactions.

given by

E
A

=
1

4π2

∫ ∞
χmin

dχf(χ)
√
χ

∫
dΠa

∣∣M̄(ϕ→ α)
∣∣2 =

1

2π2

∫ ∞
χmin

dχf(χ)
√
χ ImΓ̃(2)(χ) , (3.22)

where the function f(χ) carries the information about the details of the bubble collisions and
the efficiency of production of various particles in the runaway bubble collisions depending on
the nature of the collision (elastic or inelastic respectively). dΠα is a Lorentz-invariant phase
space and Γ̃(2) is a two-point 1PI Green function in the momentum space. |M(ϕ→ α)|2 is
spin-averaged squared amplitude of the dark higgs decay into a set of particles α.

In expression (3.22) the integration runs over all the available invariant masses squared
of the collisions, parametrized by variable χ ≡ ω2−~p2. χmin stands for the minimal available
invariant mass at which the production of the final state α is kinematically possible and it
is equal to the square of the sum of all the particles masses in the final state α, namely
χmin = (

∑
state αMi)

2.
We will further analyze two different cases, differentiating the elastic bubbles collisions

from the inelastic ones. The explicit expression for the function f(χ) in the elastic case,
obtained in ref. [51], is

f(χ)EL =

16f2 log

(
2( γw
lw

)2−χ+2 γw
lw

√
( γw
lw

)2−χ
χ

)
χ2

Θ

((
γw
lw

)2

− χ
)

(3.23)

where γw is defined in eq. (2.1), Θ stands for the step function and lw is the thickness of the
bubble wall. Practically one usually gets lW ∼ O(10)/TPT. The above written approxima-
tion assumes the thin wall approximation. The reader can find the full expression, without
a thin wall approximation in ref. [51], however we made an explicit numerical check and
found that (3.23) is sufficient for our purposes and does not introduce intolerable numerical
imprecisions. The analogous expression for the purely inelastic collisions is

f(χ)IN = 4f2m4
ϕ

log

(
2( γw
lw

)2+χ+2 γw
lw

√
( γw
lw

)2+χ

χ

)
χ2
(

(χ−m2
ϕ)2 +m6

ϕ(γwlw )−2
) (3.24)

Parenthetically we note that this expression is also an approximation, although it is also
adequate for us in the entire parameter space.
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The work of Falkowski and No have analyzed the efficiency of the elastic and inelas-
tic collisions in the case of the EWPT, namely where one naturally has TPT ∼ mh ∼ v.
They concluded that there is no efficient production above the scale mh (already in striking
disagreement with the original conjecture of Watkins and Widrow [24], which talks about
efficient production of particles as heavy as m ∼ γT ), while the situation is more subtle with
the elastic collisions. The paper by Falkowski and No emphasizes that while scalars heavier
than the higgs mass cannot be produced in the EW theory runaway PT, it is possible that
heavy exotic gauge bosons and fermions can still be produced abundantly. While we agree
with the statement on the scalars, we find that such a production in the SM is impossible
also for the gauge bosons and the exotic fermions. The problem is that in order to ensure
sufficient production of the exotic particles above TPT, ref. [51] assumed the tree level cou-
plings of the exotic fermions to the Higgs L ⊃ λHff̄ and the tree level coupling of the higgs
to the exotic vector bosons L ⊃ λV hMV VµV

µ, with H standing for the SM higgs doublet and
h is standing for the physics higgs boson. In the former case it is impossible to talk about
production of particles much heavier than the mh because this would imply non-perturbative
Yukawa coupling to the higgs.9 In the latter case an efficient production of the heavy exotic
gauge boson will jeopardize the unitarity of the V V → V V scattering.

After the short overview of the EWPT, let us return to our case that allows for a
separation of scales mh, f and TPT, which does not happen in the SM. We find that
expressions (3.23) and (3.24) behave almost identically at

√
χ < mϕ, with an inelastic solution

having a characteristic resonance at
√
χ ≈ mϕ. However the behavior at higher masses is

very different: while the f(χ)IN drops very fast above the scale mϕ, rendering the production
of heavy particles at

√
χ > mϕ virtually impossible, the function f(χ)EL descends much less

steeply. We find that in purely elastic collisions one can still efficiently produce in the runaway
bubble collisions particles as heavy as f . Above this scale, both elastic and inelastic collisions
turn out to be highly inefficient. Therefore, it is clear, that in order for our mechanism to
work, we will need the collisions to be fairly elastic.

Another worry that we should emphasize here is the possibility of elastic collisions and
the possibility of production of particles in the elastic collisions in general. It is entirely
possible that in the case of perfect elasticity the bubbles simply travel through one another
without producing any particles in the collisions.10 This is the case, for instance, of the
Sine-Gordon model, as noticed already in [24], for which the production becomes possible
only at γ−1

w order. Numerical simulations though show that the dynamics of bubble collisions
is extremely complicated [52]: in models with a ϕ4 models bubbles collide and indeed may
reflect each other by also emitting soft scalar waves. We leave the decisive conclusion on this
point to future studies.

Now we can use all these formula and, assuming the elastic collisions, estimate the total
abundance of the baryonic matter in the Universe produced by our mechanism. The relevant
two-point 1PI Green function for the Dirac fermions (note the factor of 2 because of the two
fermion generations) is

Im Γ̃(2)(χ) =
y2

4π
χ

(
1−

4m2
f

χ

)
Θ(χ− 4m2

f ) . (3.25)

9A theoretical possibility that this exotic fermion can gain its mass partially from the non-higgs sources
would imply additional sources of the SM SU(2) × U(1), the possibility which is cornered by the EW preci-
sion tests.

10We are grateful to Thomas Konstandin for an illuminating discussion on this issue.
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Figure 6. Predicted baryonic abundances (reweighed by the CP-efficiency of the process) as a function
of γ. The dashed lines bottom-up show the measured ΩBh

2 (namely requiring perfect CP-efficiency),
100× ΩBh

2 and 105 × ΩBh
2 respectively. In all the cases we have assumed β−1 = 10−3H−1.

A small subtlety is that due to the mixings resulting from the couplings (3.3) we are producing
Majorana rather than Dirac fermions. However, if we are interested in total production of
all the available states, the final result will still be given by expression (3.25).

After picking up together all the relevant terms, one finds the produced number of
particles per comoving volume

Yα =
225

4π2

1√
g∗TMPl

(
β

H

)( E
A

)
, (3.26)

with β−1 being the duration of PT, typically β ∼ (100 . . . 1000)×H [53].

We show the expected abundances for various points in the parameter space on figure 6.
The maximal possible γ that we can expect is

γ .

(
β

H

)−1 Mpl

f
, (3.27)

namely can potentially be as large as (1014 . . . 1015). In practice this value is smaller than the
maximum possible velocity, because this naive estimation neglects the log γ friction terms,
which might also become important for these values of γ. However, even for relatively mild
values of γ ∼ 109 we can get a correct baryonic abundance with pretty low CP-efficiency, in
fact as small as εCP ∼ 10−5 which can very easily achieved perturbatively without any need
invoking resonant baryogenesis.

4 Experimental signatures

Because the entire mechanism is crucially based on the strong first order PT at relatively
low temperature with runaway bubbles, the prediction of the primordial gravity waves is
completely model independent. Primordial gravitational waves are generic signatures of the
strong cosmological first order PT, and their effects were studied in detail in the context of the
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non-standard EWPT [36, 54–59], in the case of SM QCDPT with the lepton asymmetry [60],
and, recently, in the case of low-temperature hidden sector PT [61, 62]. The latest case is in
fact similar to our study.

We analyze the predicted Gravity waves in the first subsection of this section. We later
turn to comment on more model dependent signature, like n− n̄ oscillations, double nucleon
decay and even possible collider signatures.

4.1 Gravitational waves

The gravitational wave signal is especially interesting and intriguing in this particular mech-
anism not only because that it is very generic, but also because of its potential detectability
in the forseeable future. Indeed, strong cosmological phase transitions at temperatures in
range (1 . . . 50) GeV can be precisely in the preferred range of the future eLISA detector. At
this point it is little bit difficult to estimate the sensitivity of the eLISA exactly, because the
sensitivity studies are now under way. However lots of future designs of the eLISA will be
able either provide evidence to our mechanism, or falsify big parts of its parameter space.

During a strong first order phase transition the primordial gravitational wave is pro-
duced due to three different processes which all generically coexist: collisions of bubble walls,
sounds wave in the plasma after the bubbles collided and magnetohydrodinamic (MHD)
turbulence in plasma forming after the bubbles collided. Therefore

ΩGWh
2 = Ωϕh

2 + Ωswh
2 + Ωturbh

2 , (4.1)

where Ωϕ stands for the first mentioned contribution. In our following analysis we will closely
follow the discussion of [63], from where we also take the expressions for all these distributions.
We provide here only the final formula for our estimations, and for more details the interested
reader is referred to [63] and references therein.

The fundamental parameter, which largely determines the intensity of the gravitational
wave emitted by the strong 1st order phase transition is the ratio between the vacuum energy
density and the radiation energy density during the PT:

α ≡ ρvac

ρrad
=

30

π2

Vth(0, Tnuc)− Vth(f(Tnuc);Tnuc)

g∗T 4
(4.2)

With this parameter and the duration of the PT β−1 we can express the intensity of the
gravity waves as a function of the frequency. Note, that the discussion in ref. [63] is pretty
generic and applies to different velocities of the bubble walls. Here we assume runaway bubble
walls, vw = 1, in which case the relevant expressions for intensity are:

Ωϕh
2(f) = 0.13× 10−5

(
H

β

)2( κϕα

1 + α

)2(100

g∗

)1/3

Senv(f) , (4.3)

Ωswh
2(f) = 2.65× 10−6

(
H

β

)(
κvα

1 + α

)2(100

g∗

)1/3

Ssw(f) , (4.4)

Ωturbh
2(f) = 3.35× 10−4

(
H

β

)(
κturbα

1 + α

)3/2(100

g∗

)1/3

Sturb(f) . (4.5)
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The functions S(f), which determine the dependence of the gravitational wave intensity on
the frequency are:

Senv(f) =
3.8(f/fenv)2.8

1 + 2.8(f/fenv)3.8
, (4.6)

Ssw(f) =

(
f

fsw

)3( 7

4 + 3(f/fsw)2

)7/2

, (4.7)

Sturb(f) =
(f/fturb)3

(1 + (f/fturb))11/3 (1 + 8πf/h∗)
(4.8)

with

h∗ =

(
T

100 GeV

)(
g∗

100

)1/5

1.65× 10−5 Hz . (4.9)

In these expressions the frequencies fenv, fsw and fturb are the frequencies at which each of
the functions peaked. In general we expect them to be of order ∼ β (inverse duration of
the phase transition) and further redshifted with h∗, given by eq. (4.9). Taking all this into
account we get the expected peak frequencies:

fenv =

(
β

H

)(
T

100 GeV

)(
g∗

100

)1/6

3.8× 10−6 Hz (4.10)

fsw =

(
β

H

)(
T

100 GeV

)(
g∗

100

)1/6

1.9× 10−5 Hz (4.11)

fturb =

(
β

H

)(
T

100 GeV

)(
g∗

100

)1/6

2.7× 10−5 Hz (4.12)

Finally the parameters κenv, v, turb stand for the fraction of the vacuum energy converted
into the gradient energy of the dark higgs field, bulk motion of the fluid and into the MHD
turbulence respectively. These efficiencies for the bulk motion and turbulence in vw ∼ 1 limit
are given by

κv = α(0.73 + 0.083
√
α+ α)−1, κturb = εκv , (4.13)

where ε is of order 0.05 . . . 0.1 based on the numerical simulations. The efficiency for the
gradient energy of the higgs is

κenv =
α− α∞

α
where α∞ =

30

24π2

∑
a ca(m

2
a(f(T ))−m2

a(0)

g∗(T )T
, (4.14)

with ca = N (number of degrees of freedom) for the bosons and ca = N/2 for the fermions.
Note also that condition of [35] for the runaway bubbles that we have already mentioned in
section 2 is exactly α > α∞, namely that non-negligible amount of energy density is damped
into the gradient energy of the higgs field.

Because full analysis of the parameter space of the toy model is well beyond the scope of
our work, we do not study here, which parts of the parameter space can be explicitly probed
by eLISA (given, also, the uncertainties in future eLISA sensitivity). But to illustrate the
point we plot on figure 7 the signal expected spectrum of one of the points in the parameter
space, that we have already analyzed explicitly in subsection 3.1.
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Figure 7. Gravitational wave spectrum of one particular point point in parameter space of a model,
described in section 3. On the left panels we assume Tnuc = 2 GeV, just below the bound on the
nucleation temperature that we derive in subsection 3.1. On the right panel we assume Tnuc = 0.7 GeV,
significantly below the upper bound. On the upper panels we show the spectrum for relatively high β,
and lower its value on the lower panel. The dark blue line stands for the MHD turbulence contribution,
the red line stands fro the direct contribution from bubble collisions Ωϕh

2 and the cyan line stands for
the sound waves contribution. The total intensity is indicated by the dashed black line. Everywhere
ε = 0.05 is assumed.

Note that all these points that we illustrate on figure 7 can be well within the reach of
eLISA, at least if we rely on the old LISA configuration.11 Not surprisingly, the intensity of
the signal is peaked at very low frequency and the highest intensity point might be inaccessible
to eLISA. This is especially true for low nucleation temperature and low β, such that the
intensity distributions are peaked at frequencies as low as 10 µHz, where eLISA almost looses
its sensitivity. However, due to very big energy release in the PT in this region, the signal
from the tail is strong enough to yield ΩGWh

2 ∼ (10−13 . . . 10−12) for frequencies of order
10 mHz, where the eLISA sensitivity is maximized. The α gets values which are as high as
500 for T ≈ 0.7 GeV. The most optimistic eLISA sensitivity projected sensitivity will be able
to probe in this region ΩGWh

2 as low as 10−14, while its sensitivity drops to values as low
as ΩGWh

2 ∼ 10−10 for frequencies of order 10 µHz. The contribution to the GW intensity
is heavily dominated by the sounds waves in the low frequency regions and by the direct
bubble collisions contribution at higher frequencies, while the MHD turbulence is always
negligibly small.

11This corresponds to 6 links, 5 million km arm length and duration of 5 years. For more details on possible
configurations of eLISA and the expected noise the reader is referred to [63] and especially to [64].
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4.2 Brief comments on other possible signatures

It is tempting to conclude, based on the interactions (3.18) that the model that we have
introduced, and largely the entire mechanism, inevitably predict n − n̄ oscillations and the
respective bounds apply. Indeed, by taking the first term of the equation (3.18) on its face
value and integrating out the heavy sterile fermion eα one gets

L ⊃
λαijkλ

α
lmnu

c
id
c
jd
c
ku

c
ld
c
md

c
n

meΛ4
(4.15)

which looks like a perfect n − n̄ oscillations operator. Nonetheless, the color contraction in
this expression forces antisymmetrization on the flavor indices in the down-sector. Namely,
at least two of the down-type quarks must be either s or b-quarks. We get a qualitatively
different behavior if we consider the second operator in the (3.18), namely the QQ(dc)†. Here
we must antisymmetrize both on the color and the SU(2) indices of the Q fields, and therefore
there is no problem with getting a non-zero coefficient for the same generations fields.

Although the n− n̄ operator does not form at the leading order, if only the coupling λ
is invoked, with democratic flavor structure of the coupling and sizable λα112 one does get
a double nucleon decay pp → KK. The lifetime of this process is constrained to be bigger
than 1.7×1032 years [65], which was inferred from non-observation of 16O nucleus decay into
the 14CK+K+. Rephrasing the calculation of [66] in our variables we get

τ ≈ π

8

Λ8m2
em

2
N

ρΛ10
QCD

, (4.16)

where ρ ≈ 1.91× 10−3 GeV is a nuclear matter density and Λ is the suppression scale from
eq. (3.18) assuming that λ = 1. In fact, one gets precisely the same expression for the lifetime
if η = 1 is assumed. This translates to the bound in the range of PeV scale, and in fact it
is the most stringent bound that one can obtain even in the case of the unsuppressed n− n̄
oscillations rate. However, as we discussed in section 3, it is not difficult to satisfy this bound
by taking the coupling of the exotic colored scalar to the dc to be of order O(10−3) or smaller
for m∆ ∼TeV. In lots of senses prediction of the dinucleon decay is an interesting feature of a
model, that we presented, but the exact scale unfortunately depends on the model details and
cannot be predicted firmly, also because the exact flavor structure of the new operators are
not known, and the couplings to the light generations can in principle be highly suppressed.

Let us now again consider the ucdcdc coupling. The contribution to the n−n̄ oscillations
is of course not identically zero, and, if the coupling to the strange quark is non-zero, one gets
it from the strange quark component of the neutron, which is of order 1%. In order to estimate
this constraint we rely on the estimations of [49]. Although the model of baryogenesis that
that reference proposes is very different, the fermion sector shares some clear similarities with
ours and the estimation of n− n̄ oscillation rate goes along the same lines. With the bound
on the neutron oscillation time τn > 1.3 × 108 years [67] and assuming that λα112 ∼ O(1)
we get

meΛ
4 & 1019 GeV5 . (4.17)

For me ∼ 1 TeV, this translated to a very minor bound Λ & 10 TeV, very subdominant to
the double nucleon decay.

In case of the QQ(dc)† coupling, assuming that one have η111 ∼ O(1), one gets a bound
from the n−n̄ oscillations in the vicinity of 100 TeV. Note though that in this case it does not
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directly compare to the dinucleon decay, because different flavor operators are responsible
for these processes.

Finally, let us make a brief comment about the collider phenomenology. Although
the mechanism makes absolutely no firm prediction in this area, one can still expect the
the bosonic operators in the hidden valley couple to the SM higgs operator |H|2, because
it is the lowest dimension SM gauge invariant scalar operator. This can lead to the rare
exotic higgs decays, and intriguing possibility, which has been studied both in theoretical
and experimental context [68]. In the model that we presented here such an operator is
Eq (3.15). Although in our case the invisible rate is way too small to be observed at the
LHC, it might still be visible in the future leptonic and hadronic colliders. And, not unlikely,
in other models which take advantage of our mechanism, the rate can be even bigger.

Another potentially interesting aspect of the collider phenomenology has to do with the
production and decay of the colored scalars ∆. Of course the existence of these particles is
strongly model-dependent, however, if exist, they can be abundantly produced by the LHC.
Even though these particles are colored, the LHC potential to discover them is modest,
mainly because they decay into pair of anonymous jets, similar to the RPV stops in SUSY
with the baryon number violation. The constraints on these particles are exactly the same as
the constraints on the BNV stops. The ATLAS search [69] bounds the mass of this particle
to be above & 320 GeV in the case that one of the resulting jets is b-tagged, and puts no
constraints in case the decay proceeds into the light jets. The companion CMS search [70]
is also looking for the resonances in a decay channel, where one of the final state jets is
heavy, and they constrain such particles in the mass window 200 GeV < m∆ < 380 GeV.
In the most general case, if ∆ decays into a pair of light jets only CDF bound applies [71]
m∆ > 100 GeV. In general, it is a notoriously hard search, mostly due to the trigger issues
and even after the 13 TeV run the bound is not expected to exceed 600 GeV [72].

5 Conclusions and outlook

In this paper we have introduced a novel mechanism to produce the Universe baryonic asym-
metry via out-of-equilibrium decays of heavy particles which are produced non-thermally.
The mechanism can work at the temperatures that are much lower than the masses of the
decaying particles and therefore there is conceptually no need for the Universe to be reheated
after inflation up to the masses of the decaying particles. We have also presented a simple
model that serves an existence proof that the mechanism can be embedded into a realistic
framework, which satisfies all the known cosmological, collider and other constraints.

Although we have concentrated on the low energy regime and post-sphaleron baryoge-
nesis, even this part of parameter space does not necessarily provide us with robust LHC
signatures. In fact, one might hope for such signatures (like long-living color triplet at the
TeV scale), however they all appear to be highly model-dependent. On the other hand, the
prediction of primordial gravitational waves background is model independent, because it
relies on the crucial component of the mechanism: low-energy strong first order cosmological
PT with the runaway bubble walls. This opens intriguing perspectives for the future eLISA
interferometer, which can potentially provide first supportive evidence of this mechanism.

There are still several open questions on the theory side which should still be answered
to address the feasibility of our mechanism. We have mentioned them already in the text,
but it would probably be useful to summarize them here. Our mechanism relies on the
possibility of efficiently producing heavy states during bubble collisions. This requires large
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value of the Lorentz factor γ. We have made use of the fact that such large values are
potentially achievable during a PT in which bubbles runaway. The exact criterion under
which runaway bubbles are present is still under debate we have decided to stay on the safe
side by adopting the most conservative criterion. We have not computed ourselves the value
of γ achieved during the PT, but rather indicated an upper bound for which our mechanism
can work. Of course, a crucial step would be to quantitatively check if such large values of
the Lorentz boost can be achieved. Also we note, that we have not analyzed this theory in
the limit of resonant baryon asymmetry production. This might be interesting to do in order
to understand whether lower values of γ can be relevant for our mechanism. Finally, a more
thorough, most probably numerical, study will be required to estimate the role of elasticity
during bubbles collisions and the efficiency of particle production.

Our proposal also opens a handful of new directions in the studies of the Universe baryon
asymmetry and leaves several interesting questions open? Are there any natural scenarios
that can accommodate the mechanism that we propose? For example, can it be confinement
PT, which does not require a fine-tuned higgs mechanism? Or whether this mechanism can
emerge in a hidden sector theory which is naturally higgsed, either by virtue of the hidden
valley being naturally supersymmetric or because the higgs is emergent (composite higgs
scenario)? Moreover, in this paper we have just brought one model, kind of existence proof
that the mechanism can work, but it is still unclear how generic the mechanism is. It would
be interesting to see more models along these lines, understand their parameter space, and
more important see what are the experimental implications of these models.
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