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Introduction: The Atiyah-Singer index theorem [1] relates the zero modes-of a
Dirac operator on a compact manifold M to a topological invariant that characterizes
the manifold. For arbitrary gauge and gravitational background fields a path integral
evaluation of this topological invariant has been presented in [2,3]. The approach is
based on N = 1 supersymmetric quantum mechanics, with Dirac operator identified
as the supersymmetry generator. By employing general arguments and using specific
gauge and gravitational background fields the evaluation of the path integral can be
reduced to its approximative evaluation at the high temperature (8 — 0) limit, and the
final result coincides with the topological invariant of the Atiyah-Singer index theorem.
A systematic WKB approach for an approximative evaluation of the path integral at
the high temperature limit was subsequently developed in [4].

In [5] Atiyah discusses a conjecture originally due to Witten, on a geometrical
interpretation of the path integral for the N = } supersymmetric quantum mechanics
with gravitational background fields. He argues, that if one assumes validity of the
degenerate version of the finite dimensional Duistermaat-Heckman integration formula
(6] in the infinite dimensional loop space, the path integral yields the Atiyah-Singer
index theorem for a Dirac operator in a gravitational background. The approach
is based on the conceptually interesting observation, that the fermionic part of the
supersymmetry action can be interpreted as a (pre)symplectic {wo form in the bosonic
loop space which turns the original bosonic path integral measure into a loop space
Liouville measure. Furthermore, the approach suggests a technical advantage in the
sense that it is unnecessary to consider the high temperature (8 — 0) limit.! A
mathematical analysis of this conjecture was subsequently discussed in [8].

Recently, in a series of papers [9] a path integral generalization of the nondegenerate
Duistermaat-Heckman integration formula has been developed. In this Letter we shall
apply the ensuing geometrical formalism to present an exact path integral evaluation
(for all 8) of the Atiyah-Singer index theorem in an arbitrary gauge and gravitational
background. Our construction verifies explicitly the conjectures in [5] and generalizes
them to include an arbitrary background gauge field. In particular, in our approach
it is not necessary to use a specific gauge condition, neither for the gauge nor for the
gravitational background field. It is also unnecessary to consider the high-temperature

(8 — 0} limit.? For a gauge field background our supersymmetric action is somewhat

1n the [2-4] approach it is technically very difficult to explicitly verify that O(3) corrections indeed
vanish [7)].
21n addition of conceptual interest in the case of Ativah-Singer index theorems, the exact evaluation
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different from that used in the original approach [2-4]. Instead of using anticomfuting
variables to realize canonically the action of the gauge group generators, we employ
the recently developed co-adjoint orbit method [11]. This has the advantage, that the
path integral yields directly the index theorem for the desired representation of the
gauge group, and there is no need to introduce projection operators.

In the next section we shall realize the conjectures in [5] for a Dirac operator
in an arbitrary gravitational background. This will be followed by a generalization
to arbitrary background gauge fields. In the final section we outline the superfield

formulation of our approach.

Gravitational Background: We shall first consider the Dirac operator on a compact
even dimensional Riemannian manifold M. We are interested in the zero modes £ = 0
of the eigenvalue equation

YD = 7“(8u+éwujk[7ja7k])¢ = & (1)

Here v = €' +* are local Dirac matrices, €}, are components of the vielbein and w,;
are components of the spin connection. The Atiyah-Singer index theorem relates the

zero modes £ = 0 of (1) to a topological invariant,
Indez[y*D,] = Tr{ye P} (2)

where ¢ is the local chirality matrix on M. General arguments suggest® that the r.h.s.
of (2) is f-independent. In the low temperature (8 — oo) limit only the zero modes
contribute according to their chirality, and this yields the index of the Dirac operator.
In the high temperature (3 — 0) limit the r.h.s. can be evaluated explicitly, either
using a heat kernel expansion or using a supersymmetric path integral. The result is
a topological invariant of the background fields, as stated by the Atiyah-Singer index
theorerm.

Here we are interested in an exact path integral evaluation of the r.h.s. of (2), for all
values of 3. For this, we need a canonical realization of the zero mode £ = § equation
(1). We define a canonical structure on M by introducing the conjugate variable p,

with Poisson brackets
{pu, 2"} = &, (3)

of the path integral for arbitrary # is important in the case of odd dimensional index theorems where
B-independence in general can not be assumed [10].
38uch arguments are incorrect in the case of odd-dimensional index theorems [10].
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and realize the local Dirac algebra canonically using anticommuting variables ¢* with
graded Poisson brackets

{¢' '} = 97 (4)
where 7;; is the local {flat) metric. The corresponding M-dependent variables ©* =
E¥+' then have the brackets

{9} = ¢* (5)
where g, is the Riemannian metric on M. With these definitions we can realize the
equation for zero modes of the Dirac operator (1) as a {graded) canonical constraint

equation

1 - '
S = wa(pu + Ewujk'ﬁbjd)k) = 0 (6)
The pertinent constraint algebra is a first class constraint algebra, and coincides with

the N = } supersymmetry algebra

{88t =H & {SH}={HH} =0 (7)
where, using identities of the Riemann tensor we have
1 ;o 1

H = ¢*(p, + ZmeW)(PV + Zwyk;qbk@b!) (8)

The flat space path integral BRST quantization of the constraint algebra (7) has been
discussed in [12]. Since the various ghost degrees of freedom only couple to the world
line quantities and in particular do not couple to the metric structure on M, we
conclude that the results in [12] can be directly adopted to the present case. In partic-
ular, with the representation (6), (8) of the constraint algebra (7) the BRST operator
constructed in [12] remains correct for an arbitrary Riemannian manifold M. The

pertinent BRST gauge fixed path integral
Z = [ [d( Liouville)] ezp{iSy} (9)

with Sg the BRST gauge fixed action in [12] corresponding to the realization (6), (8)
of the constraint algebra, describes the propagation of a Dirac particle on the manifold
M. The variables % in (4) yield the realization 1’ ~ 4 of the Dirac matrices, hence
with periodic boundary conditions the following version of the BRST gauge fixed path
integral (9)

8
Y U 1 :
7 = /[dx“] [dgb”]exp{zof §gwm“$" + 5@5“(9;“,313 + &°9,.15,)%"} (10)
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is a path integral realization of the r.h.s. of (2). Notice that we have here deleted
the contributions from the ghost variables and other variables that decouple from the
background metric on M, and contribute only to the normalization of (10).

We shall now proceed to an exact evaluation of the path integral (10) for all values

of 3. For this we first introduce the loop space exterior differential operator

d= g (11)

Y

We then find that if we interpret the fermionic part in (10) as a loop space two form,

1 1 . a v
Q = §QMV¢#¢V = §wu(ggyat+xpgyarpy)¢ (12)

this two form is closed,

0 = 0 (13)

Consequently {2 determines a (pre)symplectic structure on the space of bosonic loops
z*(t). In particular, if we combine the fermionic part of the action (10) with the
bosonic measure [dz*] in (10) we get a (pre)symplectic i.e. Liouville measure on the
loop space. The remaining bosonic part of the action in (10) can then be interpreted
as a hamiltonian functional in the loop space, and its critical points are the classical
loops,

Xy = gui’ + gu I}, 372" = 0 (14)

Following [9] we identify (14) as the components of a one form in the loop space.
The (pre)symplectic two form (12) then relates this one form to the corresponding

hamiltonian vector field,

X, = QX" (15)
Explicitly, we find

X* = —z"(t) (16)

Hence the classical loops are constant (point) loops, and in particular the critical point
set of the bosonic action coincides with the original manifold M.

Following [9], we find it convenient to introduce variables ¥, dual to the one forms
#, with the Poisson bracket

{9u(t), 9" (1)} = 8,(t =) (17)
Similarly, we introduce the conjugate loop variable
{mu(t),2*(t)} = &t 1) (18)
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We then define an equivariant exterior differential operator by the canonical action of
Q = dtis = Mt + X, = ma — i, (19)

This operator generates the N = } supersymmetry transformation
ozt = ", ot = —g* (20)

which leaves both the measure and the action in (10) invariant. The supersymmetry

algebra is .

;QQ = £ = —&'m — i, (21)
where we identify £ as the loop space Lie derivative along the hamiltonian vector field
(16).

If 4 is a one form in the subspace
L9 =0 (22)
we conclude from [9] that we can add to the action in (10) the Q-differential of ¥,
S — §+{Q,%} (23)

and (22) ensures that the path integral (10) is independent of the functional 4. In
order to construct the appropriate 9 we use the metric tensor g,, on M to introduce

a loop space metric tensor
Gu(t,t) = gul(z)s(t—1') (24)
Since the hamiltonian vector field (16) is a loop space Killing vector to (24),
LG =0 (25)

we conclude that the loop space metric dual of the hamiltonian vector field (16)
* 1 . v 1 | . v
X = ——iGwz‘“@b = —§gww“¢ (26)

is a one form in the subspace (22). Identifying 9 = Xy = A . &A™ with A a parameter,
we then conclude that the corresponding path integral (10), (23) is independent of A.
We observe that we have here constructed the symplectic potential for the loop

space symplectic two form (12),
1
Q = d(—§gwci:”¢”) = dX* (27)

s
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Moreover, we find that the entire action in (10) can be represented as a (J-variation of

the loop space symplectic potential X™,
* 1 TR 1 -4 v
{@. X7} = 59ud"2” + S9%(0: + 79,17, )¢ (28)

From the results of [9] we then conclude that the original path integral (10) is equal to
the path integral

a4
7y = [lde"dp*eapti [{Q ;)

i
A A
= [1daYidg eap{s [ Soua e + 5040+ guT5,)0} (29)

independently of the parameter A.%
In order to evaluate (29) we parametrize z*(t) and ¥*(t) by

) = zi+ay . PR(E) = YL+ (30)

where z# is the zero mode i.e. coordinates on the manifold M, and the ¥¥ can be
viewed as the corresponding basis of one forms. In particular, the path integral measure
in (29) 1s
[dz*][d¢¥] = deydy) [] datdy (31)
14

We introduce the following change of variables for the time dependent z} and ;" in
the decomposition (30), (31)

1 1
rf — —zff & P o= —=
‘ VA v VA
The corresponding Jacobian in the path integral measure (31) is trivial, and for the

action in (29) this yields

(g (32)

8 .
1 ww Lo oo 1o fdpey ey L
5 0/29#1/(%)-’5‘: Ty + 2¢tn'ljat¢t + QRwu(%)%%wt Ly +O(\/X) (33)

where we have used ¢} = yi'el(z,) + O(1/v/A) with Ri;,.(z.) the Riemann tensor on
the manifold M.
By the A-independence of {29) we can ignore the A-dependent contributions to the

action (33), e.g. by setting A — oo. The evaluation of the remaining Gaussian path

“Notice that we can not nasvely set A = 0 in (29).
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integrals is then straightforward. We use (-function regularization, and accounting for

the normalization factors involved the final result is

/a‘a: &, Jdet

Ry =

1 / dz, A( (34)

where .
B )i (3)

Here A(R) is the A-genus [1] and in the last step we have used the identity

/ dedipCoy GG ... = / dz* A dz* A dz”...Ch. (36)

The final result (34) coincides with the Atiyah-Singer index theorem for a Dirac oper-
ator on the Riemannian manifold M. '

Our evaluation of the path integral (29) is ezact for all 8, and explicitly verifies
the conjectures presented in [5]. Since the arguments in [5] were based on the degen-
erate version of the finite dimensional Duistermaat-Heckman integration formula, our
computation can be viewed as a derivation of the path integral generalization of the

degenerate Duistermaat-Heckman integration formula in a special case.

Gauge Ficld Background: We shall now proceed to the generalization of (2) for a
Dirac operator on the Riemannian manifold M with an arbitrary nonabelian back-
ground gauge field. For this, we need a canonical realization of the gauge group action.
The realization used in [2-4] is based on anticommuting variables. This realization
is highly reducible, and in order to get the index of the original Dirac operator it is
necessary to introduce a projection onto the desired representation. Here we shall em-
ploy the recently developed co-adjoint orbit technique [11]. In this approach the path
integral describes directly the index of the Dirac operator in the given representation
of the gauge group, and there is no need to introduce projections.

The co-adjoint orbit of a simple Lie group is a homogeneous symplectic manifold,
and there is a one-to-one correspondence between unitary irreducible representations
of simple Lie groups and integral symplectic structures on the pertinent co-adjoint
orbit. With ¢? local coordinates on the co-adjoint orbit and w,, the symplectic two
form corresponding to the given representation of the gauge group, the Lie algebra can

be represented canonically by functions T%(4) on the co-adjoint orbit with
{T%(), T?($)} = 8, T*w™aT? = f*T7(¢) (37)
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The canonical realization of the zero mode equation for a Dirac operator in an arbitrary
gauge and gravitational background is then a straightforward generalization of the

constraint equation (6)

1 .
S = ¥*(p, + Ewwpwk + AST*) = 0 (38)
and the pertinent first class constraint algebra realizes the N = % supersymmetry

algebra (7).

The BRST quantization proceeds in the same way as in the case of a pure gravita-
tional background: Since the ghost degrees of freedom do not couple to the gauge and
gravitational background fields, the BRST operator is of the functional form described
in [12]. With periodic boundary conditions the following version of the BRST gauge
fixed path integral (9) then yields a path integral representation of the r.h.s. in the
Atiyah-Singer index theorem (2),

Z = / [de*|[dy*][d6°]/ det|was | exp{iS} (39)

where the action is

8
1 . . 'ﬂ. . o o ]. . Ve d o x i
S = [ 50w E + 04"+ P+ (90 + 9.0 Th, — FLTNS (40)
o

Here 8, are components of the symplectic potential on the coadjoint orbit,
Wep = Baﬂb —_ 359,1 (41)

We have again deleted the contribution from the ghost variables and other variables
that decouple from the background and contribute only to the normalization of (39).
Since F,,1¥*¢" is not a closed two form, the fermionic part in (40} also fails to
be closed with respect to the exterior differential operator (11). Consequently the
fermionic part in (40) can not be interpreted as a (pre)symplectic two form in the loop
space z#(t). In order to generalize the construction of the previous section we first use

(37) to decompose
Fo,T(¢) = (8,47 — 0, AT + AZASD, T*w™ 9T (42)

Following [9] we introduce an anticommuting variable ¢* and exponentiate the square

root of the symplectic determinant in (39). By redefining
¢t = ¢+ wAIRT Y (43)
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we then get the action in (40) into the form

2

1 R 1 . la2g ale 1 : 3 o QTN Y

S = /{ﬁgnul"um‘ + gaf,b + quuT + §¢“(gpv6t + :Epgﬂd'rpu - (a.uAv - 60Au)T )d)
0

1 o o a 1 a fa o 1 a b
+ ig[:"A”aaT ¢ = 5¢ ASO, Ty — 5 € WabC } (44)
If we now introduce the exterior differential operator
] 4
d = ¥ — +¢*
(] 520 +c 54 (45)

and interpret the fermionic part in (44) as a two form in the loop space of bosonic

variables z#(t), ¢*(t),
Q = Q% + Qe + Qg P* + Qppcc®

1 : & [} o ¢4 v 1 o & . d 1 a [o 4 [+ 1 a2
= §¢“(gw3t+a:pgml“w—(8u/1u—3,,AM)T W —!-izb“Au@aT c*—g¢ A%0,T ¢“~—§c W
(46)

we find that this two form is closed,
aQ =10 (47)

The equation for the critical bosonic loops again defines a hamiltonian vector field

in the bosonic loop space. This equation is a direct generalization of (17),
QABXB =90 ; A,B = (.“a GL) (48)

with the hamiltonian vector field
e
X4 = ( 7 ) (49)

Hence the critical loops i.e. solutions to the classical equations of motion are point
loops, and the space of critical loops coincides with the direct sum of the original
Riemannian manifold M and the co-adjoint orbit.

We again find it convenient to introduce the extended phase space (17), (18} with

the additional variables

{p(), ()} = &t —t) & H{a(t). ()} = &t —+1) (50)



in the co-adjoint orbit sector. The equivariant exterior differential operator (19) then
generalizes to
Q = d+is = mup* — iu'&u + pac® — ¢%c, (51)
1

and generates the N = 2 supersymmetry transformations that leave the action {44)

1

invariant. The even generator of this N = 3 algebra coincides with the loop space Lie

derivative along the hamiltonian vector field (49),
1 . iu.T 1a 50 = .
L= §{Q’ Q} = —muz® — PP, — pd® - e, (52)

and from the results of [9] we conclude that the corresponding path integral remains
intact under a modification (23) of the action (44) provided ¥ is a one form in the
subspace (22) with £ defined by (52).

The hamiltonian vector field (49) remains a Killing vector for the loop space metric
tensor (24), and we find that the one form

* 1 . v o a
Xy = -—Z—Ag#,,;c”gb — AT %" — 0,¢ (53)
is in the pertinent subspace (22). We observe that we have again constructed a sym-

plectic potential for the loop space symplectic two form (46),

0 = d(—%ngs:w — ACTO* — 8,¢%) = dXp, (54)

We also conclude that the entire action (44) is a ()-variation of this symplectic potential,

§ = {Q, A} (55)

From the results of [9] we then conclude that the one-parameter family of path integrals

B
7 = [lde e |ldoNdetleep(i [{Q, 2}) (56)

is independent of A and coincides with the original path integral (40). Consequently for
any value of A (56) yields the topological invariant of the Atiyah-Singer index theorem.®

We shall now evaluate (56) exactly: For this we introduce the decomposition (30)
and the corresponding decomposition (31) of the path integral measure. The Jacobian

for the pertinent change of variables (32) is trivial, and using the A independence of

*In general we can not set X5 = A-Xy since AST*4* and 6,c® may not be trivial in the cohomology;
see [9].
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(56) we are left with simple Gaussian integrals. These integrals can be evaluated e.g.
using (-function regularization, and accounting for the normalization factors we finally

get

= [do dqboddet —‘ [ 146 Ieap(i f 0.6° — G F2(z,)T*(8)}  (57)
Here we recognize a co-adjoint orbit path integral of the form investigated in [11,9].
For simple Lie algebras such co-adjoint orbit path integrals can be evaluated exactly,
either directly as explained in [11] or using the nondegenerate path integral version of

the Duistermaat-Heckman integration formula as explained in [9]. Defining

P R (55)

and with 7® the matrix realization of the Lie algebra elements T% in the given repre-

sentation of the gauge group, we finally get

- f dmodd)o\J det

where in the last step we have applied (36). Here Ch{F) is the Chern character [1],
and the trace is over the matrix representation of the gauge group. The final result
(59) is the standard formula for the Atiyah-Singer index.

Tr{ew"""} = / dz, A(R)CR(F)  (59)

4m
sinh(=R)

4r

Superfield Formulation: We shall now present the superfield formulation of the

supersymmetric action (44). The superfield associated with z* is
Y# = z# 4 np* (60)
where 7 is an anticommuting variable, and the superfield associated with ¢° is
= 6 e (61)
The superfield metric tensor is
Gu(Y) = gulz+19) = gu(z) + 19" 0,gu () (62)
and the superfield symplectic potential on the co-adjoint orbit is
9a(®) = 0u(¢+1¢) = 8a() +nc" B0 (63)
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We also introduce the superderivative -

Its action on the superfields (60), (61) coincides with the canonical action of (51) on
the component fields. With these definitions we find that the functional form of the
superfield representation of the action (44) coincides with that of the bosonic part of
(),

3
S = / dt / dn [%G“U(Y)Dyuatyweamu DY*‘Afj(Y)T"‘(tI))] (65)
1]

One can now develop a supergeometric interpretation of our formalism. For example,

the symplectic potential (54) is the n = 0 component of the superlagrangian (65),
X* = /dry -7 EGW(Y)DY”B,;Y” +06,D9" + DY—"“AE‘(Y)T"(CI))] (66)

Conclusions: We have presented an exact path integral evaluation of the topological
invariant in the Atiyah-Singer index theorem for a Dirac operator in an arbitrary gauge
and gravitational background. In particular, we have explicitly verified the conjectures
presented in [5] and generalized them to include background gauge fields. Our approach
differs from the original one [2-4] in that instead of anticommuting variables, we realize
the canonical action of the gauge group generators using the recently developed co-
adjoint method [11]. This has the advantage, that the path integral yields directly
the index theorem for the desired representation of the gauge group, with no need for
a projection. Instead of the co-adjoint orbit we could also consider the model space
[11], which is the direct sum of each irreducible representation of the gauge group with
multiplicity one. The path integral would then yield the Atiyah-Singer index theorem
for all representations of the gauge group. Furthermore, we could also introduce a
co-adjoint orbit or a model space for the Dirac matrices. In this way we obtain a path
integral that describes the Atiyah-Singer index theorem for operators with arbitrary
spin. Since the index theorems for other classical complexes can be obtained from
the Atiyah-Singer index theorem for the Dirac operator, our approach can be directly
generalized to these index theorems.

Finally, we observe that our path integrals (29), (56) define topological quantum field
theories [14]. Indeed, we have found that these path integrals do describe topological
invariants. It would be interesting to see, whether our formalism could be generalized

e.g. to explicitly evaluate the path integral describing Donaldson’s invariants [14]
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