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Abstract
Plasma injection schemes are crucial for producing high-quality electron beams
in laser–plasma accelerators. This article introduces the general concepts of
plasma injection. First, a Hamiltonian model for particle trapping and accel-
eration in plasma waves is introduced; ionization injection and colliding-pulse
injection are described in the framework of this Hamiltonian model. We then
proceed to consider injection in plasma density gradients.
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1 Introduction
In accelerator physics, the starting point of a high-energy machine is always the injector. The injector
can be extremely important; it usually delivers a particle beam at the MeV level, and its characteristics—
such as emittance, bunch duration and energy spread—strongly impact the parameters of the final beam.
By analogy, it seems only natural that laser–plasma accelerators should also include an injection stage;
this would permit (i) decoupling of the injection and acceleration stages, (ii) more control over the beam
parameters and the possibility to tune them independently, and (iii) better stability of the beam. However,
injecting electrons into the plasma wakefield accelerating structure is not an easy task: the wavelength of
the accelerating structure is on the order of λp ' 10 µm; here, the plasma wavelength is λp = 2πc/ωp

(where c is the speed of light and ωp = (nee
2/ε0me)

1/2 is the plasma frequency), so that λp = 10–30µm
for electron plasma densities in the 1018–1019 cm−3 range. The production of monoenergetic electron
bunches in such a micrometre structure requires that the injected beam have a duration shorter than
λp/c = 30–100 fs and that it be focused to a few microns. In addition to these stringent requirements,
the injected particle beam should be synchronized at the femtosecond level with the laser pulse driving
the wakefield, which also poses a considerable experimental challenge. The production of such short and
well-synchronized bunches is at the edge of conventional radio-frequency (r.f.) accelerator technology,
and experiments using external injectors have not yet succeeded in providing high-quality electron beams
with narrow energy spreads [1, 2].

In many laser wakefield acceleration experiments, electrons are self-injected into the accelerat-
ing structure: when the plasma wave amplitude reaches very high levels (close to the wave-breaking
threshold), background plasma electrons can be injected into the plasma waves [3–7]. This is somewhat
analogous to dark current in a r.f. accelerator: at high field strengths, the cavities start to release electrons.
This self-injection mechanism can lead to the production of high charge and, on occasion, narrow energy
spreads in the range of a few percent to 10% can be achieved. However, it has proven difficult to obtain
high-quality, i.e. narrow, energy spreads in a stable manner using this method. In addition, electron in-
jection results from a succession of nonlinear effects, such as relativistic self-focusing [8, 9] of the laser
pulse, spectral broadening and self-steepening [10–13]. This is the reason that self-injection is rather
difficult to control precisely and does not allow tuning of the injected beam parameters. In this context,
many researchers in the field of laser–plasma accelerators have started to develop injection methods in
which the injected electrons originate from the plasma itself (as opposed to external injection requiring
an existing electron source).
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While several methods have been proposed for injecting plasma electrons into an existing plasma
wakefield, they can be summarized by the following general principles.

– Create electrons at the right phase in the wakefield. Even if an electron is created at rest, it can end
up being trapped provided that it is born at the appropriate phase. This is the idea behind ionization
injection.

– Give an initial kick to electrons so that their initial longitudinal velocity is high enough for trapping.
This is analogous to surfers paddling in order to gain momentum and catch the wave. Several
methods are based on this idea, including injection by colliding pulses.

– Slow down the wakefield to facilitate trapping. Decreasing the phase velocity of the wakefield
locally can be achieved by tailoring the plasma density, for example, and it leads to a controlled
injection mechanism. Injection in downward density ramps is based on this idea.

In this article we will review some of these injection mechanisms. In Section 2, a Hamiltonian for-
malism based on Refs. [14,15] is derived in order to find the trapping threshold for an electron interacting
with an intense laser pulse and a plasma wave. In Section 3, the findings from the Hamiltonian model
will be applied to the particular case of ionization injection where high-Z atoms provide the source of
injected electrons. In Section 4 we show how electrons can be injected using colliding and counter-
propagating laser pulses. Finally, in Section 5, we show how electrons can also be trapped in wakefields
with decreasing phase velocities.

2 One-dimensional Hamiltonian model
2.1 Assumptions of the model
The goal of this section is to derive analytically the trajectories of electrons in a laser field and a plasma
wave [15]. In particular, some electrons can be trapped and accelerated in the plasma wakefield. The
theoretical framework is the following.

– We start with a 1D model: we consider only the motion of electrons along the longitudinal coor-
dinate z, and neglect the role of the radial electric fields. In this case, the wakefield potential φ
depends only on z and t.

– For simplicity, we assume that the laser pulse does not change during its propagation. Conse-
quently, the plasma wakefield is also stationary along the propagation. This is important because
it will allow us to use a conservation-of-energy law.

– The plasma is modelled by an electron fluid. This fluid is described by macroscopic quantities
such as its density n(r, t) and velocity v(r, t). Let us note that in such a model, kinetic effects
(e.g. trapping, wave-breaking) are not taken into account.

– Plasma ions are assumed to be immobile. This is justified when the typical time for ion motion
(ω−1

pi ) is large compared to the driver pulse duration (i.e. τ � ω−1
pi ).

– The electron fluid is cold. In the case of a laser driver, this is justified when the quiver ve-
locity of electrons in the laser field is orders of magnitude greater than the thermal velocity:
vosc ' eElaser/(meω0)� vth = (kBTe/me)

1/2.

The laser pulse is represented by its normalized vector potential a = eA/mec, where A is the laser
vector potential. For a pulse propagating along the z-axis and polarized along the x-axis,

a = â(z, t) cos(k0z − ω0t) ex, (1)

where k0 and ω0 are the wavevector and frequency of the laser electromagnetic field, and â is an envelope
function that represents the longitudinal shape of the pulse. We assume a Gaussian shape for â so that
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â2(ζ) = a2
0 exp(−ζ2/L2

0), where ζ = z−vgt with vg being the laser group velocity, L0 is the laser pulse

length, and a0 is the laser peak amplitude, a0 = 8.6× 10−10
√
I [ W cm−2]λ2 [µm], with I and λ being

the laser intensity and the central wavelength, respectively. The plasma wakefield is represented by its
normalized potential φ = eΦ/mec

2, which is obtained by solving the equation

∂2φ

∂ζ2
= k2

pγ
2
p

βp

(
1− 1 + a2

γ2
p(1 + φ)2

)−1/2

− 1

 . (2)

Here, γp is the Lorentz factor corresponding to the plasma wave phase velocity vp: γp = (1−v2
p/c

2)−1/2.
It is also assumed that the plasma wave velocity is given by the group velocity of the excitation laser:
vp ' vg and γp ' γg. Finally, the plasma wavevector is kp = ωp/vp. Eq. (2) is the nonlinear plasma
wave equation, which is valid even for a > 1, i.e. for relativistic laser intensities with I > 1018 W cm−2.
Figure 1 shows the result for a 20 fs laser pulse with a0 = 2 and a plasma density of ne = 7× 1018 cm−3.
Note that the laser field was averaged over the fast time-scale at ω0 for clarity (keeping the fast frequency
does not affect our conclusions). Notice the characteristic nonlinear shape of the plasma density pertur-
bation, which in turn causes a nonlinear longitudinal electric field with a sawtooth shape.
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Fig. 1: The top panel plots the laser amplitude a (red) and the wakefield potential φ (blue); the middle panel
shows the corresponding normalized electric field Ez/E0 (where E0 = mec ωp/e is the wave-breaking field). The
bottom panel shows the electron density perturbation n(ζ)/n0 − 1.

2.2 Hamiltonian for an electron interacting with a laser and a plasma wave
Let us consider an electron with Lorentz factor γ in a 1D wakefield, represented by the normalized

potential φ. Its Hamiltonian reads H = γ − φ(z − vgt) =
√

1 + u2
⊥ + u2

z − φ(z − vgt), where
u⊥ = p⊥/(mec) and uz = pz/(mec) are the transverse and longitudinal normalized linear momenta,
respectively. The Hamiltonian depends on z and t in a particular manner: it depends only on the
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variable ζ = z − vgt. We can use this fact to change variables using a canonical transformation
(z, uz) → (ζ, uz). We use a second-type generating function F2(z, uz) = uz(z − vgt); the transfor-
mation satisfies ζ = ∂F2/∂uz = z − vgt and uz = ∂F2/∂z, and the new Hamiltonian is given by
H ′ = H + 1

c
∂F2
∂t . In this case, the new Hamiltonian (denoted simply by H from now on) is

H =
√

1 + u2
⊥ + u2

z − φ(ζ)− βpuz (3)

where βp = vp/c.

This Hamiltonian has several constants of motion. We now introduce the canonical momentum
P = p + qA. In normalized units, the canonical momentum is denoted by U and we see that Uz = uz
and U⊥ = u⊥− a (q = −e for electrons), because in 1D the laser field has only a transverse component.
Writing the Hamiltonian with just the transverse canonical momentum gives

H =
√

1 + (U⊥ + a)2 + u2
z − φ(ζ)− βpuz.

From Hamilton’s equations, one finds that in 1D, the transverse canonical momentum is conserved:

U̇⊥ = − ∂H
∂r⊥

= 0 =⇒ u⊥(ζ)− a(ζ) = const.

In the case of an electron initially at rest in front of the laser pulse, ζi = +∞, this gives the
important result that u⊥(ζ) = a(ζ). The other constant of motion is simply the energy: this Hamiltonian
does not depend on time but only on ζ; as a consequence, the energy of the system is conserved and H is
conserved along an electron trajectory. Hence, for an electron with initial energy H0, one can solve for
its longitudinal momentum uz to get

uz = βpγ
2
p(H0 + φ)± γp

√
γ2

p(H0 + φ)2 − γ2
⊥ (4)

with γ2
⊥ = 1 + u2

⊥. Once a(ζ) and φ(ζ) are known, this equation gives the electron trajectory in (ζ, uz)
phase space. Figure 2 shows various electron trajectories that were obtained for different initial condi-
tions. For electrons initially at rest in front of the laser pulse, i.e. ζi = +∞ and uz(ζi) = u⊥(ζi) = 0, the
Hamiltonian is H0 = 1. The trajectory of such electrons is referred to as the fluid orbit and corresponds
to the trajectory of plasma background electrons that contribute to the formation of the plasma wakefield
(black line in lower panel of Fig. 2). These electrons are not trapped and oscillate in the plasma wakefield
with low energies. The separatrix is the special trajectory which separates the trapped from the untrapped
orbits. It can be found by considering an electron moving along z with vz = vp (or uz(ζmin) = βpγp)
and located initially at a minimum of the potential φ(ζmin) = φmin < 0, i.e. at a node of the electric
field. Conservation of canonical momentum reads u⊥(ζmin) = a(ζmin), so that the Hamiltonian on the
separatrix is

Hsep =

√
1 + a2(ζmin)

γp
− φmin. (5)

This trajectory is represented by a red line in the lower panel of Fig. 2. The dashed blue lines represent
some typical trapped orbits for which electrons gain significant energy in the plasma wave. Trapped
orbits are obtained when the Hamiltonian satisfies Hi 6 Hsep. To prove this, let us consider a trapped
electron behind the laser pulse at phase ζi and moving with velocity vz(ζi) = vp. At this point in
phase space, the plasma wave potential is such that φ(ζi) = φi > φmin. In addition, following Eq. (3),
conservation of the Hamiltonian can be written as Hi = (1 + β2

pγ
2
p)1/2 − φi − β2

pγp = 1/γp − φi. Since
φi > φmin, we get Hi 6 Hsep, which is a necessary and sufficient condition for trapping.
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Fig. 2: The top panel plots the laser amplitude a2 (red), the wakefield potential (blue), and the longitudinal electric
field (black dashed); the bottom panel shows the associated electron trajectories in phase space. The black line in
the bottom panel represents the fluid orbit, the red line the separatrix, and the dashed blue lines various trapped
orbits. The y-axis is in log-scale and, to avoid negative values, we have plotted uz + 1 − min(ufluid), where
ufluid(ζ) is the fluid orbit. The horizontal black dashed line represents uz = 0, while the horizontal red dashed line
represents uz = βpγp. The parameters are a0 = 2, ne/nc = 0.44%, λ = 0.8 µm and τ = 20 fs.

2.3 Trapping thresholds
Now that the basic trajectories have been established, it is possible to determine the trapping threshold
of plasma electrons in a plasma wave. To do so, we consider that an electron located in front of the laser
pulse will be trapped in the wakefield if its longitudinal momentum satisfies uz(+∞) > usep

z (+∞),
which simply means that the initial momentum has to be larger than the initial momentum on the sep-
aratrix, usep

z (+∞). According to Eq. (4), this is simply usep
z (+∞) = βpγ

2
pHsep − γp

√
γ2

pH
2
sep − 1.

Therefore, an electron with initial energy E > Etrap will be trapped and accelerated in the wakefield,
where

Etrap = mec
2
(√

1 + {usep
z (+∞)}2 − 1

)
. (6)

Figure 3 shows the variation of the trapping threshold with the plasma wave amplitude φmin, as well
as its variation with the plasma wave Lorentz factor γp. Clearly, trapping is easier for high-amplitude
plasma waves and/or for small phase velocities (small values of γp). Note that as φmin → −1, the
trapping threshold Etrap tends toward zero. This is the onset of wave-breaking: the plasma wave
amplitude becomes so high that all plasma electrons that were initially at rest get injected into the
plasma wave. As φmin → −1, the longitudinal electric field reaches the cold wave-breaking limit,
EWB =

√
2(γp − 1)1/2E0, where E0 = mec ωp/e was defined earlier. Thus, this model is able to give

a 1D picture of self-injection, although one has to keep in mind that in experiments self-injection is a 3D
process. More complicated models are necessary to fully capture the physics of self-injection in 3D [16].
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Fig. 3: (a) Trapping thresholds plotted as a function of wake amplitude (where φmin represents the minimum of
the wake potential), for three different wake phase velocities. (b) Trapping thresholds plotted as a function of γp,
the Lorentz factor associated with the wakefield velocity, for three different wake amplitudes.

3 Ionization injection
As we have just seen, unless the wakefield reaches wave-breaking amplitudes, it is not possible for
plasma electrons to be injected unless a different method is used. Ionization injection is probably the
easiest method for injecting electrons in a wakefield [17, 18]. The idea is to use a high-Z gas so that
the first levels of ionization occur at low intensity (typically below 1016 W cm−2). These electrons are
born at rest in a region where the laser intensity is relatively low and provide the electrons which form
the plasma wave and follow fluid orbits. On the other hand, ionization from inner shells occurs at higher
intensities (typically for I > 1018 W cm−2), so these electrons are born at rest in regions of strong fields.
It follows that they are born inside the plasma wave, at a totally different phase from fluid electrons. The
whole challenge is to put these electrons on trapped orbits so that they will be injected and accelerated.
Figure 4 illustrates the different classes of trajectories of electrons born at the front of the pulse and in
the middle of the pulse. In this section, we follow the approach of Refs. [17, 19].
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Fig. 4: Principle of ionization injection. (a) Ionization of nitrogen by an intense laser pulse at 1019 W cm−2; the
first five electrons, from N+ to N5+, appear at the front of the laser pulse, while electrons from N6+ appear in the
middle of the laser pulse. (b) Schematic showing the different classes of trajectories for electrons born at the front
of the pulse (fluid trajectories) or in the middle of the pulse (trapped trajectories).
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We now determine the condition(s) under which these electrons will be trapped. We first make
a few assumptions concerning ionization. In our model, ionization is assumed to occur via barrier sup-
pression ionization [20]. Considering an ionization level with energy Ei, the threshold intensity required
to ionize the electron is given by

Ithresh [W cm−2] = 4× 109E4
i [eV]/Z∗2,

where Z∗ is the charge of the resulting ion. Furthermore, we assume that electrons are born at rest
(which is a good approximation when considering the energy that the electron will gain in the laser and
plasma field). Technically, if the electron is born at phase ζion, it should witness the corresponding laser
amplitude a(ζion). However, in linear polarization, ionization occurs mostly at the peak of the electric
field, i.e. a(ζion) ' 0. Therefore, in the case of an ionized electron born at rest, conservation of canonical
momentum reads u⊥(ζ) = a(ζ) − a(ζion) ' a(ζ). The initial Hamiltonian for such electrons can be
found from Eq. (3) as

Hion = 1− φion,

and the ionized electron trajectory can be computed by inserting Hion into Eq. (4). The conditions for
trapping are simply that the intensity should be high enough for ionizing a given electron level, i.e.
a(ζion) > athresh, and that the electron should be born on a trapped orbit, i.e. Hion < Hsep. These
conditions define the region of phase space where ionized electrons are trapped and further accelerated
in the wakefield. Typically, these conditions are fulfilled only in the setting of a high-intensity laser
pulse (a > 1) and a large-amplitude plasma wave. Figure 5 illustrates this discussion: the green area
in the upper panel defines the region of phase space where electrons can be injected; the corresponding
trajectories are plotted in green in the lower panel (note that the fast laser frequency was considered for
this case, as electrons are born at zeros of the vector potential). As discussed previously, electrons are
born at rest, oscillate in the laser field, and gain energy as they get on a trapped orbit.

The injection volume in phase space depends on the wakefield amplitude and the ionization thresh-
old, so in principle it can be controlled via the laser intensity. The injection volume is responsible for the
injected charge as well as the energy spread. Obviously, large injection volumes lead to large injected
charge and larger energy spreads. On the other hand, smaller energy spreads can be obtained by reducing
the injection volume at the expense of charge. Experiments have demonstrated the concept of ionization
injection using nitrogen and argon [17, 18]. In practice, it is quite difficult to control the injection vol-
ume experimentally: ionization injection occurs all along the propagation, as long as the laser intensity
exceeds the threshold intensity; as a result, electrons are injected continuously along the propagation and
the energy distributions are quite broad [17,18]. Narrower energy spreads have been obtained by using a
two-stage laser–plasma accelerator [21]: in the first stage, a short nitrogen gas jet is used to inject elec-
trons while a second gas jet is used to boost the acceleration. In Ref. [22], by restricting the first stage to
a 500µm jet, the injection was kept relatively local, resulting in energy spreads at the 10% level.

To summarize our discussion on ionization injection, this method is easy to implement experimen-
tally as it requires simply the use of a high-Z gas. It is a straightforward way to increase the injected
charge without reaching wave-breaking amplitudes. It usually results in increased injected beam loads,
but controlling the beam quality can be rather difficult, as (i) the injection volume is directly related to
the laser intensity, and (ii) injection tends to occur continuously along the propagation.

4 Colliding-pulse injection
We now present the colliding pulse injection scheme, where an auxiliary laser pulse is used to trigger a
very localized injection (' 10µm), resulting in beams with small energy spread. The idea of using an
additional laser pulse for injecting electrons was first proposed by Umstadter et al. [23]. It was further
developed by Esarey et al. [24], who proposed a scheme based on counter-propagating laser pulses.
In its simplest form, the scheme uses two counter-propagating ultra-short laser pulses with the same
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Fig. 5: Ionization injection—a phase space picture. The upper panel plots the laser amplitude a2 (red) and the
wakefield potential (blue); the dashed light-blue horizontal line indicates the ionization threshold athresh = 1.37,
corresponding here to Ithresh = 4 × 1018 W cm−2, and the region of phase space where the injection condi-
tions are satisfied is shown in green. The lower panel shows the fluid orbit (black), the separatrix (red), and
the trajectories followed by ionized electrons at the front and back of the injection region. The parameters are
a0 = 2, ne/nc = 0.44%, λ = 0.8 µm and τ = 20 fs.

central wavelength and polarization. The first laser pulse, the ‘pump’ pulse, creates a wakefield, whereas
the second laser, the ‘injection’ pulse, is used only for injecting electrons. The laser pulses collide in
the plasma, and their interference creates a laser beat-wave pattern which can pre-accelerate plasma
background electrons. If the laser intensities are high enough, this pre-acceleration permits the injection
and trapping of electrons in the wakefield and their further acceleration to relativistic energies. The
principle of the method is depicted in Fig. 6. Analytical work [25] and simulations [25, 26] have shown
that this two-stage acceleration mechanism can lead to the production of high-quality electron bunches
with narrow energy spread, small divergence and ultra-short duration, even when using relatively modest
lasers (e.g. with normalized vector potential a0 = 1 for the pump pulse and a1 = 0.3 for the injection
pulse).

A theoretical description of electron injection by colliding laser pulses was first given by Esarey
et al. in Ref. [24]. We will briefly review the principles of their fluid model. First, the pump laser,
with normalized vector potential a0, excites a plasma wave. Before the arrival of the laser pulse, the
plasma background electrons are initially at rest. In the absence of wave-breaking and self-trapping,
these electrons are not trapped in the plasma wave. As we have seen earlier, they simply oscillate back
and forth in the plasma wave potential along the fluid orbit, and their momenta oscillate between ufluid

z,min

and ufluid
z,max, where

ufluid
z,max,min = βpγ

2
p(1 + φmin,max)− γp

√
γ2

p(1 + φmin,max)2 − 1, (7)

with φmin and φmax representing the minimum and maximum of the potential, respectively. In order to
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Fig. 6: Principle of colliding-pulse injection

be accelerated in the wakefield, electrons need to move along trapped orbits, inside the separatrix. When
electrons move along the separatrix, their momenta oscillate between usep

z,min and usep
z,max, where

usep
z,max,min = βpγp(1 + γp∆φ)± γp

√
(1 + γp∆φ)2 − 1 (8)

with ∆φ = φmax − φmin.

Therefore, one needs to find a way to push plasma background electrons, which follow the fluid
trajectories, into trapped trajectories. The interference of two laser pulses generates a beat-wave which
is able to heat electrons and provide just such a mechanism. The laser pulses are represented by their
normalized vector potentials a0,1, where the subscripts 0 and 1 represent, respectively, the pump pulse
and the injection pulse. Assuming that the lasers are counter-propagating along the z direction, one can
write the normalized vector potential as

a0,1 =
a0,1(ζ0,1)√

1 + σ

[
cos(k0,1ζ0,1)ex + σ sin(k0,1ζ0,1)ey

]
, (9)

where σ = 0 for linear polarization and σ = 1 for circular polarization, k0 = −k1 are the wavevectors,
and ζ0,1 = z ± vgt. Although in general the two waves can have different frequencies, all experiments
to date have used identical frequencies, so here we assume that the two laser pulses have the same
frequency ω0.

When the two pulses overlap, they interfere, and the resulting squared electromagnetic field can
be written as a2 = (a2

0 + a2
1 + 2a0 · a1)/(1 + σ). The last term is the beat-wave term, and it cancels

out for crossed polarizations. In the case where the two polarizations are parallel, it generates a standing
wave (i.e. the beat-wave has zero phase velocity) with a spatial scale of λ0/2. The ponderomotive force
in the beat-wave is very large (because Fbeat ' 2k0a0a1), and it can pre-accelerate the plasma electrons.
Neglecting the plasma potential, electron trajectories in the beat-wave are governed by the Hamiltonian

Hb =
√

1 + u2
z + a2. (10)

In order to obtain an analytical estimate, we will assume circular polarization (σ = 1) for the pump and
injection beams, so that a2 = (a2

0 + a2
1)/2 + a0a1 cos(2k0z). The separatrix in this beat-wave pattern is

then given by
ubeat
z = ±

√
a0a1(1− cos 2k0z); (11)
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so on the beat-wave separatrix, electrons oscillate between ubeat
z,min and ubeat

z,max (see Fig. 7), where

ubeat
z,max,min = ±

√
2a0a1. (12)

For instance, an electron trapped in the beat-wave created by two laser pulses with a0 = 2 and a1 = 0.3
can gain about 200 keV, which is sufficient for getting trapped in the wakefield.

λ0/2  (2a0a1)1/2 
u z

 

Fig. 7: Trajectories of electrons following the beat-wave separatrix at the collision of the two circularly polarized
laser pulses.

One can define an approximate threshold for injection into the wakefield by applying a phase space
separatrix overlap condition [24, 25]. Specifically, island overlap requires the following conditions:

ubeat
z,max > usep

z,min,
(13)

ubeat
z,min < ufluid

z,min.

These conditions are illustrated in Fig. 8(a). Using criterion (13), we find that the injection thresh-
old can be reached with a0 ' 1 and a1 ' 0.1 (for this estimation, we have used pulse durations of
τ = 30 fs to calculate the plasma wave amplitude φ), for plasma density in the range of ne = 1018–
1019 cm−3; see the results in Fig. 8(b).

When the pulse polarizations are linear, the Hamiltonian in Eq. (10) is time-dependent and no
longer integrable. It has been shown that in this case, electron motion is stochastic [27–29] and the simple
calculations above do not hold. In fact, stochastic heating turns out to be an efficient mechanism for
heating and subsequently injecting electrons [28,30]. Other effects, such as plasma wave inhibition [31],
make the physics of colliding pulses more complicated than what this simple model tends to suggest.
Full 3D particle-in-cell simulations are necessary to fully capture all the physical ingredients [30], but
the concepts presented here still hold.

The colliding-pulse injection method requires some heavy experimental investment, as a second
intense laser pulse is needed. The two laser pulses need to be precisely synchronized at the femtosecond
level and spatially overlapped at the micron level. Despite its complexity, colliding-pulse injection has
intrinsic advantages, some of which are summarized as follows.

– The injection is very localized as it occurs only during the collision of the two laser pulses, i.e.
10µm for 30 fs pulses. This helps to reduce the energy spread and to inject very short electron
bunches. The injected electron beams were measured to be only a few femtoseconds in dura-
tion [32].
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Fig. 8: (a) Phase space representation of the injection conditions in (13) in the case of colliding pulses: the blue
lines represent the amplitude of the beat-wave separatrix, while the red lines are the wakefield separatrix and the
fluid orbit; the area shaded in green represents in injection volume. (b) Plots of the injection thresholds for various
laser and plasma parameters (a 30 fs and 800 nm laser pulse was assumed).

– The physics of injection is largely determined by the heating at the collision, so injection is less
sensitive to intensity fluctuations of the main laser pulse (though the intensity of the main pulse
still plays a role, as it determines the wakefield amplitude). First experiments have shown that
stable beams with narrow energy spreads can be achieved in this way [33, 34].

– The location of the collision and hence the injection can be easily controlled. Therefore it is pos-
sible to tune the acceleration length. Experiments have shown that by controlling this parameter,
the beam energy can be controlled over a wide range, typically 10–200 MeV [33].

– The injection volume can be controlled by tuning the intensity of the injection laser pulse. For high
a1, the electron heating at the collision is large and results in large injected beam loads as well as
larger energy spreads. The energy spread can be tuned and reduced at the 1% level by decreasing
the injection laser amplitude, as demonstrated experimentally in Ref. [35].

Finally, based on theoretical studies, a three-pulse scheme has been proposed where the main
beam is used only to generate the wakefield [24]; two auxiliary beams are used for injection only. Their
polarization is orthogonal to the main beam polarization so that the two injection pulses do not interfere
with the main beam. The advantage of this method is that it provides an additional tuning knob: the
injection phase can now be chosen by tuning the distance between the main pulse and the collision point.
More recently, several variations of the colliding-pulse scheme have been proposed; the basic concepts
remain similar but the analysis extends to the 3D case [36, 37].

5 Injection in density gradients
We now focus on another scheme, in which the plasma needs to be engineered: by tailoring the plasma
density, one can gain some control over the plasma wave phase velocity. As we have seen earlier, the
lower the phase velocity, the lower the trapping threshold. Therefore, by setting up a local decrease in
the phase velocity, one can trigger injection in a local manner as well [38–40]. This can be achieved by
sending the laser pulse through a downward density ramp, which causes the wakefield to slow down. A
full Hamiltonian description of this problem is beyond the scope of this article; in a density transition,
the wakefield potential also depends on z, as φ(z, ζ), and the constants of motion that we have derived
in Section 2 no longer hold in this case. Consequently, we will develop a simple fluid model that will
provide some physical intuition of this process.

We start with the fluid equation describing the excitation of the wakefield by an intense laser pulse,
restricting ourselves to the weakly relativistic case where a2 � 1. We consider a gentle density gradient,
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1
n0

∂n0
∂z � kp, or Lgkp � 1, where Lg is the gradient scale length. In this case, the plasma wave equation

reads (
∂2

∂t2
+ ω2

p(z)

)
φ = ω2

p(z)
〈a2〉

2
. (14)

Note the spatial dependence of the plasma frequency in the gradient, ωp(z) ∝
√
n0(z). We can now

perform the usual change of variables to solve the problem in the moving frame: ζ = z − vgt and τ = t.
By applying the quasi-static approximation, one can then neglect the ∂/∂τ terms. The previous equation,
written in the co-moving variables, becomes(

∂2

∂ζ2
+ k2

p(z)

)
φ = k2

p(z)
〈a2〉

2
(15)

where kp(z) = ωp(z). This equation can be integrated, and the solution behind the laser pulse has the
form

φ(ζ, z) = φ0(z) sin[kp(z)(z − vgt)], (16)

where the wakefield amplitude is φ0(z) = −
√
π

4 a
2
0(z)kp(z)L0 exp{−kp(z)2L2

0/4} and its phase is ϕ =
kp(z)(z − vgt), so that one can compute the local oscillation frequency and wavevector:

ω = −∂ϕ/∂t = kp(z)/vg = ωp(z), (17)

k = ∂ϕ/∂z = kp(z) + ∂kp/∂z(z − vgt). (18)

It follows that in a downward density gradient (∂kp/∂z < 0 and z− vgt < 0 behind the laser pulse), the
wavevector increases with time (alternatively, the plasma wavelength decreases with time). In contrast,
the plasma frequency does not depend on time: ω = ωp(z). As a result of this time-varying wavevector,
the phase velocity vp(z, t) = ωp(z)/k(z, t) is

vp(z, t) =
vg

1 + (z − vgt)
1

kp

dkp

dz

. (19)

Consequently, as the wavevector increases with time, the phase velocity decreases. Injection occurs
behind the laser pulse when the wakefield becomes slow enough to trap plasma background electrons.

These effects are illustrated in Fig. 9. In panel (a), we display the wakefield potential in the
case where a laser pulse is tightly focused into a density gradient. The density gradient has a Gaussian
shape and kp0Lg = 50, where kp0 = ωp0/vg0 is defined using the maximum density at the top of the
downward ramp. One can see clearly that the plasma frequency decreases with z as the density decreases,
as expected. In addition, while the initial phase velocity is close to c, the bending of the wakefield in
the (t, z) plane indicates that the phase velocity decreases with time. In panel b), the phase velocity is
plotted for various density scale lengths Lg. It can be seen that the phase velocity decreases faster for
sharper gradients, indicating that trapping is likely to occur more rapidly in this case.

Numerous experiments have demonstrated that trapping in density gradients is an efficient method
for injecting electrons into wakefields [41–44]. This controlled injection scheme has resulted in more
stable beams [41,43] with energy spreads in the 10% range. Some experiments have utilized the density
down ramp at the exits of short gas jets, resulting in the production of low-energy beams of a few hundred
keV [41, 44]. Other research groups have engineered a sharp density gradient by creating a shock in the
gas flow [43, 45] or by using another laser pulse to create a density perturbation [42]. In this case, the
injection location can be controlled and the resulting beam energy can be tuned [45, 46].

6 Conclusion
In conclusion, plasma injection schemes are at the forefront of current research in laser–plasma accelera-
tors. Researchers continue to propose new injection schemes to test new ideas and to provide high-quality
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Fig. 9: (a) Wakefield potential map φ(z, t) in the case where a laser pulse is focused in a density gradient; Eq. (16)
was used to compute the potential; the dashed line represents the speed of light and one can see clearly the bending
of the wakefield in the (t, z) plane, indicating that the phase velocity is decreasing with time. (b) Illustration of the
decrease in the phase velocity with time for two different gradient scale lengths Lg (computed using Eq. (19)).

beams while maintaining a relatively simple experimental set-up [47,48]. The idea of combining several
methods might prove useful in the future; for example, performing colliding-pulse injection in a den-
sity gradient could increase the trapped charge while still preserving the beam quality [49]. Similarly,
combining ionization injection and density gradient injection has the potential to yield interesting results.
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