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Abstract
A quantitative procedure to decide whether a model provides a good descrip-
tion of data is often based on a specific test statistic and a p-value summarizing
both the data and the statistic’s sampling distribution. We provide a Bayesian
motivation for using p-values in the goodness-of-fit problem with no explicit
alternative models considered. Some typical pitfalls encountered with com-
mon statistics are reviewed for Poisson and Gaussian uncertainties. Finally,
we present a new test statistic for ordered Gaussian data, the runs statistic.

1 Introduction

Progress in science is the result of an interplay between model building and the testing of models with
experimental data. In this paper, we discuss model evaluation and focus primarily on situations where a
statement is desired on the validity of a model without explicit reference to other models. We introduce
different discrepancy variables [1] (an extension of classical test statistics to allow possible dependence
on unknown (nuisance) parameters) for this purpose and define p-values based on these. p-values have
been discussed extensively in the literature [2, 3], in particular also at previous PHYSTAT conferences
[4, 5].

Following a Bayesian motivation for p-values in Section 2, we introduce an example fit problem in
Section 3. Next, we explore some common pitfalls in p-value calculations with Gaussian uncertainties in
Section 4 and study the usefulness of p-values despite approximations for the Poisson case in Section 5.
Finally, we present a new discrepancy variable based on runs for ordered Gaussian data in Section 6.

In general, any discrepancy variable which can be calculated for the observations can be used to
define a p-value. We use R(~x|~θ,M) and R( ~D|~θ,M) to denote discrepancy variables evaluated with a
possible set of observations ~x for given model M and parameter values ~θ, and for the observed data,
~x = ~D, respectively. To simplify the notation, we will occasionally drop the arguments on R and use
RD to denote the value of the discrepancy variable found from the data set at hand. R can be interpreted
as a random variable, whereas RD has a fixed value.

Assuming that smaller values ofR imply better agreement between the data and model predictions,
the definition of p (for continuous frequency distribution of R) is written as:

p =

∫

R>RD

P (R|~θ,M)dR . (1)

The basic fact used in interpreting p-values is the following: under M with the value of ~θ fixed before
data is analyzed, p is a random variable with uniform distribution on [0, 1]; i.e. p ∼ U [0, 1].

However, in most practical examples the value of ~θ is not fixed a-priori. The choice of param-
eter values from fitting the data set, ~θfit, affects the distribution P (R|~θ,M) typically in an unknown
way1. Hence, a p-value based on the distribution P (R|~θ = ~θfit,M) assuming fixed ~θ is in general not
U [0, 1]. This introduces confusion in interpreting p, as Berger put it: “being U [0, 1] defines a proper p-
value, allowing for its common interpretation across problems. Statistical measures that lack a common
interpretation across problems are simply not very useful” [2].

1The one notable exception, χ2, is discussed in Sec. 4
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2 Bayesian motivation for p-values

When using a p-value to claim discovery of, say, a new particle at a high energy physics experiment, it is
indispensable to take systematic effects of the detector into account. However, the correct distribution of
the data fluctuations, including systematic effects, is often not known and best guesses are used. These
guesses introduce a degree of subjectivity that affect p, no matter if the distribution of R is estimated
from simulating data sets or approximated using simple closed-form expressions as in Sections 4, 5.
This inherent vagueness should always be remembered when interpreting p-values.

We contend that the (frequentist) use of p-values for evaluation of models is essentially Bayesian in
character. Assume that the p-value probability density for a good model, M0, is uniform, P (p|M0) = 1,
and for poor models, Mi (i = 1, k), can be represented by

P (p|Mi) ≈ λie
−λip (2)

where λi ≫ 1 so that the distribution is strongly peaked at 0 and approximately normalized to 1. Using
Bayes’ theorem, we update the prior degree-of-belief (DoB) in modelM0, P0(M0), to the posterior DoB,
P (M0|p), after finding a particular p-value

P (M0|p) =
P (p|M0)P0(M0)

P (p|M0)P0(M0) +
∑k

i=1 P (p|Mi)P0(Mi)
. (3)

If we take all models to have similar prior DoBs, P0(M0) ≈ P0(Mi), then

P (M0|p) ≈
P (p|M0)

P (p|M0) +
∑k

i=1 P (p|Mi)
. (4)

In the limit p→ 0, we have

P (M0|p) ≈
1

1 +
∑k

i=1 λi

≪ 1 , (5)

while for λip≫ 1 ∀i we have P (M0|p) ≈ 1, ruling out any alternative to M0.

Although this formulation in principle allows for a ranking of models, the vague nature of this
procedure indicates that any model which can be constructed to yield a reasonable p-value should be
retained. Effectively, the posterior P (M0|p) depends on the data only indirectly through p = p(D).
Clearly, if p is not a sufficient statistic, valuable information is not used.

3 Example fit problem

In the following, we test the usefulness of different discrepancy variables R by looking at the respective
p-value distributions for an example typical of high energy physics. We first consider a data set which
consists of a background known to be smoothly rising and, in addition to the background, a possible
signal. This could correspond for example to an enhancement in a mass spectrum from the presence of a
new resonance. The width of the resonance is not known, so that a wide range of widths must be allowed
for. Also, the shape of the background is not well known. We do not have an exhaustive set of models to
compare and want to look at GoF’s for models individually to make decisions; direct model comparison
is outside the scope of this paper. In Sections 4 and 6 we model fluctuations of the data relative to
expectations with Gaussian distributions. We also consider the same problem in Section 5 with small
event numbers, so that Poisson statistics are appropriate. These examples are discussed in more detail
in [6, 7]. Typical data sets are shown in Fig. 1 for N = 25 data points (Poisson: bin contents), generated
from the function

f(xi) = A+B xi + C x2
i +

D

σ
√

2π
e−

(xi−µ)2

2σ2 , (6)

with parameter values (A = 0, B = 0.5, C = 0.02, D = 15, σ = 0.5, µ = 5.0). The yi are generated
from f(xi) as yi = f(xi) + zi where zi is sampled according to N (0, 4). We fit the following four
models to the data:
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Fig. 1: Example data set for the case N = 25 with Gaussian (left) and Poissonian (right) fluctuations. The fits of
the four models are superimposed on the data.

I. quadratic: ~θ = (A,B,C) corresponding to the “standard model”;

II. constant + Gaussian: ~θ = (A,D, µ, σ);

III. linear + Gaussian: ~θ = (A,B,D, µ, σ);

IV. quadratic + Gaussian: ~θ = (A,B,C,D, µ, σ) corresponding to the true function (6).

4 Revisiting the Gaussian case

For uncorrelated data assumed to follow Gaussian probability distributions relative to the model predic-
tions, the discrepancy variable considered most often in high energy physics is the classic χ2

RG = χ2 =

N∑

i=1

(
yi − f(xi|~θ,M)

)2

σ2
i

(7)

RG is both fast to evaluate and, at first sight, easy to turn into a p-value (using ROOT’s
TMath::Prob(...)). However, in practical examples the conditions to do so are usually not satisfied.
The frequency distribution of RG is the celebrated χ2-distribution with (N −dim ~θ) degrees-of-freedom
(DoF) if [8]

– the data fluctuations are Gaussian and the σi’s are independent of the parameters,

– the function to be compared to the data depends linearly on the parameters, and

– the parameters are chosen such that RG is at its global minimum.

In our example, the above conditions may be violated in two ways:

1. by construction: the predictions f(xi|~θ,M) from (6) are non-linear in ~θ, or

2. for numerical reasons: the likelihood P (~x|~θ,M) ∝ exp (−RG/2) has several modes.

Multimodality gives rise to technical issues: when using a gradient-based optimization algorithm like
MIGRAD from the MINUIT package [9], it is critical to choose a good starting point in parameter space.
If best-fit parameter values ~θloc are chosen at a local minimum rather than at the global minimum ~θglob

such that RG( ~D|~θloc,M) > RG( ~D|~θglob,M), then using the χ2-distribution to turn RG( ~D|~θloc,M) into
a p-value yields a p-value distribution that peaks at p = 0, significantly deviating from p ∼ U [0, 1]. The
physicist performing a fit often believes to have a good idea “where the best-fit parameters ought to be”
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and takes that as a starting point. However, we have seen in our fits that even when we know the true
value of ~θ, ~θtrue, starting MIGRAD there for some data sets doesn’t lead to the global maximum. We
thus recommend a different procedure: if there is any concern that several modes may exist, one should
use a Monte Carlo sampling method (we used the implementation of the Metropolis-Hastings algorithm
in BAT [7]) to explore the parameter space, and take the best-fit parameters encountered in the sampling
to seed MIGRAD.

A further complication may arise when a Bayesian fit with non-uniform priors on ~θ is performed;
the maximum of the posterior doesn’t coincide with the minimum of RG. Choosing parameter ranges in
a maximum-likelihood fit is (at least at the numerical level) equivalent to performing a Bayesian fit with
uniform priors with compact support. Obviously different priors can lead to a different resulting p-value
distribution. In our example we have used hypercubes in parameter space of a different size. Using the
smaller volume, which contains ~θtrue, the distribution of p is biased towards p = 0 with a maximum
deviation from uniformity of about 20%. On the other hand, with a much larger volume the distribution
is now biased towards p = 1, again with a maximum deviation from uniformity of about 20%. The
discrepancy between the two stems from the fact that the global optimum is in some cases outside of the
smaller volume. For the larger volume, p ≁ U [0, 1] is expected, since the fit function is non-linear in ~θ.
For plots and further details see Ref. [6], Chapter 4.

5 Revisiting the Poisson case

Similar to the previous section, we now fit the models I-IV to a histogram . We proceed in analogy to
Baker&Cousins [10] and limit the discussion to three common discrepancy variables to judge the GoF.
Suppose N is the number of bins, νi = νi(~θ,M) is the expected number of events in bin i, and ni is the
observed number of events. Then we define

RP = Pearson’s χ2 =
N∑

i=1

(ni − νi)
2

νi
, RN = Neyman’s χ2 =

N∑

i=1

(ni − νi)
2

ni
. (8)

In cases where ni = 0, practitioners of this approach set ni = 1 in RN ’s denominator to avoid di-
vergence. Sometimes bins with ni = 0 are ignored, which can lead to very misleading results since
finding ni = 0 is valuable information. Finally, we have the log likelihood ratio (sometimes called Cash
statistic [11])

RC = 2 log
P (~x|νi = ni)

P (~x|νi = νi(~θ))
= 2

Nb∑

i=1

[
νi − ni + ni log

ni

νi

]
, (9)

where P (~x|νi) is the product of Poisson probabilities for each bin. Asymptotically, i.e. for ni ≫ 1 ∀i,
RP , RN and RC are χ2-distributed with (N − dim ~θ) DoF. But for “finite sample size . . . general results
are lacking” [10], and that is precisely the case of interest in physics. The situation is aggravated in our
example, as some bins typically have few or even no events, see Figure 1. We have generated 10000
data sets with Poissonian fluctuations from (6) to estimate the p-value frequency distributions across
20 bins in Figure 2. For each data set and discrepancy variable R, we calculated a p-value using the
χ2-distribution with the value of ~θ chosen to minimize the respective R.

Models I and II are ruled out by each R. By construction, models III and IV are very similar. RP

doesn’t distinguish well between the two, while RN ’s and RC’s distributions peak for III, but look more
uniform for IV. If one is interested in setting a frequentist limit at the 95% confidence level, then the
first bin of each distribution in Figure 2 is the relevant one. For model IV, the densities (RP : 0.58, RN :
1.85, RC : 1.35) differ significantly from the desired value of 1, given a statistical uncertainty of O(5%)
obtained from a binomial model with uniform prior on the chance of ending up in this first bin. We
also display model IV (true model) with the true parameter values to get a feeling for the quality of the
approximation in using the asymptotic χ2 distribution; here, only N DoF are used. RN has a worrisome
peak at p = 0, whileRP andRC are fairly uniform. Based on this numerical study, we discourage the use
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Fig. 2: p-value distributions based on RP , RN and RC using the χ2-distribution with N − n degrees of freedom,
where n is the number of fitted parameters.

of Neyman’s χ2 and recommend Pearson’s χ2 and the likelihood ratio, bearing in mind the inaccuracy
due to finite sample size.

6 Runs statistic

When defining the p-value based on a statistic T , the usually multi-dimensional data is compressed into
a single number T . Often, T is, by construction, insensitive to certain features of the data. While this
is beneficial in some cases, it often represents a short coming. Returning to the Gaussian example of
Section 4, RG is merely a measure of the average distance of a single observation to its predicted value.
But what if one is interested in checking that the sequence of data points agrees with model predictions?
In high energy physics, data is often available in a 1-D ordering, e.g., the cross section y for a set of
energies xi, i = 1 . . . N . Suppose there is a peak in the distribution y(x) that is not predicted by the
standard model. If the peak is localized in the sense that only a few yi exceed the standard model
predictions, then even for moderately large N , RG will not detect a mismatch as the average deviation
to the standard model is typically within accepted levels.

Recently, we have proposed the runs statistic [6,11] as a companion toRG in order to gain sensitiv-
ity to local clustering of observations in the case of independent, Gaussian distributed samples. Assume
the ordered set of N observations {(xi, yi)} is partitioned into subsets containing the success and failure
runs (defined as sequences of consecutive yi above or below the expectation from the model, f(xi|~θ,M),
respectively).

Let Aj denote the subset of the observations of the jth success run. The weight of the jth success
run is then taken to be

χ2
run,j =

j1+Nj−1∑

i=j1

(
yi − f(xi|~θ,M)

)2

σ2
i

(10)

where the sum over i covers the (xi, yi) ∈ Aj and Nj is the length of the run. The discrepancy variable
is then the largest weight of any success run: Rsr ≡ maxj χ

2
run,j .

The exact frequency distribution of Rsr, used to define the p-value, p = P (Rsr > RD
sr|N), is

given in [11] for the case when (~θ,M) are fully specified (no fitting). A similar discrepancy variable can
be defined for failure measurements, Rfr.

To illustrate the definition we present a simple example. Suppose N = 5 observations at x posi-
tions (1, 2, 3, 4, 5) with standardized residuals (yi − f(xi|~θ,M))/σi given by
(0.3,−0.1,−0.8, 0.4, 0.2) . Then there are two success runs A1 = {(1, 0.3)}, A2 = {(4, 0.4), (5, 0.2)}
and we find Rsr = 0.16 + 0.04 = 0.2 due to the second run. Similarly, for the single failure run,
Rfr = 0.65.

For the example (6) from Section 3, the joint distribution of p-values for success and failure runs
based on P (Rsr > RD

sr|N) for models I and IV is shown in 3. A cut in two dimensions allows for a clean
separation, while from the marginal 1-D distributions the different models are much harder to separate.
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Fig. 3: Joint distribution of the p-values for success and failure runs. Bins with probability less than 3.5 · 10−3

have been excluded from the plot for the purpose of clarity.

7 Discussion

In the examples which we studied it has become apparent that it is difficult to construct a p-value which
is U [0, 1] when parameters are fitted. On the one hand, this is due to approximations of a discrepancy
variable’s frequency distribution. On the other hand, the numerical fitting procedure may have an impact
if it finds only a local optimum. In the discussion at PHYSTAT2011, Kyle Cranmer stressed that he
would prefer that a quantity defined as in (1) with non-uniform distribution should not be called p-value
at all to avoid confusion in its interpretation. However, in our opinion p ≁ U [0, 1] is tolerable, as p-
values should not be used in a simple accept/reject fashion, but merely as guidance as to whether a better
model has to be constructed to explain the data. After all, the p-values displayed in Figure 2 serve that
purpose: a physicist starting with model II only would be well advised to look further, and hopefully
arrive at model III or IV.
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