Exotic Prompt and Non-Prompt Leptonic Decays as a Window to the Dark Sector with ATLAS

SUSY 2016, Melbourne

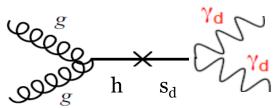
Miriam Diamond University of Toronto ATLAS Group

... or, using the Dark Side of the Force

Outline

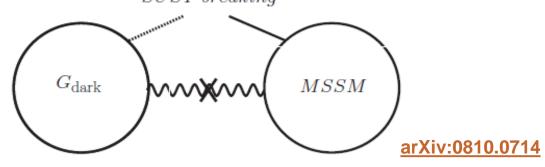
- Search Motivations
- Search Strategies
- Low-mass ("Dark γ") Searches
 - Challenges and Analysis Handles
 - Displaced Lepton-Jets Analysis (Run 1 results + Run 2 preliminaries)
 - Prompt Lepton-Jets Analysis (Run 1 results)
- Higher-mass ("Dark Z") Searches
 - Challenges and Analysis Handles
 - $h \rightarrow Z_D Z^*$ Analysis (Run 1 results)
 - $h \rightarrow Z_D Z_D$ Analysis (Run 1 results)
- Potential Future Extensions

All results referenced here are available at https://twiki.cern.ch/twiki/bin/view/ AtlasPublic/ExoticsPublicResults

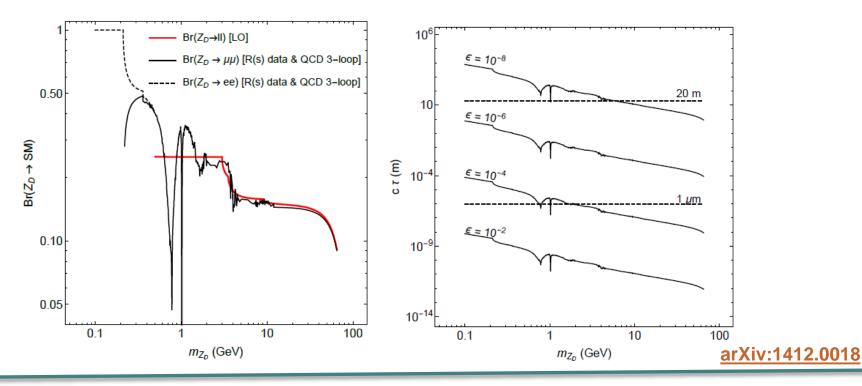

Dark Boson Search Motivations

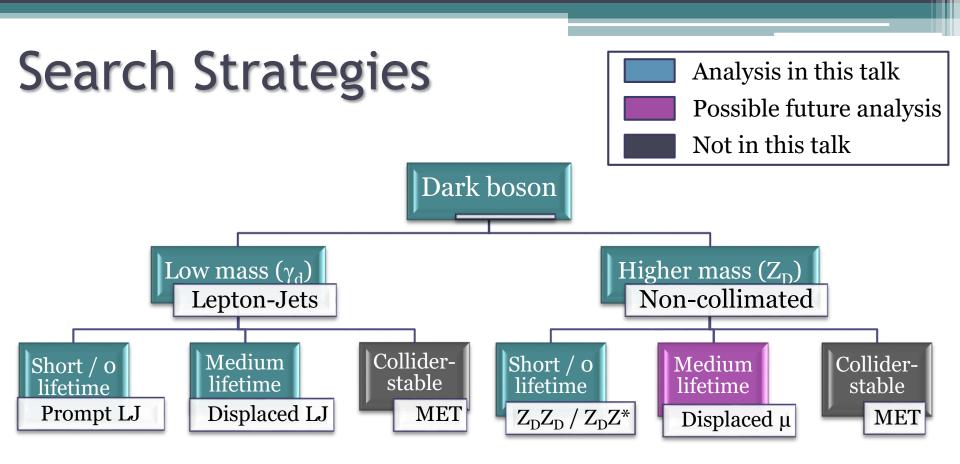
- Possible portals to dark sector: Higgs, Neutrino, Vector, (Axion)
- Vector portal: add U(1)' whose massive gauge boson (A' / Z_D / γ_d) mixes kinetically with SM photon ______kinetic mixing parameter

$$\mathcal{L} \supset -\frac{1}{4} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} - \frac{1}{4} \hat{Z}_{D\mu\nu} \hat{Z}_{D}^{\mu\nu} + \frac{1}{2} \frac{\epsilon}{\cos \theta} \hat{Z}_{D\mu\nu} \hat{B}^{\mu\nu} + \frac{1}{2} m_{D,0}^2 \hat{Z}_{D}^\mu \hat{Z}_{D\mu}$$


My convention : γ_d low-mass Z_D higher-mass

- Higgs portal: add "dark scalar" (φ / s_d) that mixes with SM Higgs $\mathcal{L} \supset (A\varphi + \lambda\varphi^2)H^{\dagger}H$ Higgs mixing parameter • Trilinear term induces mixing after EWSB $\kappa = \frac{Av}{m_h^2 - m_{\omega}^2}$
- Hidden Abelian Higgs: Higgs Portal + dark boson


Dark Boson Search Motivations


- "Hidden Valley": dark boson our best candidate for collider detection amongst hidden zoo?
 - High dark boson multiplicity in long decay chains?
- Dark matter models
 - Inelastic Dark Matter
 - Radiating Dark Matter
 - ... etc
- Dark boson as mediator between dark gauge group and (N)MSSM ?
 - "Standard" production of superpartners @LHC \rightarrow dark sector \rightarrow dark bosons ? SUSY breaking

Search Strategies

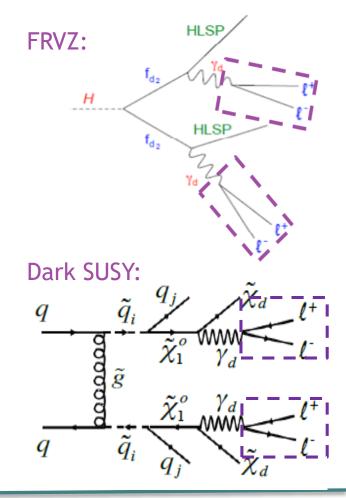
- Final-state dilepton signatures: promising search prospects if Z_D/γ_d decays back to SM with sizeable BR
 - BRs vary with mass
 - Lifetime varies with mass and ε

- Lepton-Jet (LJ): collimated jet-like structure containing pair(s) of muons and/or electrons (and/or light hadrons: not discussed here)
- Non-collimated: final state leptons far enough apart to pass standard reconstruction criteria

Low-Mass Searches: Challenges

- Low signal rate and no obvious triggers
 - Low lepton-p_T thresholds for sufficient efficiency
 - Need creative triggers to avoid pre-scaling
- Reconstruction challenges for collimated final-state particles

ATLAS Public EXOT-2013-22-Aux


- Range of possible topologies, depending on unknown hidden sector properties
 - Number of constituents per LJ
 - LJ shapes

Low-Mass Searches: Handles

<u>JHEP 62, 02 (2016)</u> <u>JHEP 11, 088 (2014)</u> ATL-PHYS-PUB-2016-010

- Categorize LJs by:
 - Particle species
 - Prompt vs displaced
- Key properties:
 - Angular aperture of constituents
 - Isolation (Σp_T of charged tracks within cone)
- LJ-building: cone-based clustering
- Require two LJs in event
 - Minimum Δφ separation
- To allow easy re-casting: trigger & reco efficiency tables as function of γ_d {ct , p_T }
 - "Lepton-Jet Gun" MC tool

Benchmark Models

Low-Mass Searches: Displaced LJs

Targets γ_d decays beyond pixel detector, out to muon spectrometer (MS)

- Muon pairs: MS tracks with no corresponding ID tracks
- Electron pairs: appear as jets in calorimeters

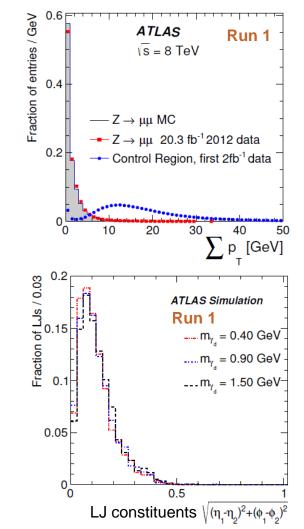
LJ categorization:

JHEP 11, 088 (2014)

Low-Mass Searches: Displaced LJs

JHEP 11, 088 (2014)

Main backgrounds:


- QCD multi-jet
- Cosmic-ray muons
- Beam-induced

Triggers:

- 3 MS tracks without ID tracks
- 2 close-together MS tracks without ID tracks NEW IN RUN 2: ~3x gain in trigger efficiency
- Jet with low fraction of energy deposition in EM calorimeter

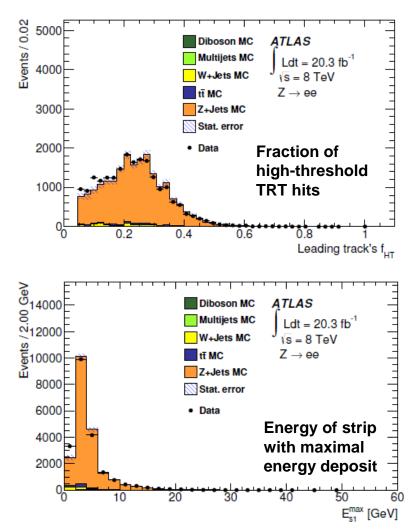
Additional discriminating variables:

- Jet width and timing
- Beam-induced BG tagging NEW IN RUN 2

Low-Mass Searches: Prompt LJs

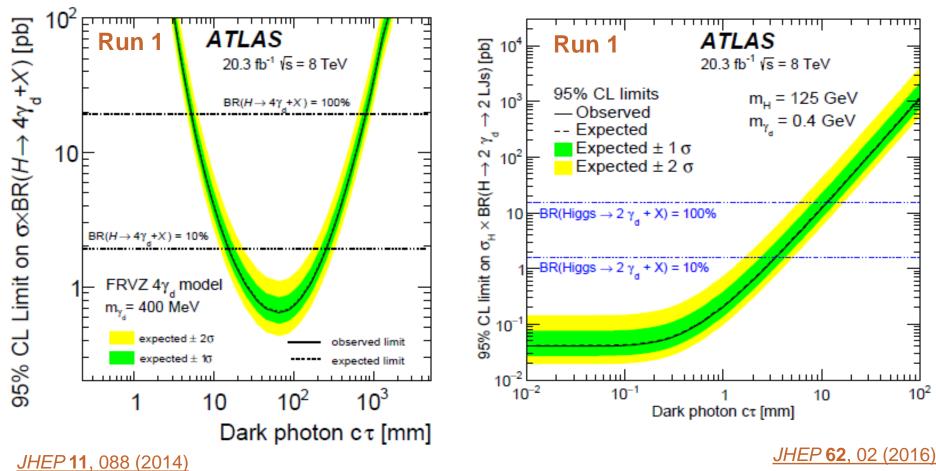
JHEP 62, 02 (2016)

LJ Categories:


Muon, electron, mixed

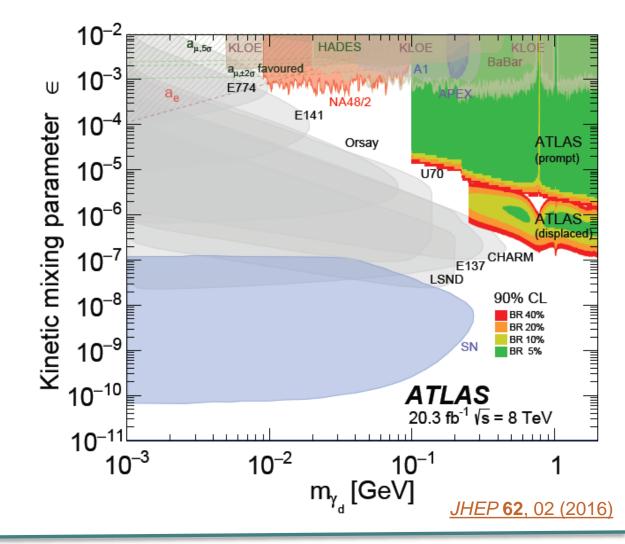
Main backgrounds: QCD multi-jet

Triggers: single-electron, di-EM, singlemuon, di-muon


Additional discriminating variables:

- Calorimeter isolation
- Jet EM fraction
- EM Calorimeter hit properties and hadronic leakage
- Transition Radiation Tracker hit properties

Low-Mass Searches: Run 1 Results


Displaced:

Prompt:

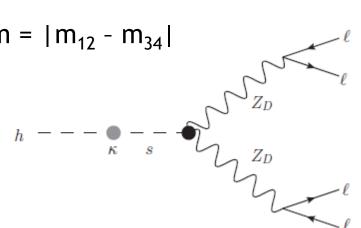
Low-Mass Searches: Run 1 Results

- Displaced and Prompt provide complementary coverage in γ_d parameter space
- In regions other experiments are unable to reach!
 - ATLAS limits have extra parameter (BR for h → hidden)

Higher-Mass Searches: Challenges & Handles

- Assumption of Z_D on-shell \rightarrow use of invariant mass
- All same-flavor opposite-sign combinations of 4l final state
 - 4μ , $2\mu 2e$, 4e channels
- Combination of various triggers
 - Single-electron, single-muon, di-electron, di-muon, electron+muon
- Overlap removal for close-together leptons
- Impact-parameter cuts reject cosmic-ray muons and non-prompt leptons
- $h \rightarrow Z_D Z_D$ targets Higgs decay to 2 equal-mass intermediate particles
- $h \rightarrow Z_D Z^*$ scans for resonance in Z* mass spectrum

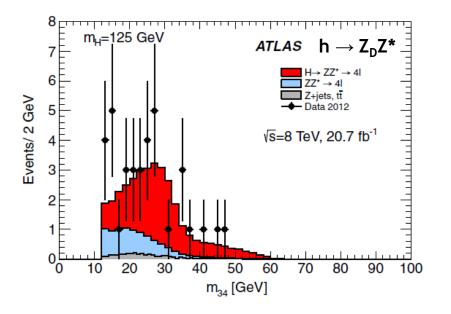
Higher-Mass Searches

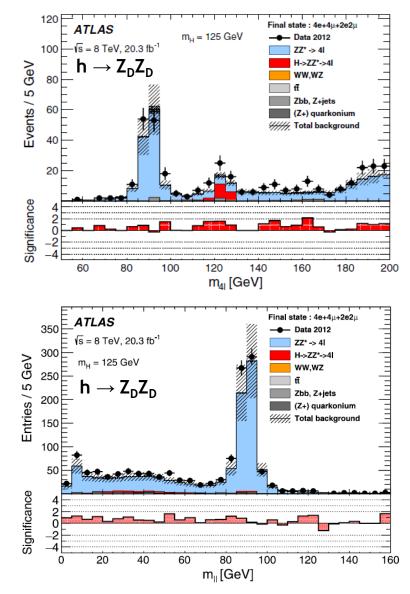

PhysRevD 92, 001 (2015)

$h \to Z_D Z_D$:

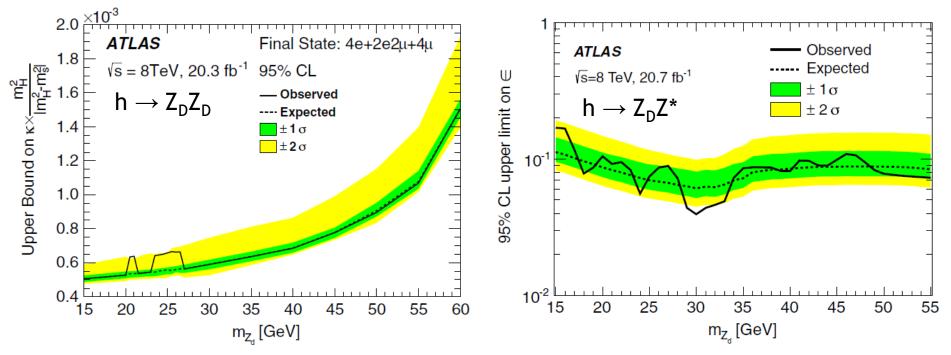
- Lepton quadruplet selected by minimizing $\Delta m = |m_{12} m_{34}|$
- Sensitivity to κ
- Main backgrounds: ZZ*
- Invariant mass cuts:
 - m_{4l} , |m_{pair} m_z|
 - m_{pair} within δm of hypothesized m_{Z_D}

$h \to Z_D Z^{\boldsymbol{\star}}$:


- For Z* mass spectrum, use opposite-sign same-flavor l pair closest to m_z
- Sensitivity to ε
- Main backgrounds: ZZ*, Z+jets, tt
- Invariant mass cuts: m_{4l} , m₁₂ , m₃₄



Higher-Mass Searches


PhysRevD 92, 001 (2015)

Invariant mass distributions for data and expected backgrounds:

Higher-Mass Searches: Run 1 Results

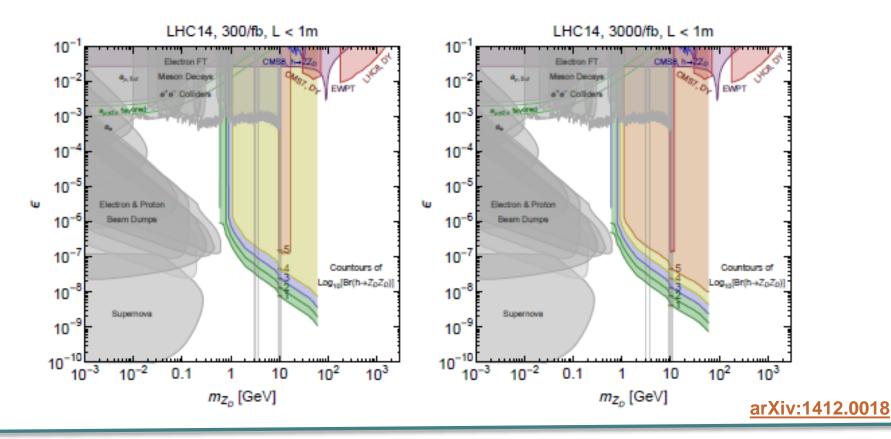
Also placed limits, as a function of $m_{Z_{D}}$, on:

- BR(h \rightarrow Z_DZ \rightarrow 4l) / BR(h \rightarrow 4l)
- BR(h \rightarrow Z_DZ \rightarrow 4l) , using SM BR(h \rightarrow Z_DZ*)
- $BR(h \rightarrow Z_D Z_D \rightarrow 4l)$
- $Z_D Z_D$ signal strength $\frac{\sigma \times BR(h \rightarrow Z_D Z_D \rightarrow 4l)}{[\sigma \times BR(h \rightarrow Z_D Z_D \rightarrow 4l)]_{SM}}$

PhysRevD 92, 001 (2015)

Potential Future Extensions

- Diphoton 750 GeV bump: contribution from $h \rightarrow \gamma_d$'s ?
- Nuclear transitions 17 MeV bump: "protophobic boson" not exactly our Z_D / γ_d , but perhaps detectable? arXiv:1604.07411


• Lepton-Jets:

- Additional benchmark models (e.g. inelastic DM)
- Additional LJ types (e.g. converted photons)
- Extended m_H, m_{yd} coverage
- For short lifetimes: specialized reconstruction of displaced inner detector tracks
- Non-collimated:
 - Combination with LJ analysis
 - For extended angular aperture coverage: overlap removal adjustments

Potential Future Extensions

 New "displaced non-collimated muons" analysis for Run 2, extending Z_DZ_D search to longer lifetimes

Conclusions

- Dark bosons appear in a wide range of BSM models
 - Vector Portal, Higgs Portal, Hidden Valley, SUSY, DM ...
- Rich phenomenology of leptonic final states presents challenges ...
 - Widely-varying topologies
 - Non-standard reconstruction
 - Tricky to trigger on
- ... but also opportunities for discoveries in ATLAS!
 - Multiple complementary analyses with distinct strategies
 - Lepton-Jet (Prompt + Displaced) and Z_DZ_D / Z_DZ* analyses cover large swaths of previously-unexplored parameter space
- Building on successes of 8TeV analyses for even wider-reaching 13TeV versions