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Abstract
We review, in some cases very succinctly, statistical issues in the formulation
of discovery procedures for high energy physics. This includes alternatives to
p-value tests, the look-elsewhere effect, measurement sensitivity, implicit sta-
tistical models, parton density uncertainties, reference priors, profile likelihood
methods, and extreme value theory.

1 Introduction

From 11 to 16 July 2010, a group of statisticians and physicists met at the Banff International Re-
search Station in the Canadian Rockies to debate statistical issues related to the significance of discovery
claims. Although these discussions did not lead to a miraculous consensus on how to claim or not claim
discoveries, progress was made in understanding some questions and in learning about potentially useful
statistical techniques that are not yet known in the high energy physics community. Section 2 starts with
a critical look at the way we quantify evidence against a given hypothesis, and why the almost exclusive
use of p-values in our field may not be optimal. Section 3 discusses how to report a failure to discover,
and the importance of measurement sensitivity for this. Difficulties arising from likelihood functions
that cannot be written down analytically are explored in section 4, and the question of parton density un-
certainties is summarized in section 5. Finally, some technical advances in profile likelihood techniques
and reference priors are briefly described in sections 6 and 7 respectively, and the potential usefulness of
extreme value theory is mentioned in section 8.

2 Discovery claims

Discovery claims in high energy physics are almost universally based on p-value calculations, regardless
of the type of hypothesis that is being tested. Equally universal is the discovery threshold, which is set at
five standard deviations, corresponding to a Type-I error rate of 2.87× 10−7. This threshold was chosen
a long time ago [1], based on a back-of-the-envelope estimate of the probability of a false discovery
claim in the vast number of histograms examined by all high energy physicists in the course of one
year. Since then, statisticians have given ample warning that the evidence contained in a dataset for or
against a given hypothesis depends strongly on the type of hypothesis being tested, on the formulation
of alternatives, on sample size, on the dimensionality of the problem, and on the stopping rule. Thus it
may be time to question the universality of high energy physics procedures in this regard, or at least to
explore alternatives. As it turns out, these alternatives can produce results that are quite different from
those obtained with p-values.

Another reason to explore alternatives is that p-values are easily misinterpreted, if not by the
physicists who produce them, then almost certainly by the public at large. The two most common
misinterpretations are that a p-value represents the posterior probability of a hypothesis, or the odds
against it, in light of the data. Since these concepts of posterior probability and odds actually belong to
the Bayesian paradigm, it is natural to turn to the latter in a search for alternative testing methods. To
contrast p-values with Bayesian measures of evidence we start with a well-known paradox formulated
by Lindley in 1957 [2].
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2.1 Lindley’s paradox

Suppose first that we have n measurements X1, X2, . . . , Xn distributed according to a Gaussian with
unknown mean µ and known variance σ2. The likelihood can be reduced to:

L(µ) =
e
−1

2

( x̄o−µ
σ/

√
n

)2

√
2π σ/

√
n
, (1)

where x̄o is the observed average of all the measurements. We are interested in testing

H0 : µ = µ0 versus H1 : µ = µ1, (2)

with µ1 > µ0. A sufficient test statistic is the average X̄ , and large values of X̄ indicate deviation from
H0 in the direction of H1. The p-value is therefore:

p0 = P
[
X̄ ≥ x̄o

∣∣H0

]
= 1 − Φ(zo), (3)

where Φ(z) is the cumulative standard normal distribution and zo ≡ (x̄o − µ0)/(σ/
√
n) is the number

of standard deviations away from H0. For a Bayesian analysis we must first assign prior probabilities π0

to H0 and π1 to H1, with π0 + π1 = 1. A typical non-informative choice is π0 = π1 = 1/2, but the
argument works for any value π0 > 0. The posterior probability of H0 is:

p(H0 | ~x) =
π0 L(µ0)

π0 L(µ0) + π1 L(µ1)
=

[
1 +

π1

π0
e

(µ1−µ0

σ/
√

n

)( x̄o−(µ0+µ1)/2
σ/

√
n

)]−1

. (4)

Note how this posterior couples the measurement sensitivity, (µ1 − µ0)/(σ/
√
n), with the evidence

contained in the data, zBayes ≡ [x̄o − (µ1 + µ0)/2]/(σ/
√
n). If either quantity is zero, the posterior

probability of H0 reduces to π0. Rewriting the posterior in terms of zo,

p(H0 | ~x) =

[
1 +

π1

π0
e
−1

2

(µ1−µ0

σ/
√

n

)2
+
(µ1−µ0

σ/
√

n

)
zo

]−1

, (5)

shows that for a fixed p-value p0 (or equivalently, a fixed zo value), the posterior probability of H0 goes
to 1 as the sample size n increases. With α the Type-I error rate, it could happen that a frequentist finds
p0 < α and rejects H0, whereas a Bayesian concludes that the evidence in the data supports H0. The
reason for this discrepancy is clear: evidence in the p-value sense is measured by zo, which only takesH0

into account, whereas evidence in the Bayes sense is measured by zBayes, which takes both H0 and H1

into account. As the measurement resolution σ/
√
n improves, the only way to keep zo fixed is to increase

the number of standard deviations between the data x̄o and H1. Eventually the Bayesian evidence will
favor H0.

Within the Neyman-Pearson theory of testing, the alternative hypothesis H1 influences the test via
the Type-II error rate β, the probability of incorrectly rejectingH1. As the sample size increases, keeping
α fixed allows β to become arbitrarily small, thereby shifting the emphasis from protectingH0 (the usual
goal of an experimenter) to protecting H1. This can be avoided by letting α decrease as the sample size
increases.

What happens if we remove the advantage the Bayesian approach draws from looking at a precise

alternative hypothesis? Suppose we replace test (2) by:

H0 : µ = µ0 versus H ′
1 : µ > µ0. (6)

Here the alternative hypothesis is completely vague: the lack of focus on H1 that characterizes the p-
value has been incorporated in H ′

1. This is the situation examined by Lindley in his famous paradox.
A p-value analysis of this test yields the same result as before, namely Eq. (3). On the other hand,
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a Bayesian analysis requires that, in addition to the hypothesis priors π0 and π1, we specify a prior
distribution g(µ) for µ under H ′

1. The actual form of g(µ) does not matter much because we will be
taking the limit n → ∞. We only assume that g(µ) is continuous and integrates to 1 over µ > µ0. At
large values of n and for positive zo the posterior probability of H0 is then given by:

p(H0 | ~x) =
π0 L(µ0)

π0 L(µ0) + π1

∫
µ>µ0

L(µ) g(µ) dµ
≃
[
1 +

π1

π0

√
2π σ√
n

e
z2
o
2 g(µ0) Φ(zo)

]−1

. (7)

Thus we find again that for a fixed p-value evidence zo againstH0, the posterior probability ofH0 goes to
1 at large n, hence the paradox. A striking aspect of this paradox is that it arises in the large-sample limit,
where the Bayesian and frequentist paradigms often agree in problems of point and interval estimation.

2.2 Resolution

The statistics literature on Lindley’s paradox is extensive, and many resolutions have been proposed [3].
A recurring theme in this literature is that the choice of test procedure should depend on one’s prior

beliefs in the hypotheses being tested. For test (6) one can imagine three possibilities:

1. due to past experience or compelling theoretical arguments, there is a concentration of prior belief
on H0;

2. H0 is not particularly believable, but represents a valuable simplification of our description of the
physics process under study;

3. H0 is not particularly believable, but is stated for convenience (e.g. the hypothesis we are really
interested in is µ ≤ µ0, but µ = µ0 is easier to analyze).

When searching for new physics, test (6) is rather common, with µ representing, for example, the produc-
tion rate of a new particle. Our prior beliefs regarding H0 and H1 can then be characterized as follows:

– Even though the physical theory underlying H0 (the standard model of particle physics) describes
a vast body of previous observations extremely well, we know that it is incomplete, and that some-
where it predicts something that will not be observed. Fundamentally the theory is wrong.

– However, we do not know where the breakdown will occur. There are many predictions that can be
tested. Furthermore, if the test at hand should be the one to detect a breakdown, there may be more
than one physics explanation that could incorporate the alternative hypothesis. It is also possible
that the correct physics explanation hasn’t been formulated yet.

Which of the three prior belief structures does this situation correspond to? If we leave aside the third
case (misspecification of H0), it could be argued that we have strong belief in the (limited) validity of
the standard model (case 1), or that we only view the standard model as a useful simplification of a
more fundamental theory (case 2). Each of these views receives its own treatment within the Bayesian
paradigm and leads to further insights into Lindley’s paradox. It is also possible to accomodate both
views in a single treatment.

2.2.1 Case 1: the null hypothesis enjoys strong prior belief

An important insight here is that it is very rare that one tests a true point null hypothesis. Even if the
theoretical hypothesis is a point (e.g. the production rate of the Higgs boson is exactly zero because the
Higgs boson does not exist), there are always unknown measurement biases that cause the actually tested
hypothesis to be “fuzzy”. Without arguing this point in detail, it is relatively easy to see how it leads to a
resolution of Lindley’s paradox [4].
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Suppose that byH0 : µ = µ0 we really mean to approximate the hypothesisH ′
0 : µ0 ≤ µ ≤ µ0+ǫ

for some small positive ǫ that describes the unknown biases. The test is therefore:

H ′
0 : µ0 ≤ µ ≤ µ0 + ǫ versus H ′′

1 : µ > µ0 + ǫ, (8)

and the p-value is:

p′0 = sup
µ0≤µ≤µ0+ǫ

P
[
X̄ ≥ x̄o

∣∣H ′
0

]
= sup

µ0≤µ≤µ0+ǫ

[
1 − Φ

( x̄o − µ

σ/
√
n

)]
= 1 − Φ

( x̄o − µ0 − ǫ

σ/
√
n

)
. (9)

For the Bayesian analysis we suppose that there is a continuous, proper prior π(µ) that peaks inside H ′
0,

such that π0 =
∫
H′

0
π(µ) dµ. The posterior probability of H ′

0 is:

p(H ′
0 | ~xo) =

∫ µ0+ǫ
µ0

L(µ)π(µ) dµ
∫ +∞
−∞ L(µ)π(µ) dµ

. (10)

At large enough n the likelihood L(µ) concentrates around x̄o. Solving equation (9) for x̄o yields:

x̄o = µ0 + ǫ+
σ√
n

Φ−1(1 − p′0). (11)

Hence for fixed p′0 the likelihood concentrates at the edge of H ′
0 as n becomes large. For a smooth prior

π(µ) the numerator of posterior (10) can therefore be approximated by:

∫ µ0+ǫ

µ0

L(µ)π(µ) dµ ≃ π(µ0 + ǫ)

[
Φ
(µ0 + ǫ− x̄o

σ/
√
n

)
− Φ

(µ0 − x̄o

σ/
√
n

)]
≃ π(µ0 + ǫ) p′0, (12)

where the approximation is valid in the limit where n goes to infinity while p′0 remains constant. A similar
calculation for the denominator of (10) yields π(µ0 + ǫ). Taking the ratio, we find that p(H ′

0 | ~xo) → p′0,
thus resolving the paradox.

Both Lindley’s paradox and the above resolution are formulated in the large-sample limit. How-
ever, in problems of practical interest it is rare that one is able to specify ǫ, and in finite samples it is not
possible to determine how close the p-value will be to the posterior probability of the null hypothesis H0

without knowing the prior π(µ). Unfortunately it is notoriously difficult to construct objective priors for
testing a precise hypothesis against a vague one (as in equation 6). The problem is that objective priors
often tend to be improper. To circumvent this problem, ref. [4] studies lower bounds on Bayes factors and
posterior probabilities over wide classes of proper priors. The surprising result is that even these lower
bounds are significantly larger than the corresponding p-values, indicating that the latter overestimate
the evidence against the null hypothesis. Furthermore, p-values cannot be “recalibrated” for a variety of
reasons: the calibration would depend on the sample size, on the postulated probability density of the
observations, on the stopping rule of the experiment, and on the type of null hypothesis being tested.

2.2.2 Case 2: the null hypothesis provides a useful simplification

Again we consider test (6), but this time we assume that, although belief in H0 is not particularly high,
this hypothesis embodies a useful simplification of the theory that describes the observations [5]. In other
words, µ0 is special in terms of a utility function rather than in terms of prior belief. Let u(di, µ) be the
utility of choosing di when µ is the value of the parameter of interest, where di represents the decision
to accept Hi. It seems reasonable to require that the gain in the utility of accepting H1 be an increasing
function of the distance δ(µ, µ0) between µ and µ0. For simplicity we set:

u(d1, µ) − u(d0, µ) = δ(µ, µ0) − δ0, (13)

4



where δ0 is a constant, which can be interpreted as a penalty for using the more complicated model
implied by H1 when the simpler H0 would suffice (since u(d1, µ0) = u(d0, µ0) − δ0). Rejecting H0 is
the optimal decision when it leads to an expected gain in utility:

E
[
u(d1, µ) − u(d0, µ)

∣∣ ~x
]
> 0 or U(~x) ≡ E

[
δ(µ, µ0)

∣∣ ~x
]
> δ0, (14)

where the expectation is taken with respect to the posterior distribution of µ. For the Gaussian model (1)
used in Lindley’s paradox, an appropriate choice of δ is the Mahalanobis distance

δ(µ, µ0) =
(µ− µ0

σ

)2
, (15)

and an appropriate prior for µ is the reference prior, which in this case is the indicator function of the set
µ ≥ µ0. The posterior expected utility can then be written as:

U(~x) =

∫ +∞

µ0

e
1
2

( x̄o−µ
σ/

√
n

)2

√
2π (σ/

√
n) Φ(z0/

√
2)

(µ− µ0

σ

)2
dµ =

1

n

[
1 + z2

o +
zo e

−z2
o/2

√
2πΦ(zo)

]
. (16)

Since one rejects H0 whenever U(~x) > δ0, and since U(~x) is a one-to-one function of zo, it is possible
to choose δ0 so as to make this procedure identical to the p-value test p0 < α. However, if we consider
the situation in Lindley’s paradox, where n is increased while zo stays constant, agreement between the
two procedures for a fixed penalty δ0 can only be achieved if α decreases with n. Thus we are led to the
same conclusion that we obtained by considering the Type-II error rate β of test (2).

Note that in this utility based approach it is perfectly possible to use objective priors, even if they
are improper. It is also possible to put a finite prior weight on the null hypothesis, thereby obtaining a
treatment that mixes the first two cases in our description of possible belief structures for test (6). Further
details on this methodology can be found in ref. [6].

2.3 Application to the look-elsewhere effect

To illustrate the discrepancy between p-value and Bayesian measures of evidence, we briefly consider the
problem of searching for a resonance peak somewhere in a spectrum of finite width. Since the location
of the peak is not known a priori, the significance of an interesting local excess must be corrected for the
fact that a background fluctuation like the observation could have occurred anywhere in the spectrum.
This is the look-elsewhere effect (LEE).

The statistician R.B. Davies computed the LEE correction to p-values in 1987 [7]. Suppose that
for each value of the resonance location θ ∈ [A,B], the test statistic S(θ) is (asymptotically) chisquared
with s degrees of freedom. Davies derived the following formula for the LEE-corrected tail probability:

P

[
sup

A≤θ≤B
S(θ) > u

]
≤ P(χ2

s > u) + 〈N(u)〉, (17)

where 〈N(u)〉 is the expected number of upcrossings of the level u by the process S(θ). LEE-corrected
p-values are typically obtained via Monte Carlo simulation, which can be very time consuming for large
values of u. Ref. [8] solves this problem by providing an analytical formula for the scaling of 〈N(u)〉
with u. The computation can then be considerably shortened by performing it at some low value of u
and using the formula to extrapolate to the observed value.

For a simple example that doesn’t require the full generality of Davies’s result, consider the spec-
trum of observed Poisson counts shown in the left panel of Fig. 1. We assume that the background noise
is the same in all bins, and that any signal can only appear in one bin. The p-value in any given bin i is

p(no,i) =

∞∑

n=no,i

µn

n!
e−µ, (18)
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where µ is the background level and no,i is the observed count in bin i. We are interested in the most
significant effect, as identified by the smallest p-value in the spectrum, say pmin. If the total number of
bins examined is B, the LEE-corrected significance is:

pLEE = P

[
min

1≤i≤B
p(no,i) ≤ pmin

∣∣∣H0

]
= 1 − (1 − pmin)

B. (19)

Note that pLEE is larger than pmin.

The Bayesian calculation starts with the likelihood function:

L(η, ℓ) =
B∏

i=1

[µ+ η δiℓ]
no,i

no,i!
e−µ−η δiℓ , (20)

where η is the signal magnitude and ℓ its bin number. We wish to test

H0 : η = 0 versus H1 : η > 0. (21)

The problem has one nuisance parameter, the signal location ℓ. In the absence of any information about
ℓ, we take its prior to be uniform: π(ℓ) = 1/B. If the value of η was specified under H1, the posterior
probability of H0 would be:

p(H0 |~no)LEE =
π0
∑

ℓ L(0, ℓ)π(ℓ)

π0
∑

ℓ L(0, ℓ)π(ℓ) + (1 − π0)
∑

ℓ L(η, ℓ)π(ℓ)

=

[
1 +

1 − π0

π0

1

B

B∑

l=1

(
1 +

η

µ

)no,ℓ

e−η

]−1

, (22)

where π0 is the prior probability of H0. How can we handle the fact that η is actually not specified under
H1? The preferred option is a subjective Bayesian analysis: introduce a proper prior for η under H1

and integrate it out. A second option is to do an objective Bayesian analysis by constructing a “neutral”
prior for η; however this prior needs to be proper, otherwise the posterior probability of H0 will be
undefined. Methods for doing this are described in ref. [9]. A third option is the utility-based approach
of section 2.2.2. Finally, one could simply plot p(H0 |~no)LEE from equation (22) as a function of η to
get a sense of the variation of the Bayesian evidence regarding H0. This is shown in the right panel of
Fig. 1 for π0 = 1/2. It is quite remarkable that, even at its minimum, the posterior probability of H0 is
still about an order of magnitude higher than the p-value. Of course one could reduce this discrepancy
by lowering π0, but this would mean that a substantial fraction of the evidence against H0 is due to one’s
prior opinion about H0 rather than to the data.

The plot also shows the effect of the LEE correction on both the p-value and the posterior proba-
bility. For this particular example, the effect is about the same on both quantities.

3 Measurement sensitivity

So far we have concentrated our attention on the interpretation of evidence supporting discovery claims.
For tests such as (6), where the alternative hypothesis specifies a range of values for the parameter of
interest, an equally important and difficult issue is what to report when no discovery can be claimed. If
the p-value (3) is greater than the significance threshold α, we accept H0. However, this does not mean
that all values of µ under H ′

1 are now rejected: there are values of µ that our experiment is not sensitive
to, and others that the data won’t allow us to exclude. One way to investigate this is to test individual
values of µ under H ′

1:
H ′

1[µ1] : µ = µ1 versus H0 : µ = µ0, (23)

where, as before, µ1 > µ0. A (1 − γ) C.L. upper limit µu can then be defined as the largest value of µ1

that is not rejected by the test at some significance level γ.
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Fig. 1: Left: spectrum of Poisson counts used to illustrate the look-elsewhere effect on p values and posterior
probabilities. Right: posterior probability of the background-only hypothesis as a function of the tested signal
magnitude η, with and without LEE correction, compared with the corresponding p values.

In the frequentist approach to testing, µu can be obtained by solving the p-value equation p1(µu) =
γ, where

p1(µ1) = P
[
X̄ < x̄o

∣∣H ′
1[µ1]

]
(24)

is the p-value for testing H ′
1[µ1]. For the Gaussian likelihood (1), the upper limit derived this way is

given by:

µu = x̄o +
σ√
n

Φ−1(1 − γ). (25)

Due to measurement resolution effects it may happen that x̄o is such that the upper limit µu falls below
the lower boundary µ0 of the physical parameter space. In this case the upper limit is unphysical and
the corresponding interval is empty: all values of µ are excluded, regardless of the actual measurement
sensitivity.

This problem has been known for at least twenty-five years [10]. As recently emphasized by
Bob Cousins, the underlying issue is lack of conditioning in the standard frequentist approach, which,
in the presence of physical boundaries, yields what is known in the statistics literature as “relevant
subsets” [11]. These are subsets of sample space with respect to which the conditional coverage of a
confidence interval procedure is consistently above or consistently below the nominal coverage for all

parameter values.

Many solutions have been proposed over the years. Here we only mention those that are based
on solid statistical principles. The first one is to calculate a Bayesian upper limit: the resulting intervals
are never empty, but they require the choice of a prior and typically do not achieve exact frequentist
coverage. The second solution is to do a frequentist construction with a so-called “unified” ordering
rule, such as the likelihood-ratio ordering rule of ref. [12]. This procedure has coverage and never
yields empty intervals, but there are cases where the behaviour of interval length as a function of the
observations is unsatisfactory. In addition, it only accomodates one confidence level where high energy
physicists typically require three: one for the discovery significance (1.0 − 2.87 × 10−7), one for the
upper limit (95%) reported in the absence of a discovery claim, and one for the two-sided interval (68%)
reported with a discovery claim. A third possibility is to modify the statistical model of the measurement,
in particular its error structure [13]. For the Gaussian example, one typically assumes that the standard
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deviation is known exactly and is independent of the mean, neither of which may be true. Finally,
some astrophysicists have recently proposed to keep reporting the standard frequentist upper limit, but
to complement it with a minimum sensitivity bound, defined as the smallest parameter value that one
would have a pre-specified probability of detecting at a pre-specified level of significance if it was the
true value [14]. As indicated by its definition, the construction of this sensitivity bound requires two
pre-specified numbers; in addition, the handling of nuisance parameters is not trivial.

There is at present no consensus on the optimal method.

4 Implicit statistical models

High energy physics measurements are complex in the sense that we typically do not know the exact
analytical dependence of the likelihood function on some parameters of the model. All we have is the
underlying stochastic mechanism, which we can simulate with a Monte Carlo algorithm. This difficulty
occurs for both nuisance and interest parameters.

As illustration, consider the measurement of the mass µ of a new particle. The data sample consists
of a signal component (events containing the new particle) and an irreducible background component. If
we have an event by event estimator X of µ, the likelihood has the form:

L(µ) =

N∏

i=1

[
(1 − ǫb) fs(xi ; µ) + ǫb fb(xi)

]
× . . . , (26)

where ǫb is the background contamination of the sample, and fs and fb are the signal and background
distributions of X . These distributions are usually approximated by histograms from Monte Carlo simu-
lations, which may be smoothed or fitted with parametric representations. In addition, the fs distribution
must be constructed on a grid of µ values supplemented with interpolation. This is inefficient since a
lot of time is wasted modeling fs(x ; µ) at µ values far from the maximum-likelihood estimate (MLE).
Finally, fs and fb also depend on nuisance parameters such as energy scales, initial and final state ra-
diation, parton densities, etc. Generalizing the above approach to multiple parameters quickly becomes
impractical [15].

Over the years, a number of ingenious but somewhat dubious shortcuts were invented by high
energy physicists to take nuisance parameters into account. An example shortcut is to evaluate the shift
∆µ in the MLE of µ induced by a one-sigma variation of a given nuisance parameter, and then to replace
the likelihood by its convolution with a Gaussian with standard deviation ∆µ:

L(µ) → L̃(µ) ≡
∫

L(µ′)
e
− 1

2

“

µ−µ′
∆µ

”2

√
2π∆µ

dµ′ (27)

When there is more than one nuisance parameter, ∆µ is replaced by the sum in quadrature of the indi-
vidual shifts. The validity of this method has never been studied in detail.

In the next two subsections we examine approaches, one Bayesian and the other frequentist, that
may be useful for handling implicit models.

4.1 Approximate Bayesian computation methods

In the Bayesian paradigm, the likelihood is integrated over the nuisance parameters, a feature that lends
itself well to Monte Carlo computations. Implicit statistical models can be analyzed with the help of
so-called ABC methods (Approximate Bayesian Computation). The goal is to approximate the posterior
distribution π(µ |x) ∝ p(x |µ)π(µ). All we need is a suitable distance function d(xa, xb) between two
datasets xa and xb. Let xobs be the observed dataset. The simplest ABC algorithm is the ABC rejection
sampler:
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1. Sample µ⋆ from π(µ).

2. Simulate a dataset x⋆ from p(x |µ⋆).

3. If d(xobs, x
⋆) ≤ ǫ, accept µ⋆, otherwise reject.

4. Return to step 1.

The output of an ABC algorithm is a sample of parameters µ⋆ from a distribution π(µ | d(xobs, x
⋆) ≤ ǫ).

If ǫ is sufficiently small, this distribution will be a good approximation to the posterior π(µ |xobs). A
delicate issue is the choice of distance function d(xa, xb). There is no general theory for this, and the
choice must be made on a case-by-case basis.

There exist other ABC algorithms, which are more efficient than the rejection sampler and even
work with improper priors [16].

When combining the results from different experiments, common uncertainties and the resulting
correlations must be taken into account. This seems doable with ABC methods, although the generation
of Monte Carlo samples (an industry in itself) will have to be carefully coordinated between experiments.

4.2 Decision-Theoretic Methods

In the frequentist paradigm one is interested in procedures that have coverage for all values of the interest
and nuisance parameters. Other requirements besides coverage are needed to specify unique procedures.

For the construction of confidence intervals, one approach, based on decision-theoretic ideas, is
known as minimax expected size (MES): it minimizes the maximum expected size of the confidence
set over parameter space. In a Monte Carlo implementation of MES, parameter values are drawn at
random from the parameter space, and a dataset is simulated for each parameter value. Each simulated
dataset is compared to the observed dataset using a likelihood ratio test. Inverting the likelihood ratio test
minimizes the probability of including false values in the confidence region, which in turn minimizes the
expected size of the confidence region. This Monte Carlo algorithm does not require explicit knowledge
of the likelihood function, only of the data generating mechanism [17]. In addition, it is well suited for
handling physical boundaries in parameter space.

At present the Bayesian approach via ABC methods seems a lot more flexible than the above
frequentist method, since ABC methods produce an approximation to the posterior itself. The decision-
theoretic procedure only produces confidence intervals, and only of the MES type (no choice of ordering
rule).

5 Parton Density Function Uncertainties

Currently the parton densities are determined by a fit to ∼ 35 datasets with a total of ∼ 3000 data points.
The standard parametrization uses ∼ 25 parameters, and the fit quality is characterized by a χ2 value.
Uncertainties on the parton densities are derived from a ∆χ2 procedure, but the standard ∆χ2 = 1 rule
yields clearly unrealistic uncertainties. Instead, 90% C.L. uncertainties are obtained via ∆χ2 = 100 or
50, depending on the group doing the fit.

These uncertainties are not yet understood from a statistical point of view. Some suggestions were
made at Banff to improve this situation:

– A decision-theoretic approach such as MES.
This may be of value for quantifying the uncertainty in the pdf estimates.

– A random effects model.
Assume that the theory does not quite fit each experiment, resulting in underestimated prediction
errors. Propose as solution that the theory parameter is slightly different in each experiment, and
all these individual parameters are constrained to the formal parameter of the theory via some
distributional assumptions (such as a multivariate-t prior).
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– A closure test.
First verify that for data generated from the theoretical distributions, the ∆χ2 = 1 criterion yields
reasonable uncertainties. Then study how inferences are affected by biasses in theory and/or data.

6 Profile Likelihood Methods

Using results due to Wilks and Wald, ref. [18] derives a comprehensive set of asymptotic formulae, based
on the profile likelihood, for use in searches for new physics.

An interesting technique introduced in that paper is the so-called Asimov dataset, which is in a
sense the most representative dataset of an ensemble: when one uses it to evaluate the estimators for all
parameters, one obtains the true parameter values. Asimov datasets can be used to simplify the estimation
of measurement sensitivities and to compute Jeffreys’ prior.

7 Reference Priors

Uniform priors have been the norm in high energy physics for a long time, partly because they seem

reasonable (by the principle of indifference), and partly because the corresponding posterior intervals
sometimes exhibit reasonable frequentist behaviour. However, they are also known to suffer from two
major drawbacks: they give inconsistent results if the parametrization of the problem is changed, and
they are not guaranteed to yield proper posteriors.

Reference priors have been developed over the past thirty years with the aim of providing a “stan-
dard” for presenting and comparing measurements of quantities about which little or no prior knowledge
is available. Similarly to other standards (e.g. lengths and weights), the reference prior standard was
designed with some rational considerations in mind: the algorithm is based on information theory and
is very generally applicable; reference posteriors are invariant under one-to-one transformations of the
parameter of interest, have good frequentist coverage properties, and avoid the so-called marginalization
paradoxes that plague other non-informative constructions. In high energy physics, reference priors are
now available for cross section measurements, when partial information is available for acceptances and
background sources [19].

There are still some important issues however:

1. Can reference posterior inferences be reported by themselves, or should they be reported only as
part of a sensitivity analysis? If the latter, how should one choose alternative priors?

2. The general definition of reference priors involves the taking of limits, and this must be done
carefully in order to avoid infinities. The standard approach is to use sequences of nested compact
sets that converge to the whole parameter space. Unfortunately there is no unique way of choosing
these compact sets, and there is no guarantee that different choices lead to the same result, or even
that all choices lead to a proper posterior. This ambiguity prevents us from designing a completely
general numerical algorithm.

3. How should we handle implicit statistical models? Can we combine ABC methods with numerical
algorithms for computing reference posteriors?

8 Extreme value theory

Let X1, X2, X3, . . . be independent and identically distributed random variables. Whereas central limit
theory is concerned with the behavior of the partial sums X1 +X2 + . . .+Xn as n→ ∞, extreme value
theory studies the behavior of the sample extremes max{X1, X2, . . . , Xn} as n → ∞. This theory has
many applications, for example to the question of how high dikes should be built in the Netherlands to
protect land below sea level from storm surges that drive the seawater level up along the coast.
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In high energy physics we are often interested in extreme events, that is, collision events in which
some measurable quantity takes on a very large value. Extreme value theory may help here, by providing
a solid basis for extrapolating from measurements at lower values of the quantity of interest [20].
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