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1 Introduction

Over the last years there has been tremendous progress in understanding the structure
of the S-matrix of the N/ = 4 Super Yang-Mills (SYM) theory. In the planar limit the
S-matrix exhibits a dual conformal symmetry [1-6], and the dual conformal algebra closes
together with the ordinary superconformal algebra in configuration space into an infinite
dimensional Yangian algebra [7]. The dual conformal invariance is broken by infrared di-
vergences [8, 9], but it is possible to construct finite, dual conformally invariant ratios in
which all infrared divergences cancel. As a consequence, the analytic structure of scatter-
ing amplitudes in planar N’ = 4 SYM is highly constrained. In particular, the four and
five-point amplitudes are fixed to all loop orders by symmetries in terms of the one-loop
amplitudes and the cusp anomalous dimension [9, 10|, which is known exactly from integra-
bility methods [11]. The first time non-trivial dual conformally invariant corrections appear
is then for amplitudes with at least six external legs [9, 12, 13]. The ordinary and dual
conformal symmetries are also at the heart of a duality between (colour-ordered) scattering
amplitudes and Wilson loops computed along a light-like polygonal contour [4-6, 8, 9, 13—
17]. The Wilson loops can be described using an operator product expansion (OPE) near
the collinear limit [18-21]. The OPE approach to Wilson loops was recently extended by
interpreting it as an exchange of excitations of a flux tube sourced by the sides of the
light-like polygon. The spectrum of excitations of this flux tube, as well as their S-matrix,
can in turn be determined at all values of the coupling by integrability methods [22-30].

The progress in understanding the structure of the S-matrix in planar N'=4 SYM is
not only due to symmetries and integrability, but also due to an improved understanding of
the mathematical structures underlying perturbative scattering amplitudes. Indeed, Yan-
gian invariance is intimately related to the appearance of certain geometric and algebraic
structures whose relevance for scattering amplitudes was not appreciated before. For ex-
ample, the kinematics of an amplitude can be encoded in terms of momentum twistors [31],
elements of a three-dimensional projective space on which the dual conformal group acts
linearly. In terms of momentum twistors a kinematic configuration is equivalent to a
configuration of points in three-dimensional projective space CP3 [32]. Scattering ampli-
tudes with N external legs are then expected to be iterated integrals of certain differential



one-forms [33] defined on the space of configurations of points Confy (CP?) [34]. The sin-
gularities of the iterated integrals should be described by a certain cluster algebra that
is naturally associated with the space Confy(CP3) [32, 35-39]. The simplest instance of
iterated integrals that one encounters when computing scattering amplitudes are the so-
called multiple polylogarithms [40, 41] which correspond to iterated integrals over rational
functions. It is believed that all maximally helicity violating (MHV) and and next-to-MHV
(NMHYV) amplitudes in N' = 4 SYM can be expressed in terms of multiple polylogarithms of
uniform transcendental weight [42]. In particular, this implies that all six and seven-point
amplitudes are polylogarithmic functions.

The collinear OPE combined with the improved understanding of the geometry un-
derlying planar scattering amplitudes has led to tremendous progress in determining the
perturbative S-matrix in planar N/’ = 4 SYM, at least in the cases where the functions
are expressible in terms of multiple polylogarithms. In particular, the six-point MHV
and NMHV amplitudes are known explicitly up to five loops [43-51] while the seven-point
MHYV amplitude is known analytically at two loops [52]. Beyond seven points and two
loops complete analytic results are currently unavailable, although some analytic results
for more loops and legs are known in the situation where the kinematics is restricted to lie
in a two-dimensional plane [53-55]. In addition, we know the symbols [33, 41, 45, 56, 57] of
all two-loop MHV amplitudes [58] and of the three-loop seven-point MHV amplitude [59].
The reasons for this lack of explicit analytic results for amplitudes with more loops and
legs are, among others, that the corresponding cluster algebra is infinite starting from eight
points and that it is expected that for higher-point amplitudes new classes of functions may
appear that can no longer be expressed in terms of multiple polylogarithms [60]. As a con-
sequence, it is no longer possible to classify all the singularities and classes of functions
that may appear in the analytic results for these functions.

The aim of this paper is to study a kinematic limit, the multi-Regge limit, where we
can completely describe the geometry underlying the scattering for any number external
particles, and hence we can completely classify all the iterated integrals that appear in the
final result. The study of this limit has its origins not in N' = 4 SYM, but it has been
known since the early days of QCD that in the Regge limit s > |¢| scattering amplitudes
exhibit a rich analytic structure. The paradigm example is the BFKL equation in QCD,
which resums the radiative corrections in log(s/|t|) to parton-parton scattering at leading
logarithmic accuracy (LLA) [61-63] and next-to-LLA (NLLA) [64-66]. The building blocks
of the BFKL resummation at LLA are the multi-gluon amplitudes, which are evaluated in
multi-Regge kinematics (MRK), i.e., in the approximation of a strong rapidity ordering of
the outgoing gluons. The multi-Regge limit is thus the kinematic cornerstone of the BFKL
resummation at LLA. In establishing the BFKL equation, the gluon rapidities are then
integrated out, and the BFKL equation is reduced to a two-dimensional problem in terms
of purely transverse degrees of freedom: i.e., the evolution of a ¢-channel gluon ladder in
transverse momentum space and Mellin moment space.

In planar A" = 4 SYM in the Euclidean region where all Mandelstam invariants are
negative, scattering amplitudes in MRK factorise to all orders in perturbation theory into
certain building blocks describing the resummed effective propagators in the ¢-channel and



the emission of gluons along the t-channel ladder formed by the effective propagators. These
building blocks are determined to all orders by the four and five-point amplitudes, and hence
scattering amplitudes in MRK are trivial in the Euclidean region [67-71]. Starting from six
external particles scattering amplitudes have Regge cuts that are not captured correctly by
the Regge-factorised form. As a consequence, amplitudes in MRK are no longer trivial if
the multi-Regge limit is taken after analytic continuation to a Mandelstam region [67, 68].
The discontinuity across the cut is described to all orders by a dispersion relation closely
related to the BFKL evolution equation. The integrand of the dispersion integral factorises
in Fourier-Mellin space, and the building blocks describing the factorisation are closely
related to the energy spectrum and the S-matrix of the flux-tube excitations in the collinear
OPE approach [72-74].

A lot of effort has recently gone into determining six-point scattering amplitudes in
planar N' = 4 SYM in MRK, both at strong [75, 76] and at weak coupling [46, 50, 73, 74, 77—
82]. In particular it was observed in ref. [80] that the six-point amplitude in MRK can be
expressed perturbatively in terms of single-valued harmonic polylogarithms [83]. Moreover,
one can write down a generating functional for all six-point amplitudes in MRK at LLA [81,
82]. Beyond six points only the two-loop MHV amplitudes are known, fully analytically
to LLA [84, 85] and up to terms proportional to multiple-zeta values at NLLA [86]. The
seven-point amplitude in MRK has also been considered at strong coupling [87-89]. One
of the issues to push computations to more loops and legs is that evaluating the dispersion
integrals leads to very complicated multiple sums, and the number of such sums increases
with the number of external legs.

In this paper we study scattering amplitudes in planar A/ = 4 SYM in MRK for any
number N of external legs and arbitrary helicity configurations. Since the central emission
block describing the emission of a gluon along the ¢-channel ladder is currently only known
to leading order, we restrict ourselves to LLA in this work. We foresee, however, that the
methods and the tools introduced in this paper are generic and can be applied beyond LLA
as well, and even to cross sections outside of N’ = 4 SYM, which were shown to exhibit the
same features as scattering amplitudes in MRK in A/ = 4 SYM at least at LLA [90]. Due to
the strong ordering in rapidities, the only non-trivial kinematical dependence in the Regge
limit can be through the transverse components of the external momenta. The cornerstone
of our method is the realisation that the geometry in the transverse space can be described
by a configuration of points in the complex plane. In other words, MRK is described by
the geometry of the moduli space My, of Riemann spheres with n marked points. The
geometry of My ,, is well understood. In particular, the cluster algebra associated to Mg, is
always of finite type and corresponds to the Dynkin diagram A, _3. The algebra of iterated
integrals on this space can also be completely described: they are iterated integrals of dlog-
forms with singularities when some of the marked points coincide. It can be shown that the
algebra of iterated integrals on 9y ,, factors through certain hyperlogarithm algebras [41].
In other words, iterated integrals on g, can always be expressed in terms of multiple
polylogarithms and rational functions with singularities when two marked points coincide.
The analytic structure of scattering amplitudes is further constrained by unitarity. We
show that this requirement constrains the iterated integrals that can appear in MRK to



single-valued functions, i.e., linear combinations of products of iterated integrals on 9,
(and their complex conjugates) such that all branch cuts cancel. This generalises the
findings of ref. [80] that the six-point amplitude in MRK can be expressed in terms of
single-valued harmonic polylogarithms for any number of external legs.

The framework of single-valued iterated integrals on 9, allows us to compute scat-
tering amplitudes in MRK for many loops and external legs. Starting from a (conjectural)
representation of the amplitude in a Mandelstam region as a multiple Fourier-Mellin trans-
form, we increase the number of loops by convoluting with the Fourier-Mellin transform of
the BFKL eigenvalue. The single-valued nature of the functions reduces the computation
of the convolution integral to a simple application of Stokes’ theorem. In addition, we
prove a certain factorisation theorem for amplitudes in MRK that generalises to any num-
ber of loops and legs a factorisation property observed for two-loop MHV amplitudes in
MRK [84, 85]. The factorisation theorem implies in particular that MHV amplitudes at L
loops are completely determined by MHV amplitudes with up to (L + 4) external legs. We
use this property to present for the first time analytic results for MHV amplitudes in MRK
up to five loops with an arbitrary number of external legs. We also show that non-MHV
amplitudes can be constructed via convolutions with a certain helicity flip kernel. Convolu-
tions with this kernel introduce rational prefactors, and we perform a classification of all the
leading singularities that appear in MRK at LLA. We also present for the first time explicit
analytic results for non-MHYV amplitudes with up to eight external legs and up to four loops.

This paper is organised as follows. In section 2 we present a conjectural representation
of scattering amplitudes in MRK at LLA, valid for any number of loops or external legs.
In section 3 we discuss the connection between MRK and the moduli space of Riemann
spheres with marked points, and we discuss in particular three different ways to construct
single-valued iterated integrals on Mg ,,. In section 4 we apply our technology to the case
of MHV amplitudes. We prove the factorisation theorem for MHV amplitudes and obtain
explicit analytic results for all MHV amplitudes with up to five loops with an arbitrary
number of external legs. In section 5 we introduce the helicity flip operator and we extend
the results of section 4 to the non-MHYV case. We also present a complete classification of
leading singularities in MRK to LLA and obtain explicit results for all non-MHV amplitudes
up to four loops and with up eight external legs. In section 6 we discuss the implications
of our work on the analytic structure of scattering amplitudes in MRK, and we prove
that amplitudes in MRK can always be expressed in terms of single-valued polylogarithms,
independently of the helicity configuration and the number of loops and legs. In section 7 we
draw our conclusions and discuss how our results can be extended beyond LLA. We include
several appendices with technical details on the construction of single-valued functions and
explicit results for amplitudes with up to eight external legs and three loops. All the results
obtained in this paper are provided in computer-readable form as ancillary material with
the arXiv submission of this paper.



2 Scattering amplitudes in MRK to LLA

2.1 Scattering amplitudes and cluster algebras

In this section we review some background material on planar scattering amplitudes in the
N = 4 Super Yang-Mills (SYM) theory. We begin by recalling some basic facts about the
kinematical dependence of gauge theory amplitudes. An N-point colour-ordered gluonic
scattering amplitude is a function of N massless momenta p;, 1 < i < N, with a specific
cyclic ordering and subject to momentum conservation

N
> pi=0. (2.1)
=1

Null momenta p; in four dimensions may be described by choosing a pair of commuting
spinorial variables so that
pes = AZAG (2.2)

An ordered sequence of null momenta p; obeying the momentum conservation condition
may also be described by a lightlike polygon in a dual space by choosing dual coordinates
x; such that

Ty — Tj—1 = Dj - (2.3)

Momentum conservation implies the closure of the polygon. In planar NV = 4 SYM the
amplitudes exhibit dual conformal symmetry, meaning that the essential kinematical de-
pendence is captured by the conformal cross-ratios

2 ,.2
LT

Uijki = —5 5 » (2.4)
TikTs

with x;; = x; — x;. In four dimensions, only 3N — 15 of the cross ratios one can form out

of N points are independent. Following ref. [87, 89], from the set of all the Uj;; one can

pick a particular algebraically independent set of 3N — 15 cross ratios as (see figure 1),

2 2 2 2 2 2
o Ti1,i45Ti 2,044 T3Pl _ Mita®2i43 95
Ul = 2 2 y U2; = 2 2 ’ uz; = 2 2 . ( . )
i+1,04+4"i+2,i+5 N,i+2%"1,i+3 1,i432,14+4

All other cross ratios can be expressed as algebraic functions in these 3N — 15 independent
cross ratios.

The sequence of null lines describing the polygon may in turn be described by twistor
variables'

" .

Zi = (A i) - (2.6)
The variables Z; are called momentum twistors [31] due to their relation with the momenta.
The twistors obey the incidence relation

pg = 28 Niay - (2.7)

'The unusual choice of the lower index in the definition of the twistor variable Z; is made in order to
render common but competing conventions consistent with each other.
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Figure 1. The algebraically independent set of 3N — 15 cross-ratios.

The momentum twistors Z; are free variables,? and every point x; is represented in mo-
mentum twistor space by the line passing through the twistors Z;_1 and Z;. Since the
relation (2.2) allows for a rescaling

)\i — K/i)\ia 5\1 — Iii_lj\i, (2.8)

and the incidence relation (2.7) is homogeneous, we find that the Z; are actually elements
of CP3. In terms of the twistor variables the kinematical variables are given by

(i—1lij—1j)
i—1iD(G—151)"

x?j = (Pis1+-..+pj)° = { (2.9)
where the twistor four-bracket is defined as the determinant of the column vectors, (ijkl) =
det(Z; Z; Zy, Z;). 1 is the so-called infinity twistor and corresponds to a choice of null cone
at infinity in the coordinate patch given by the z;. The dependence on the infinity twistor
must drop out from all dual conformally invariant quantities. In particular, the dual
conformally invariant cross ratios of eq. (2.4) can be written in the form

(i—1ij— 1)k —1kl—110)
(i—1ik—1ky(j—1j1—11)

Uijki = (2.10)

As momentum twistors are free variables, we can describe the kinematics of colour-
ordered partial amplitudes by a configuration of N points in CP3 [32]. We denote the set
of all such configurations by

Conf y(CP?) ~ Gr(4, N)/(C*)V 1. (2.11)

Naturally associated to the spaces Conf N((CIF’?’) are cluster algebra structures [35-39], which
play a role in describing the singularity structure of scattering amplitudes or light-like
Wilson loops in planar N' = 4 SYM theory [32]. The A-coordinates of the cluster algebras
are homogeneous polynomials in the Pliicker coordinates (ijkl). For the cluster algebras
associated to Gr(4, N) one defines an initial cluster given by the quiver diagram in figure 2.

2For real Minkowski signature momentum variables we should impose a reality condition upon the Z;.
For now we keep them complex.
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Figure 3. The X-coordinates for the initial quiver for Gr(4, N).

Other clusters are obtained by a repeated process called mutation. The A-coordinates in
the initial cluster are given by certain Pliicker coordinates. The nodes in boxes are called
frozen nodes and the others are called unfrozen. For each unfrozen node one can form
X-coordinates by taking the product of all A-coordinates connected by incoming arrows
and dividing by the product of all A-coordinates connected by outgoing ones. We label the
X-coordinates as X;; fori =1,2,3 and j =1,..., N — 5 following the obvious structure of
figure 3. Explicitly, they are given by

123j4+3)(125+4j+5)(1j+2j+3j+4)’
125435+ (1 +15+25+3)(j+2j+3j+4j+5)
T 12425 +3)(1j+3j+4j+5)(j+1j+2j+3j+4)°

(1235 +3)(125+4;+5)
VT 123545125 +35 +4)
(123 +4) (125 +2j+3)1j+3j+4j+5)
o =1 ) (2.12)
_

The X-coordinates of any given cluster, in particular the initial one outlined above, form
a complete set of coordinates for the kinematical dependence of the scattering amplitude
or Wilson loop.

2.2 Multi-Regge kinematics

The focus of this paper are planar colour-ordered scattering amplitudes in N'=4 SYM in a
special kinematic limit of 2-to-(IN — 2)-gluon scattering, the so-called multi-Regge kinemat-
ics (MRK) [91]. In order to define this limit, it is convenient to work in conventions where
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Figure 4. The three cross ratios associated to the reggeized propagator |q;|*: wui; (left), ug;
(center) and us; (right). Solid lines denote square distances in the numerator, and dashed lines in
the denominator, respectively.

all momenta are taken as outgoing. We define lightcone and (complex) transverse momenta
p"=p"£p*, Pr=prL =i +ip}- (2.13)

Using this decomposition, the scalar product between two four vectors p and ¢ is given by
2p-q=p"q¢ +p ¢" —pa-pa. (2.14)

Without loss of generality we may choose a reference frame such that the momenta of the
initial state gluons pi,po lie on the z-axis with p3 = pg, which implies pi" =p, =Pp1 =
p2 = 0. Then the multi-Regge limit is defined as the limit where the outgoing gluons
with momenta p;, i > 3, are strongly ordered in rapidity (or equivalently in the lightcone
+-coordinates) while having comparable transverse momenta,

py>pi > .ph o >k, Ips| ~ ...~ |pn]|. (2.15)
The mass-shell condition p? = p; p; — |p;|?> = 0 implies that
Py > Dy_q > -.-Dy > D3 - (2.16)

The ordering between the lightcone coordinates in eq. (2.15) implies the following hierarchy
between the Lorentz invariants,

$12 > S$3..N—1,54..N > S3...N—2,54..N—1,85..N > **°

(2.17)
... > 834y, SN_IN > —t1,- -, —tN_3,
with ¢; held fixed, where
Si(it1)..j = (Pi + Dig1 + .. +pj)2 = x%iq)j , (2.18)
tiv1 = %‘27 ¢ = —P2 = ..~ Pi+3 = T(i+3)1 - (2.19)



Let us briefly sketch how the hierarchy in eq. (2.17) follows from the strong ordering in light-
cone coordinates, eq. (2.15). In MRK momentum conservation can be written in the form

N N N
Py =—> pi ~-py, P3=-Y_pf~-pi, 0= pi, (2-20)
i=3 i=3 i=3
and the two-particle invariants in MRK become
S12 = 2p1 - p2 ~ P3Py
S1;=2p1 - pi ~ —p; Py

§2i = 2p2 - Di = —P3P;
sij=2pi-pj ~pip;, 3<i<j<N.

(2.21)

From the last line of eq. (2.21), it is evident that all Mandelstam invariants made of k
consecutive final state momenta $;11. j4r =~ Sii+r Will be comparable in size, and much
larger than invariants made of k — 1 consecutive momenta. This proves the hierarchy be-
tween s-channel invariants in eq. (2.17). For the scale separation between s-like and ¢-like
variables, we start by noting that the transverse component of the momentum transfer g;
defined in eq. (2.19) will be a sum of the final state transverse momenta, and thus also
comparable with them in size. In addition, (2.15)-(2.19) and (2.20) imply that ¢;" ~ p:fi_4,

q; ~ —p;,3 and therefore —q;rq; < pitr3p;+3 ~ |qi?
2,

. In other words, the ¢; are domi-
nated by their transverse components, ql-2 ~ —|q;|*, and will thus be much smaller than the
Sj(j+1)s J = 3,..., N — 1, which are dominated by their lightcone components (2.21). This
then completes the proof that eq. (2.17) follows from eq. (2.15).

The analysis of MRK thus far only relied on Lorentz symmetry. Let us now specialize
to planar N/ = 4 SYM, which in addition exhibits dual conformal invariance. The three
conformally invariant cross ratios (ui4,ugi,us;) of eq. (2.5) can be associated to the ¢-
channel invariants (2.19), which have transverse momentum |q;|? (see figure 4) [87, 89]. In

MRK these cross ratios take the form
ki + ki |?

Uiy = 1 _51 ‘k‘+1’2 +O(512)7
T
_ ‘%‘—1’2 2
ug; = 0; 5 +005), (2.22)
|ail
i1 | kil 5

AL LSl NOTO:

B O g i 2 o0,

where k; = pir3, 1 < i < N — 4, denote the momenta of the gluons emitted along the
t-channel ladder, and we define the ratio §; = k;rl /k. From eq. (2.15) it is evident that
in MRK we have §; — 0, and so we see that all the u1; tend to 1 at the same speed as the

ug; and ug; vanish. It is convenient to define the reduced cross ratios [87, 89],

5 ug; i1 [kita]?
Uo; = = + O(6;),
Y1 — gy lai)? ki + kit1]? (%) (2.23)
. 2 k|2 ’
fia; = U3; . ‘QZ—H‘ ‘ z’ i 0(51) ‘

1—wuy  |aqif? ki + ki [?
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Figure 5. The dual coordinates in the transverse space. Dashed lines indicate the forward momenta
with zero transverse momentum, which are strictly speaking absent in the transverse momentum
space because they are orthogonal to it.

We now introduce dual coordinates in the transverse space CP! by (see figure 5)
q; = X442 — X1 and ka = Xj4+2 — Xj+1 - (224)

The reduced cross ratios ug; and u3; can then we written as (squares of) cross ratios in
CP!,

~ 2 ~ 2

Ug; =~ ’fgz| and uz; =~ ’532| s (225)

with

£ = (x1 — Xi41) (Xit3 — Xit2) and & — (X1 — Xi43) (Xit2 — Xi41) _ (2.26)
(x1 — Xiy2) (Xit3 — Xit1) (X1 — Xit2) (Xit3 — Xiy1)

It is easy to check that

§i=8i=1-8. (2.27)
We also introduce the transverse cross ratios
=1 1 (= Xigs) (K2 = Xiy1) _ Qipiki (2.28)
& (x1—Xiq1) (Xig2 — Xiq3) di—1 kit
In the literature it is customary to use the variables w; = —z;.

It is easy to see from figure 5 that the MRK setup has a natural Z, symmetry, called
target-projectile symmetry [87, 89], which acts by reflecting all the points along the hori-
zontal symmetry axis. This symmetry acts on the points x; via

x, ifi=1,
. 9.29
Xi {XN_,, if2<i<N-—2. (2.29)

On the cross ratios z; target-projectile symmetry acts by

Z2; 1/ZN7471' . (230)
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In the previous section we have seen that the kinematics of scattering amplitudes in pla-
nar ' = 4 SYM are naturally encoded through a configuration of N momentum twistors in
three-dimensional projective space CP3. In the remainder of this section we show that there
is a very natural geometrical interpretation of MRK in terms of momentum twistors. More
precisely, we will show that the dual conformal invariance of planar A = 4 SYM implies that
the multi-Regge limit defined in eq. (2.15) is conformally equivalent to the strongly-ordered
multi-soft limit where the momenta p;, 3 <i < N — 3, are soft, with p; softer than p; ;.

Before proving the connection between the multi-Regge and soft limits, let us discuss
in more detail how to take a single soft limit in momentum twistor space. In terms of
dual coordinates, the momentum p;41 is soft if the points z; and x;11 coincide. As the
points x; correspond to lines in momentum twistor space, the soft limit corresponds to the
limit where the momentum twistors Z;_1, Z; and Z;11 are aligned. In other words, to set
the momentum p;41 to zero all we have to do is to take the twistor Z; to lie on the line
between Z;_1 and Z; ;1. The limit leaves two degrees of freedom from the three associated
to Z;. The remaining degrees of freedom can be thought of (using real twistor space as an
analogy) as the distance along the line between Z; 1 and Z;;1 and the angle of approach
to the line in which the limit is taken. More generally, let us consider a limit where the
twistor Z; approaches the line between Z; and Z;,. We parametrise this situation as follows
(jj—lkz+1k:+2>Z te (Jkk+1k+2) '
hj—1k+1k+2) F "G Tkk+1k+2)77"
(Ji—1kk+2)

(k+1j—1kk+2)7Fb

and the limit where Z;, Z; and Zj, are aligned corresponds to the limit ¢, — 0. The

Zi%Zi:Zj—f—Oéi

1
(2.31)

— €5

existence of the last two terms in eq. (2.31) ensures that x?_h- i1 xzzz 49 ~ € as we approach
the limit, as can be shown from eq. (2.9) and the fact that we can choose the infinity
twistor such that (ijI) = eag)\g’grl)\?ﬂ.

The multi-soft limit we wish to consider is one where we sequentially take the momenta
pi, 3 < i < N — 3, to be soft. This corresponds to taking twistor Z, to the line (Z1Z3),

then Z3 to the line (Z1Z,) and so on. In this limit the cross ratios (2.5) behave like
uy; — 1, uz; — 0, uzi — 0, (2.32)

i.e., the cross ratios behave in the same way as in MRK, cf. eq. (2.15). This is, however, still
insufficient to conclude that this multi-soft limit is equivalent to MRK, and we still need to
show that the cross ratios approach their limiting values at the same speed. Equivalently,
we need to show that the reduced cross ratios (2.23) are finite in the limit. This is indeed
the case, and we find

Gy — 2, Qit1Bi+1

Yl —uy (1 + i) (I + Bit1) (2.33)
B us; 1 '
uz; =

— .
L—uy  (L+aip)(1+ Biv1)
Hence, we conclude that this particular multi-soft limit is conformally equivalent to the
multi-Regge limit. Comparing eq. (2.33) to eq. (2.25) and eq. (2.28), we see that we can

- 11 -



P p2

PN kn_4 kn_3 kp+1 kp ko k1 p3

Figure 6. Diagrammatic representation of the Mandelstam region [p, g]. The discontinuity in the
(kp + ...+ kq)? channel is indicated by the dashed line.

identify the parameters ;11 and §;41 that describe the reduced cross ratios in the multi-
soft limit with the CP! cross ratio that appear in MRK,

oGyl = —l/ZZ‘ and Bz'-i—l = —1/21‘. (2.34)

2.3 Planar SYM amplitudes in multi-Regge kinematics

So far all the considerations were purely kinematical. In this section we present the (con-
jectural) representation of an amplitude in MRK to leading logarithmic accuracy (LLA).
Helicity must be conserved by the gluons going very forward, so that the different helic-
ity configurations are distinguished only by the helicities of the gluons emitted along the
ladder. Denoting these helicities by h1,...,hxy_4, we define the ratio

AN _7+7h17"-7hN747+7_
,,,,, hn_g Rhl,‘..,hN . = ( )

- BDS )
AN (=) IMRK, LLA

(2.35)

where An(—,+,h1,...,An—_4,+,—) is the (colour-ordered) amplitude for the production
of N — 4 gluons emitted along the ladder, and A]%DS(—, +,...,+,—) is the corresponding
BDS amplitude. The function Rp, . ny_,
It can easily be related to the well-known remainder and ratio functions. Since Regge

is finite, and thus dual conformally invariant.

factorisation holds in the Euclidean region, the ratio in the left-hand side of eq. (2.35)
tends to a phase in this region. The exact form of this phase is immaterial in the following,
because it is simply obtained as the ratio of the corresponding tree amplitudes [92], which
is not a manifestly dual conformally invariant quantity. We therefore factor this phase out
of the definition of the ratio Ry, .
such that Ry, . ny 4

If we take a discontinuity corresponding to a consecutive subset of final-state momenta
ki, I € [p,q] € {1,...,N — 4}, ie., a discontinuity with respect to the invariant (k, +
St k:q)z, then Rp, . hy_, is no longer trivial due to the presence of a Regge cut (see
figure 6) [67, 68, 77-79, 85, 89, 93, 94]. In terms of the dual conformal cross ratios,

and we normalise the left-hand side of eq. (2.35)

Lhn_4
=1 in the Euclidean region.

x2'+1$2+1'

— 1J i+1j

Uij = Uijt14i41 = 22 (2.36)
ijLit15+1

taking this discontinuity corresponds to analytically continuing Up.42 around the origin

while all other cross ratios U;; are held fixed. In the following we denote the value of the

- 12 —



[p,q]

ratio Rp,...n in this so-called Mandelstam region [p,q] by Ry hy_s We conjecture

N—-4

that R}[ﬁq} By, 1D MRK to LLA can be cast in the form of a multiple Fourier-Mellin
integral

R%l’?].h]\]_zl({,rk’ Zktp<k<g-1) = 1 +aim rlp-al () (2.37)

hi..hn_4

-1 +oo ng/2 +ood )
s [ 8 (2)" [ e
—00

k):p Np=—00

q—1 q—2
alyyn h h —h,
x|—1+ HTk ML X (v, mp) HC M (Vg ey V1 k1) | X4 (Vg—1, Mg—1) -
k=p k=p

In this expression, we defined 7, = \/usiusi, and a is the 't Hooft coupling. To LLA,
the value of 7, is independent of k, but we prefer to keep the 75, different for reasons that
will become clear in subsequent sections. The one-loop coefficients receive contributions
from both the Regge pole and cut. They are sums of logarithms whose functional form is
irrelevant for the remainder of this paper. E,, is the leading-order (LO) BFKL eigenvalue,

1
B = -2 (i Y g (1 — i D) Z gy, (2.38)
2,241 2 2
and x"(v,n) is the LO impact factor [67, 68]
1 x
X (vyn) = - = [XF(-v,-n)]". (2.39)

The central emission block for the emission of a positive-helicity gluon is [85]

(1l —iv—5)T6p+3)T6E(v — p) + 257)
D(1+iv— %) T(—ip+2)T(1 —i(v — p) + 2572)

C* (v, m, 1y m) = (2.40)

The central emission block for the emission of a negative-helicity gluon takes the form
C~(v,n,p,m) = [CT(~v,—n, —pu, —m)]* = CT (v, —n, pu, —m). (2.41)

Equation (2.37) reproduces the known Fourier-Mellin representation of the six-point MHV
and NMHV amplitudes in MRK to LLA [67, 68, 85], and also of the seven-point MHV
amplitude to LLA [85]. In the remainder of this section we give further support to our
conjecture by showing that it is consistent with target-projectile symmetry and with the
factorisation of the amplitude in infrared limits. The function RE’ZQ] hy_, 18 identical to the
ratio where all the gluons that are not taken into account in the discontinuity have been
removed. In other words, if we know the results for the Mandelstam regions [1, N —4], then

we can reconstruct all other cases. Hence, in the following we only discuss this particular
[1,N—4]

case, and we simply write Ry, . n,_, for Rhl b

In order to fully define the expression for R,[flq] I in eq. (2.37) we must specify the
contours of integration. The integrals over the v are taken along the real vi-axes, however
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the quantities x and C' have poles on the real axes for certain values of the ng. Our contour
prescription for avoiding these poles is as follows. For n, = 0 we replace

1
P (1,,0) = ——— .
X7 (1, 0) i — €

(2.42)

For ng_1 = ny we find that C(vg_1,nk_1, vk, ng) exhibits a pole at v = v, as can be
seen by inspecting the third factor in the numerator of eq. (2.40). We avoid this pole by
replacing it as follows,

1 1
, — - . (2.43)
i(Vk—1 — Vk) (V-1 — vg) €
For ny—1 = 0 we replace
1
“ha-1(y,_1,0) &> ———— . 2.44
X (Vq 1 ) 'Lll/qfl +e ( )

In all cases we take € to be an infinitesimal positive number.

The effect of the replacement (2.42) is to shift the pole from x"» (1, 0) slightly into
the lower half v, plane. The shift (2.43) means the pole is slightly shifted into the upper
half v plane (or the lower half 14 plane). Finally the shift (2.44) takes the pole slightly
into the upper half v, plane.

Equation (2.37) can be written as an inverse multiple Fourier-Mellin transform. The
(inverse) Fourier-Mellin transform of a function F'(v,n) is defined as

—+00

M2 [Tdy o
rer=rrwmi= 3 (2) [ g Fe, (2.45)
where z € C. This integral transform is invertible, and its inverse is given by
—1 d*z —1—iv—n/2 z—1—iv+n/2
Flel= [ s : 1), (2.46)

with the usual metric on the complex plane

dzNdz .
d?z = — Z;\Z, Z:dx/\dy:rdr/\dgo, for z=x + iy =re*¥. (2.47)

The Fourier-Mellin transform has the property that it maps ordinary products into convo-
lutions. More precisely, if F[F| = f and F[G] = g, then

FIF-G] = F[F] * FIG] = f = g, (2.48)

where the convolution is defined by

1 [ d%w z
* =— | — — . 2.49
(Fx9)) = [ upf@) o (3) (2.49)
A proof of the convolution theorem for the Fourier-Mellin transform is given in appendix A.
It is easy to see that the convolution product is associative and commutative, and the

distribution 7 6®)(1 — 2) is a neutral element.
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We conclude this section by quoting some properties of the Fourier-Mellin space func-
tions that enter eq. (2.37). For n; = 0, the BFKL eigenvalue and the central emission
block have the following properties [61, 63, 73, 91, 95-97],

lim Eyo =0, (2.50)
v—0
lir% CH(w,0,p,m) = X (p,m), (2.51)
v—
limy € (v, 1,0) = —x (v, ), (2.52)
n—0
ResyzuCi(y,n, p,n) = (=1)"1q. (2.53)

Note that E, vanishes quadratically as v — 0 due to its symmetry under v <> —v. As we
will see shortly, the above relations guarantee that eq. (2.37) has the correct soft behaviour.
In order to prove the last relation (2.53), we need the following identity,
sinw (% + iv
sinn(s +iv) _ (- nez. (2.54)

sinm(g —iv)

In order to show this identity, let us define

_ sinw(§ +iv)

N

S

n = = — - 2.55
sinm(g —iv) (2:55)

Obviously, So = —1 and S7 = 1. Moreover, S, satisfies a recursion of order two,

Bt _irei oy
sin [+ w(y —iv)] sin7m(§ —iv)

Hence, S,, = (—1)"*!. Finally, we note the following relation between the central emission
block and the impact factor,

(2.57)

2.4 Soft limits

In this section we show that the function Ry, . has the correct behavior in all infrared

ShN_—4
limits. Due to the strong ordering in the rapidities (or equivalently, in the +-lightcone
coordinates), there are no collinear singularities. All the singularities of an amplitude
in MRK can therefore be associated to some final-state partons being soft. In addition,
there are no soft singularities associated with the two final-state particles at the end of the
ladder. Hence, an amplitude in MRK has soft singularities only in the limits where one of
the momenta k;, 1 < i < N — 4, vanishes. The vanishing of k; implies that in particular
its transverse component k; goes to zero. Using eq. (2.28), we see that the limit k; — 0
corresponds to the limit where some of the cross ratios z; take a special value. There are

three distinct cases to consider:

1. If k; — 0, z; — 0, and all other cross ratios remain finite.
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2. If ky_4 — 0, zy_5 — o0, and all other cross ratios remain finite.

3. If k;, - 0,for2<i< N -5, z;z » 0 and 2,1 — oo, but the product z;_1z; remains
finite. All other cross ratios remain finite.

In the remainder of this section we show that eq. (2.37) has the correct behaviour in
the soft limit, where the function Ry, ., , behaves like

. T,
kg{gb7€hhuqhwf4({7kaZk}lgksﬂV—B) ::7€hh“ﬂﬁﬁ“”hN;4({7k’Zk}lﬁkiﬂV—ﬁ)v (2.58)

where the 7',’C and z}c are combinations of the 7, and zp, and the hat indicates that the
corresponding element is absent.

Let us start by analysing the limit k; — 0, which corresponds to z; — 0. We want to
obtain the leading behaviour of the Fourier-Mellin integral (2.37) in this limit. We therefore
close the contour in the lower half vq-plane, giving a series of terms with non-negative
powers of |z1|. The leading contribution comes from the pole from x"(vy,n;) which is
shifted slightly away from the real axis into the lower half 1 plane by the prescription (2.42).
This pole is only present for ny = 0. In other words we have a pole at vy = —ie for ny = 0. If
we take the residue at this pole we find that, due to eq. (2.51), the factor C"2(vy,n1,v2, n2)
contributes

"2 (—ie, 0,19, n3) — X"2 (2 + i€, n2) . (2.59)

This is precisely the factor present in Ry, . with the correct contour prescription for

whN—4
the pole on the real axis at ny = 0. Note that the prescriptions (2.42) and (2.43) are
consistent in this regard, since they both dictate that for ng = 0 the remaining pole on
the real axis is shifted into the lower half v plane. Looking at the other factors in the
integrand we see that all signs and factors of 27 are as needed and the factor |z1|™! becomes
1. The factor TIE 19 in the product term in the square brackets in the final line of (2.37)
also becomes 1 due to the relation (2.50). Thus we reproduce precisely the Fourier-Mellin

integral expression for Ry, . as required,

ShAN—4

kligloRhl,...th%(Tl,Zh s TN—=5,2N—5) = Ry, hn_4(T2,22,...,TN=5,2N—5) .  (2.60)
1

Next, let us look at the limit ky_4 — 0, which corresponds to zy_5 — oco. In this case
we should close the contour in the upper half vy_5 plane to obtain a series in non-negative
powers of |zy_5|7!. By an argument similar to the one in the previous case, the leading
behaviour comes from the pole in x~"N-4(vy_5,ny_5) which is shifted slightly into the
upper half plane by the prescription (2.44). Thus we have a pole at vy_5 = ie and this
pole is present only for ny_5 = 0. The residue from this pole contributes a factor

O =3 (un_g, nn_g, i€,0) = —X"N=5(vy_g — i€, nN_g) . (2.61)

The sign difference, compared to eq. (2.59), is compensated by the fact the contour is taken
in the opposite orientation compared to the 11 contour in the k; — 0 limit. The rest of the
analysis is similar to the k; — 0 case. Hence, we again obtain the expected soft behaviour,

m  Rpy . hwo(T1, 21, TN=5, 2N—5) = Ry, by (T1, 21, ..., TN =6, 2N—6) - (2.62)
kN,4~>0
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The remaining soft limits are slightly more subtle, because they involve two cross ratios
at the same time. Consider k; — 0, which corresponds to z;_; — oo and z; — 0, with
their product held fixed. We define v = v;_; —v; and we find that the powers of the moduli
can be reorganised as

‘Zj_l‘Qizzj,l ‘Zj‘QiVj _ |Zj_1|2iu|zj_1zj’2iuj . (263)

Since |zj_1| — oo with |zj_12;| fixed we need to perform an integration over v, closing it
in the upper half plane to obtain a series in non-negative powers of ]zj_llfl. The leading
contribution comes from the pole at v = ie from the factor C(v;_1,n;-1,vj,n;), which is
shifted slightly into the upper half v-plane by the prescription (2.43). This pole is only
present for n;_; = n;. The integral over v then contributes the residue given in eq. (2.53).
The factor (—1)™ thus obtained should be absorbed into the phase factor,

L\ /2 n;/2
(1) (1> - () , (2.64)
Zj—1%5 z

where z = —zj_1z;. Similarly the remaining modulus factor may be written as

|zj_12j*™i = |2|*"i. Moreover, from eq. (2.22) we see that

-2 +1Kj1

2.65
qj-19;kj11 (2.65)

Tj—1Tj = /U2j—1U3j—1U2jU3j =

which is precisely the argument of the large logarithm in the soft limit. Finally, we note
that since we evaluate v;_; at the value v; 4 i€, the remaining C-factor dependent on v;_;
becomes

Cchi—1 (Vj—2,mj—2,Vj_1,nj-1) = Cchi—1 (Vj—2,nj—2,vj + i€, n;) (2.66)

and we see that the remaining pole on the real axis at vj_o = v; is correctly shifted
slightly into the upper half v;_» plane (or lower half v; plane), consistent with the pre-
scription (2.43). In the case j = 2 we have instead a factor x"!(;_1,n;_1) which becomes
(again correctly) x1(v; + ie,n;). We thus get the expected behaviour, with a combined

cross ratio z = —z;_12;,
lgigoRhl,.,.,hN_4(71, 21y, TN=5; ZN—5)
j (2.67)
= Rhl,.-~,ilj,~~~7hN—3 (7’1, Zlyeeny Tj—1Tj, —zj_lzj, ey TN—6, ZN—G) s

where the hat on h; means this gluon is eliminated.

We see that the nature of the contour prescription, described in egs. (2.42)—(2.44) is
intimately tied to the correct behaviour under soft limits. In order to have the correct
behaviour in the soft limits, we have no choice but to implement the contours we have
outlined. The reader may wonder if our discussion remains valid when many poles over-
lap. Indeed, it is possible that our contour can become pinched between poles which are
separated only as a result of our e prescription. This troublesome behaviour can been seen
already in the six-point case where for n; = 0 we have poles at +ie from Xhl(yl,O) and
x~"2(v1,0) respectively, with the contour running between. Evaluating the vy integral in,
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say, the lower half plane we obtain a factor of 1/e which looks dangerous. However the
factor in the square brackets in the last line of eq. (2.37) comes to the rescue since we find

[—1+ 771 = 4B, 0 log i + ... = O(e2). (2.68)
Thus the singularity from the pinched pole is killed by the fact that we have written
[—1+]] 7'];1 Eyk"k], eliminating any one-loop contribution from the Fourier-Mellin integral
which we have instead made explicit in the term (1) in the first line of eq. (2.37). Similar
behaviour occurs for higher N when many poles on the real axis coincide. Thus our
formula (2.37) does make sense with the e prescription given and indeed the above argument
verifies the correct (vanishing) soft behaviour in the six-point case. However, the existence
of potential pinched poles is still troubling and we expect that it should be regulated by
shifts of the pole positions in the real v directions by amounts which vanish as the coupling
a tends to zero, similarly to the discussion of ref. [73, 97] in the six-point case.

2.5 Symmetries

In this section we show how the ratio Ry, . transforms under symmetry transforma-

ShN -4
tions on the cross ratios z;, in particular target-projectile symmetry and complex conjuga-
tion.

The exchange z; <+ z; acts on the ratio by reversing the helicities,

Rh1,.--,h1\r—4 (7'1, 21y .-y TN—=5, EN_5) = '7?,,}L17m,,}”\,_4 (7'1, 21y -3 TN—F, ZN_5) . (2.69)

Indeed, we can do the replacement ni — —nyj in the Fourier sum, and we observe that the
eigenvalue is an even function of n, and the impact factor and the central emission block
have the property

xT(v,—n) = xT(v,n) and CF(v,—n,pu,—m) = CT(v,n, u,m), (2.70)

and so eq. (2.69) follows.
Next, let us analyse how target-projectile symmetry acts on the ratio. Target-projectile
symmetry acts on both the z; and the 7 variables,

2k 1/ZN747k and Tk b TN—4—Fk - (2.71)

It corresponds to the transformation (vg,ny) — (—vN_4—k, —nN—_4—k) in Fourier-Mellin
EV n . . . . . .

space. The factor [—1 + HT,? #"F] involving the BFKL eigenvalue is invariant, and the

product of impact factors transforms as

X" (v, m0) XV (v ss, mv—s) = XM (—unes, —nv—s) X"V P (—v1, —na) (2.72)
= x "= (g, ) x T (s, v ) -
Similarly, we have for the central emission blocks,
Ci(—I/j, —nj, _Vj—17 —nj_l) = Cx(l/j_l, n]’_l, l/j7 nj) . (273)
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Indeed, we have

2
P(1—ip+ )06 —5)T(1 —i(v — p) + 257)
_(w—3) (ip+t3) Tlp+F)TA—iv— 3T —p) +"5")
(iv+2) (in—2) D(—ip+ )T +iv — 21 —i(v — p) + 25%)  (2.74)
_ X)X (wm) g
x‘(vyn)xﬂu,m)c (s, )
=C (v,n,u,m)

Note that both transformations (2.72) and (2.73) also respect our e prescription for the
poles on the real axis. Hence, target-projectile symmetry acts on the ratio by

1

ZN-5

1
Rh1,...,h]\]74 <7—17 ;7 -y TN—5, > = 7?'—h]\/,4,...,—h1 (TN75a EN—5y-«+yTl, Zl) . (275)
1

2.6 Perturbative expansion of the ratio Ry,,.. 1y 4
So far all the considerations were made before the perturbative expansion of the function
Rhy,...hn_a- If we expand the integrand in eq. (2.37) perturbatively, then at each order we
obtain logarithms of 7. The coefficients of these logarithms are the main objects of interest

in the rest of this paper. We write the perturbative expansion of the function Ry, . as

N4

_ (1)
Rhr,hy s (T1,21,-+-yTN—5,2N—5) = L + aim Thy o AN a

00 N-5
. ; I TR
+ 27 g E a' (H i log"* Tk> g;(Lle’m’;ini)(Zly e EN-5) -

1=2 i1+...Finy_5=t—1 k=1

(2.76)

The perturbative coefficients are completely known for N = 6 for both MHV and
NMHV [77-82], and for all MHV amplitudes at two loops [84-86]. Comparing the
perturbative expansion to eq. (2.37), we see that the perturbative coefficients admit a
representation as a Fourier-Mellin transform,

N—-5 +H4oo n /2 +00
i (—1)N+1 2\ ™ i
95:11,...,lg7i)(21v Sy ZN-5) = 2 II Z 7 oo 2m 2 ylekEukn’“

z
k=1 np=—0oc0 k

N—
x X" (v1,m1) H I(Vj, M, Vi1, Mj41) X5 (un s, nn_s) (2.77)

The poles on the real axis are dealt with by the prescription already outlined in (2.42)—
(2.44).

The symmetries of the ratio Ry, ... discussed in the previous section induce similar

AN -4
symmetries on the perturbative coefficients,

(217 SIN— o)

i (o anes) = g0 (B ENs)
_ i) (1 1 (2.78)
=g )
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In the soft limits, the perturbative coefficients must reduce to lower-point functions.
The limits where either ki or ky_4 vanish are easy to describe: the perturbative coefficients
reduce to the corresponding coefficients with the soft momentum removed, except if the
corresponding large logarithm is present, in which case the perturbative coefficient vanishes
in the limit. More precisely,

: (41,--iN—5) _ s (i2,iN—5)
lelr_>nogh1’ v (21, 2n—s) =G0 gy, T (22, 2N—5)
; (415N —5) (i15-iN—6) (2.79)
im g e ) = b g o).
If k;, with j ¢ {1, N — 4} is soft, then the perturbative coefficients behave like,
(1,0iN—5)
g (21,...,2N—5)
(25-1,25) (00,0 PN —a AT
zj—12j fixed (280)
(315008105, IN—5)
= hy ﬁ]- h; ) (21,...,—Zj,1Zj,...,ZN_5).
IARAS LA RARAS] -
Indeed, we have
lim Rhl,...,hz\],4 (7-17 Z1y+++3TN=5, ZN*E)) (281)
kj-)()
o) N-5 1 ( )
. ) ) ; ,...,"_ +i',...,iN,5
:2mz Z at H—lo kT o tj =17
i) STk | Ipy g
i=2 i1+ +iy_s=i—1 k=1
0o N-5 1 Rt , ) )
-9 Z Z Z 7 H ] ik U5V IN =5
m ¢ 1! 08" Tk ghlv--~7hj7~~~,hN—4
=2 i1+...+i/+...+iN75:i—1ij_1+i‘j:i/ k=1
o) 1 N-5 1 ( , )
— y i i’ . . - ik l‘l,...,z: el N—5
= 2%12 Z a* o log" (1j-175) H i log™* 74, ghl,...,hj,...,hzv%’
=2 i1+...+’i/+..‘+iN_5=’L'71 k"Zl .
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where the last step follows from the binomial theorem,
1 ijfl ’L] 1 i,
Z ——— log" ' i1 log¥ 7; = —log" (7;-17;) - (2.82)
i 1j—1:5: ([

ij—l“rij
3 MRK and the moduli space of genus zero curves with marked points

3.1 MRK and the moduli space g n—_2

In this section we argue that it is possible to describe the space of functions of scattering
amplitudes in planar N' = 4 SYM in MRK. We start by noting that in MRK the only
non-trivial functional dependence is through the transverse momenta. In the previous
section we have seen that the kinematics in the transverse space is described by n = N —2
dual coordinates x;. Hence, in the multi-Regge limit the kinematics is described by a
configuration of (N — 2) points in CP!. The space of such configurations is equivalent to
the moduli space of genus zero curves with (N — 2) marked points,

Confy_o(CP') ~ My v 2. (3.1)
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In section 2.1 we have seen that the cluster algebra attached to the configuration space
describing the kinematics of an amplitude is related to the singularities of the amplitude.
From the previous discussion it is thus natural to expect that amplitudes in planar N' = 4
SYM in MRK can be expressed in terms of iterated integrals on 9y y—2. We now show
that this is indeed the case. More precisely, we show that the cluster algebra associated to
Confy (CP?) in full kinematics reduces to the cluster algebra of Mo n_2.

We start from the duality between MRK and multi-soft limits discussed in section 2.2.
We insert the parametrisation of eq. (2.31) into the cluster X'-coordinates of eq. (2.12) and
we take the limit ¢; — 0. We see that all X-coordinates of the form AX5; vanish in the limit,
while the others reduce to either holomorphic or anti-holomorphic cross ratios in CP?,

(x1 — Xj11)(Xj4+2 — Xj+3)
(x1 — Xj13)(Xj4+1 — Xj42)

(X2 — Xj12)(Xjt3 — Xj44)

Xij = —/—— — —
T (X2 — Xja) (K2 — Xj43)

, Xoj =0, A5 =

(3.2)

We see that the X'-coordinates are singular when two points x; coincide, which is precisely
the singularity structure of the moduli space My ny—_2. However, we have obtained two
copies of points, a holomorphic and an anti-holomorphic one. This can be understood
from the cluster algebra in figure 3. Indeed, in the multi-Regge limit the middle line in
the quiver vanishes, and so the cluster algebra splits into two disconnected parts, one
which only depends on holomorphic variables and the other one only on anti-holomorphic
variables. Fach of these two parts is isomorphic to the cluster algebra An_s, which is
the cluster algebra that describes the singularity structure of Conf N_Q(CPI) ~ Mo N—2.
Hence, we conclude that in MRK the cluster algebra of Confy (CP?) reduces to the cluster
algebra Ay_5 X Ay_5, and the two copies of Ay_5 are complex conjugate to each other
in the case of real 2-to-(N — 2) scattering. As a consequence, we expect that planar
scattering amplitudes in ' =4 SYM in MRK can be expressed through iterated integral
with singularities precisely when the X-coordinates in eq. (3.2) are singular, i.e., iterated
integrals over integrable words made out of the one-forms dlog(x; —x;) (and their complex
conjugates). Note that scattering amplitudes in MRK are singular whenever one of the
final-state gluons is soft, k; — 0, (see section 2.4) which happens precisely when x; = x;41,
2 < i < N —4. It is remarkable that the cluster algebra in MRK is of finite type,
independently of the number N of external particles. Indeed, it is known that a cluster
algebra is of finite type precisely if one of the quivers that represent its seeds is a Dynkin
diagram [36]. The cluster algebras associated to the six and seven-point amplitudes are of
finite type (the corresponding Dynkin diagrams are Az and FEg), but starting from N = 8
the cluster algebra is infinite [32, 37]. Remarkably, the cluster algebra in general kinematics
always reduces to a cluster algebra of finite type in MRK.

Scattering amplitudes, however, cannot be arbitrary combinations of iterated integrals
built on Ay_5 X Ax_5, but the branch cuts of the amplitudes are constrained by physics
arguments. In particular, massless scattering amplitudes can have branch points at most
when a Mandelstam invariant vanishes or becomes infinite, which puts strong constraints
on the first letter in the word defining the iterated integral® [20]. Dual conformal invariance

3We note that this condition is independent of whether the iterated integral can be evaluated in terms
of multiple polylogarithms.
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implies that the first letter of the word must be a cross ratio dlog U;jr;. In the Mandelstam
region [p, q], however, integrability combined with the first entry condition implies that
on this Riemann sheet the branch points are determined by products of cross ratios that
become equal to 0, 1 or co. In other words, in a Mandelstam region the first letter is either
a cross ratio dlog U;jp; or dlog(1l — Hijkl UZZZM). In the following we show that this implies
that in MRK the first entries are necessarily absolute values squared of cross ratios in CP?.

To start, we note that there are N(N — 5)/2 multiplicatively independent cross ratios,
which we may choose as

U1, U ,u3;i, 1<i<N-—=5,
Uyj, 2<1<j—4<N-5, (3.3)

where these cross ratios have been defined in eq. (2.5) and (2.36). The multi-Regge limit
of (u14,u9i,us;) was already analysed in section 2.2. Using the duality between MRK and
the multi-soft limit, it is easy to show that all the U;; tend to 1 in MRK. We introduce
new reduced cross ratios which have a finite multi-Regge limit,
~ 1-— Uij X —Xj-1 13 Xk — Xk+1 ’
Uij = —— Sl — - (3.4)
L= (1 —uw) Xi = Xit2 | 200 Xk~ Xk

From eq. (3.4) we see that all the U;; approach 1 at different speeds in the multi-soft limit.
Indeed, the multi-soft limit is approached sequentially according to e K €3 < ... K €N_4,
where ¢; are the small parameters introduced in eq. (2.31). Since u1; = 1+ O(€;41), we see
that Uj; =14 O(€; ... €j—4), and so all the U;; approach 1 at a different speed.

We now show that the first entries of the perturbative coefficients reduce to absolute
values squared of cross ratios in CP! (up to logarithmically divergent terms that are ab-
sorbed into the definition of the 75). Let us first look at the case where the first letter
is dlogU;ji;. It is sufficient to analyse the multiplicatively independent cross ratios in
eq. (3.3). They all tend to 1, except for ug; and us;, which we may exchange for the corre-
sponding reduced cross ratios uo; and ug;. The latter reduce to absolute values squared of
cross ratios in CP!, see eq. (2.25).

Next, let us analyse the case of a letter of the type dlog(1—T[;; UZZIM). It is sufficient
to assume that the factors in the product are taken from eq. (3.3). If one of the factors
goes to zero in MRK, then the claim is true, because we have for example,

ndlogug; +dloglU, ifn <0,

3.5
0, ifn>0, (3:5)

dlog(l —u3; U) — {
where U is any product of cross ratios that tend to 1 in MRK. If all the factors in the
product [[;.4, U, Z;Zlkl tend to 1, then we know that one of the factors tends to 1 much slower
than the others. Hence, up to terms that are power-suppressed in MRK, we only need to
keep this factor. The claim then follows from eq. (3.4).
The previous discussion implies that the coefficients appearing in the perturbative
expansion of scattering amplitudes in planar A" = 4 SYM are iterated integrals with singu-
larities described by the cluster algebra Ay_5 X Ay_5 and whose first letters are absolute
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values squared of cross ratios. As the first entries describe the branch points of the function,
we conclude that the perturbative coefficients have no branch cuts when seen as functions
of the complex points x;. In other words, these iterated integrals must define single-valued
functions on the moduli space of Riemann spheres with N — 2 marked points. In the re-
mainder of this section we review the theory of single-valued iterated integrals on 9y y_o.
We first discuss ordinary, not necessarily single-valued, iterated integrals on 9y y_2, and
we turn to the construction of their single-valued analogues at the end of the section.

3.2 Coordinate systems on g,

In this section we review various coordinate systems on 9y, which are useful to study
iterated integrals and the multi-Regge limit. As a geometric space, we can describe My,
by configurations of n distinct points on the Riemann sphere. We identify configurations
that are related by conformal transformations. As SL(2,C) has complex dimension 3, we
immediately see that

dime My, =n — 3. (3.6)

Roughly speaking, since My ,, is SL(2, C)-invariant, a system of coordinates is given
by a set of cross ratios formed out of the points x;. There is no global coordinate system
on My . One such set of cross ratios is given by the cross ratios z; defined in eq. (2.28).
We will refer to these coordinates as Fourier-Mellin coordinates. These coordinates are
well suited to write down the Fourier-Mellin transforms that describe amplitudes in MRK.
These coordinates, however, are not ideal to describe the iterated integrals on 9 5.

In ref. [41] various local systems of coordinates are discussed that are well suited
to study iterated integrals on Mg ,,. A particularly simple set of local coordinates are the
simplicial coordinates, obtained by using the SL(2, C) invariance to fix three of the n points
to 0, 1 and oo, e.g.,

(x; — x1)(x2 — X3)

X1,...,Xp) = (0,1,00,t1,...,th—3), with t;_3 =
( n) ( n ) K3 (Xi o XS)(XQ . Xl)

,4<i<n. (3.7)

Note that there are 6 (3) = n(n — 1)(n — 2) different choices for simplicial coordinates,
depending on which three points we fix to (0,1,00). Using simplicial coordinates we can
describe My, (roughly speaking) as the space

{(t1, .. tn—3) €C"3|t; 0,1 and t; # t;} . (3.8)

While there is in principle no reason to prefer one particular choice of simplicial coordi-
nates over the other, some choices are more suited to MRK than others. In particular, it is
useful to choose the coordinates so that they transform nicely under the symmetries of the
problem. In our case, we prefer to choose simplicial coordinates on which target-projectile
symmetry acts in a simple way. It is easy to check that the simplicial coordinate systems
with this property are defined by fixing the points (x1, Xk, Xy_k), 2 < k < [%1 In
addition, for N even the set of simplicial coordinates defined by fixing (xy/2, Xk, XN k)

also has this property.
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There is one particular choice of simplicial coordinates with the nice property that
in these coordinates the two-loop MHV amplitudes factorise into sums of six-point ampli-
tudes [84-86]. They are defined by

(Xla---;XN—Q)—>(LOaPla---apN—S;OO)- (39)

We refer to these coordinates as simplicial MRK coordinates. From the previous discus-
sion it follows that simplicial MRK coordinates transform nicely under target projectile
symmetry,

(pl,...,pN_5)0—> (1/pN_5,...,1/p1) . (310)

Simplicial MRK coordinates are related to the Fourier-Mellin coordinates by

(pi — pi—1)(pit1 — 1) (3.11)

2 = ,
" (pi = pip)(pic1 — 1)

with pg = 0 and py_4 = oo. In these coordinates the two-loop MHV amplitude takes a
particularly simple form [84, 85]

2

0,...,0,1,0,...,0 1 1
o o1, pns) = 7 logll— pi|? log [1——| | (3.12)

Pk

where k denotes the position of the 1 in (0,...,0,1,0,...,0). Finally, we point out that
soft limits are very easy to describe in simplicial MRK coordinates. In the limit where k;
is soft we have p;_1 = p; (with pg = 0 and py_4 = 00).

There is another class of simplicial coordinates which will be important in the remain-
der of this paper. Let us start from the Fourier-Mellin coordinates, and let us single out
one of them, say z;. Then there is always a (non unique) set of simplicial coordinates
(tgi), ... ,t%)_g)) such that tz@ = z;.. Indeed, from eq. (2.28) we see that we can define these
coordinates by

X1y xXn—a) — (00, 7t D 01, 10, 3.13
1 i N-5

We will refer to these simplicial coordinates as simplicial coordinates based at z;. They do in
general not possess any simple transformation properties under target-projectile symmetry,
but they will be essential in order to carry out all the Fourier-Mellin integrations, because
they ‘interpolate’ between the Fourier-Mellin and simplicial MRK coordinates.

Sometimes it is helpful to describe the moduli space My, in projective terms. To
do so we can introduce n elements r; € CP!, that is n two-component complex vectors
modulo non-zero complex scalings. We may return to the x; coordinates by making use of
the scalings so that r; = (1,x;). In the projective language SL(2, C) invariance means that
all quantities should be expressed in terms of the SL(2,C) invariant two-brackets

(if) = eaprir}, (3.14)

where €4, is the two-index antisymmetric tensor with €;9 = 1. Moreover, since we must
maintain the projective nature of the r; we must form only quantities which are homoge-
neous of degree zero. Such quantities are given by cross-ratios.
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If we choose an ordering of our points (corresponding to the one induced by the colour
ordering of the scattering amplitude) we may introduce a particular set of cross-ratios, the
dihedral coordinates,

(j+1DE+15) (R —Xj41) (Xip1 — x5)

YT () (ke X)) (319

where indices are treated modulo n and we have given both projective and coordinate-fixed
forms. Note that only (n — 3) of the v;; are algebraically independent, since this is the
dimension of the moduli space My ,,. To continue, we pick a dihedral structure 1 on My,
i.e. a cyclic ordering of the n points r; modulo reflections . In our case the points x;, and
hence also the r;, come with a natural dihedral structure induced by the colour ordering
and target projectile symmetry. We therefore assume from now on that 9 ,, is equipped
with this particular dihedral structure, and we will often omit the dependence on the choice
of n explicitly.

Dihedral coordinates will play an important role in the next section when defining
iterated integrals on My ,,. Moreover, they allow one to give a nice geometric interpretation
of real moduli space My ,(R), which we describe in the remainder of this section. In the real
moduli space, the region of Mg ,, defined by 0 < v;; < 1 describes the interior of a Stasheff
polytope or associahedron. The full real moduli space is tiled by n!/(2n) such regions,
each one corresponding to a different choice of dihedral structure 1. The codimension one
faces of the polytope are each obtained by taking one of the v;; to zero (while maintaining
0 < vj; < 1 for the others). One can then continue to codimension two boundaries of
the boundary face etc. This process can be continued all the way until one reaches the
codimension (n — 3) (i.e. dimension zero) vertices.

The combinatorics describing the various boundaries are such that each vertex V of
the Stasheff polytope is labelled by a triangulation Ty of an n-sided polygon (which in
our case corresponds to the polygon formed by the dual coordinates x; in the natural
order induced by the color ordering, see figure 5), with the chords {i,j} € Ty defining the
triangulation given by the set of v;; that are zero at the vertex V. The other v;; are equal
to one at this vertex. This structure is described in detail in ref. [41] and we refer the
reader there for more details. Let us note however that two vertices V and V' which are
separated by a single edge correspond to two triangulations which differ by a single chord.
In other words, to obtain Ty from Ty, one removes some chord {i, j} from Ty and replaces
it with a crossing chord {k,{} such that the result is still a triangulation. The projective
and dihedral coordinates will be useful in the discussion of the Knizhnik-Zamolodchikov
equation on My , which follows.

3.3 Iterated integrals on Mg 4,

In this section we summarise the theory of iterated integrals on 9, before describing
their single-valued analogues in the next section. A very helpful way to think about iterated
integrals on My ,, is to think of them as being described in terms of generating functions
which obey the Knizhnik-Zamolodchikov (KZ) equation [41]. The KZ equation on 9y,
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can be written in terms of the projective variables r; introduced above eq. (3.14) as follows,

dL = QL, Q= Z Qij s Qz‘j = Xijdlog(ij) . (316)
1<J

Here the X;; are a collection of formal generators obeying

Xij = Xji, Xi=0, ZXij =0, [Xij, Xw] =0, {4,7,k,1} distinct. (3.17)

The first two relations in eq. (3.17) are conventional, ensuring that there are as many gen-
erators as there are one-forms dlog(ij). The third relation ensures that the connection €2 is
homogeneous under rescalings of the r;, so that it is indeed a connection on the moduli space
of points in CP'. The final relation in eq. (3.17) completes a centre-free presentation of the
infinitesimal pure braid relations on the X;; and it ensures that the connection ) obeys

QAQ=0. (3.18)

Since €2 also trivially obeys df2 = 0, the condition (3.18) implies that the connection is
flat. We can consider solutions of eq. (3.16) which take the form,

L =1+ higher-order terms in the Xj; . (3.19)

Such solutions are formal series in the generators X;;, i.e., they are a sum over all words
in the X;; of any length, modulo the relations (3.17). The coefficients of the independent
words are given by iterated integrals on 9 ,,, and hence the solutions L can be viewed as
generating functions of the class of A,_3 cluster polylogarithms. Iterated integrals form
a shuffle algebra, and in the following we denote by B, the shuffle algebra over Q of all
iterated integrals on My ,,. As a vector space, B, is generated by the coefficients of the
independent words in L.

The description of the KZ equation given in eq. (3.16) and (3.17) is manifestly invariant
under all permutations of the r;. In other words it did not depend on our initial choice of
ordering 71,...,7,. It will be useful however to present another description, presented in
detail in ref. [41], which manifests only a dihedral symmetry. The construction depends
on the choice of dihedral structure, and as before we choose the one induced by the colour
ordering. In terms of the dihedral coordinates v;; the KZ equation takes the form,

dL=QL, Q=) &;dlogu. (3.20)
{i.3}

The sum is over all pairs {7, j} where the indices ¢ and j are separated by at least two, with
all indices treated modulo n. We can identify a pair {4, j} with the corresponding chord of
the polygon built on the points r;, or equivalently x; (see section 3.2). The generators d;;
are related to the X;; via

Xij = 0ij41 + 0ip15 — 0ij — dit1541, (3.21)
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and consequently obey
[0; j41 05415 — 0ij — i1 j1s O 141 +0kt11— Okt — Ok1041) = 0, {4,7, k, 1} distinct. (3.22)

We also define 6;; = d;;4.1 = 0. Note that the above relations imply that two generators
d;j and dy; commute if the chords {i,j} and {k,l} of the polygon do not intersect. This
implies in particular that all the d;; associated to a triangulation, and hence to a vertex V'
of the Stasheff polytope, commute,

[6ij7 (5kl] =0 {iaj}v {k7 l} €Ty. (3'23)

We may now define canonically normalised solutions Ly to the KZ equation (3.20)
associated to each vertex V' on the boundary of the polytope defining the positive region
such that Ly is real-valued in the interior of the Stasheff polytope, i.e., where all v;; obey
0 < w;; < 1. The solution Ly that we want is chosen to have the following behaviour in a
neighbourhood of V'

LV = LV,an( H ’Uf;:j> s (324)

where Ly, is analytic in a neighbourhood of V. To linear order we have

val—i—z&jlogvzj—i—... . (325)
{ig}
The behaviour (3.25) is in fact independent of the choice of V', with the dependence on V'
arising at quadratic and higher order. We may regard Ly as a shuffle regularised path-
ordered exponential in the connection ). The coefficients of the independent words in
Ly are again iterated integrals on 9y ,. In fact, these coefficients simply provide an
alternative set of generators for the shuffle algebra B,. Note that, although the set of
generators depends on the choice of the vertex V used to define the generating function
Ly, the shuffle algebra B, is independent of the vertex V.
Let us discuss how the generators obtained from different choices of V' are related. The
KZ equation being homogeneous, different solutions, associated with different vertices V
and V', are related by a parallel transport by a constant series @y v,

LV’ = LV (I)VJ/’ . (326)

By considering the case where two vertices are connected by a single edge on the boundary
of the polytope My (R), we find that the constant series is given by the canonical Drinfeld
associator, given by a sum over shuffle regularised multiple-zeta values,

Oeg,e1) = Y w(—1)" ¢y (w), (3.27)

where the sum is over all words w in two non-commuting generators ep and e; and pr (w)
is the shuffle regularised multiple zeta value labelled by the word w. The quantity d(w) is
the number of e; generators in the word w and is present in order to be coherent with the
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usual definition of multiple zeta values. To complete the relation between Ly and Ly we
still need to determine the values of ey and e; that enter eq. (3.27). In section 3.2 we have
seen that to every vertex V of the Stasheff polytope we can associate a triangulation Ty
of the polygon formed by the points x;, and the triangulation associated to two vertices
connected by a single edge differ by exactly one chord. Since to every chord {i,j} we
can associate a letter d;;, we can determine the eg and e; from the two chords by which
the triangulations differ. More precisely, to move between two adjacent vertices of the
polytope we apply the associator ®(4, ') where the arguments ¢ and ¢’ correspond to the
generators d;; associated to the codimension one face being left behind and d; associated
to the one being moved to respectively. Note that since these two faces do not intersect
on the boundary of the Stasheff polytope, the two generators § and 6" will never commute.
This corresponds precisely with the fact that one obtains the triangulation Ty~ from Ty
by removing the chord {i,j} and replacing it with a crossing chord {k,[}.

Iterated integrals are in general not single-valued. The monodromies of Ly around the
singularities defined by v;; = 0 for {7, j} € Ty, immediately follow from the asymptotic be-
haviour of eq. (3.24). If we denote the monodromy operator associated with the singularity
v;; = 0 by M;;, we have

MLy = Ly ™ | {i,j} e Ty. (3.28)

To compute the monodromies around another singularity, one first applies a parallel trans-
port from the vertex V' to the vertex V’ which sits on that singularity via eq. (3.26), then
performs the monodromy canonically according to the prescription (3.28), and then parallel
transports back again,

MLy = Ly ®yyr 2% By (3.29)

This formula can be taken for all {7, j}. It reduces to (3.28) in the case where the vertex al-
ready sits on the singularity labelled by {1, j} since in that case d;; commutes with ®y,y+ and

@V’V/ @V/’V - 1 . (3.30)

In practice it is often useful to work with an explicit basis for the iterated integrals
generated by solutions of the KZ equation. The basis we will use is given in terms of
hyperlogarithms. We can simply relate this to the previous description of the KZ equation
and its solutions as follows. We work in simplicial coordinates of the form

{x1,%x2,...,%X,} = {00,0,1,t1,...,th_3}. (3.31)
The K7 connection on Mg ,, becomes

QM = Z [Xo; dlogt;—3 + X3;dlog(1 — t;_3)] + Z Xijdlog(ti—s —t;-3), (3.32)

4<i<n 4<i<j<n

where we have indicated the number n of marked points. We iteratively factorise solutions
of KZ in the form
Ly,=F,Ln_1, (3.33)
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where L,,_; is a solution of KZ on Mg ,,—1,
dL,_1 = Q" VL, (3.34)
and L3 = 1. In other words we have a solution of the form
L,=F,F,_1...Fy. (3.35)
Since Fy, = L,,(L,_1)~! we find that
dFy, = dL,(Lp_1)"' + Lpd(Lp_1)™?

= QME, — Ly(L,_1) "' Q1 (3.36)
From this it follows that F;, obeys a Picard-Fuchs type equation,
n—1
an X2n X3n Xin
= — | F,. 3.37
dtn—3 <tn—3 * tn—3 — 1 * ; th—3 — ti—3) ( )

We are interested in the solution of the above equation given by

Fn:ZwG(Ul,...,U‘w‘;tn_g). (338)

w
Here the sum is over all words w € ((Xap, ..., Xn—1,n)) and we denote the ‘weight’ or the
length of the word w by |w|. The variables oy,...,0, are obtained from the word w by

the translation of generators Xj, into letters defined by

Xgn — O, Xgn — 1, Xin ti—3 for 1 >4. (339)
Finally the functions G are given by hyperlogarithms or iterated integrals of the form
fn=s  dt
G(01; - -+ Ol tn—3) :/ ; G(09y -+ 0|3 t)
0 — 01

. (3.40)

n—3

= / dlog(tn—3 — Opy|) - - - dlog(tn—3 — o1) .
0

From the above discussion it is clear that the shuffle algebra B,, has a recursive struc-
ture. In particular, if we work in simplicial coordinates, this recursive structure reads

B?’L ~ Bn_l ®Q L{O,l,tl,...,tn_4} 5 (341)

where Ly denotes the shuffle algebra of hyperlogarithms with singularities at o; € ¥ (the
o; are complex constants), i.e., the linear span of all iterated integrals of the form (3.40).

The recursion starts with Bs = Q (because we cannot form a cross ratio with three
points), and By is the algebra of harmonic polylogarithms with singularities at most at
0 and 1. In other words, if we fix an order on the simplicial coordinates t;, we can de-
scribe B, explicitly as linear combinations of hyperlogarithms with singularities at most
at t,—3 € {0,1,¢1,...,th_a}, and the coefficients in the linear combination are iterated
integrals on the moduli space My ,—1. A vector-space basis for Ly; is simply given by all
hyperlogarithms, and so we can easily obtain a basis for B,.

We end this discussion by noting that there is an alternative way to construct a basis for
By,. Since My, ~ G(2,n), we can equally well describe B,, as the algebra of all A,,_3 cluster
polylogarithms [34], and a basis for all A,,_3 cluster polylogarithms was given in ref. [98].
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3.4 Single-valued iterated integrals on Mg,

We have seen that scattering amplitudes in MRK can be expressed through single-valued
iterated integrals on My ,. In this section we present different ways to construct these
functions.

In the previous section we have seen that the algebra B,, of ordinary, not necessarily
single-valued, iterated integrals on 9 ,, factors through hyperlogarithm algebras. For this
reason, it is instructive to first understand the construction of single-valued hyperloga-
rithms in detail before generalising to iterated integrals on 9 ,. We therefore start by
reviewing the construction of ref. [83, 99], where single-valued solutions to a certain Picard-
Fuchs equation in one variable are constructed. The resulting functions are single-valued
analogues of the hyperlogarithms. The strategy to construct single-valued iterated integrals
on My p, is then to generalise the results of ref. [83, 99] from the Picard-Fuchs equation in
the hyperlogarithm case to the KZ equation (3.16) on 9 . In both cases the construction
of single-valued functions preserves the algebra structure. Hence, since iterated integrals on
Mo, can always be written in terms of hyperlogarithms, as a byproduct we find that both
constructions give consistent results, and every single-valued iterated integral on 9 ,, can
be written in terms of single-valued hyperlogarithms. Finally, inspired by ref. [100, 101],
we present a purely algebraic way to define single-valued analogues of hyperlogarithms.

3.4.1 Single-valued hyperlogarithms from Picard-Fuchs equations

In this section we discuss the construction of single-valued hyperlogarithms, following
ref. [83, 99]. We review the construction in detail, because the techniques introduced
in the hyperlogarithms case can be extended to the KZ equation on 9y ,. This will be
done in the next section.

Consider a set of complex constants, ¥ = {01, ...,0,}. We denote the shuffle algebra of
all hyperlogarithms with singularities in ¥ by Ly, see eq. (3.40). In the following it will be
useful to take a more abstract viewpoint. Let X = {z1,...,z,}, and C(X) is the complex
vector space generated by all words with letters from X, and the multiplication is the shuffle
product. Following ref. [83, 99], we start by defining the universal algebra of hyperlogarithms
HLs as the algebra C(X), but with rational functions (with poles at most at z € X) as
coefficients, and a derivation 0 which acts on rational functions as 9/0z and on words as

1

O(zrw) = o (3.42)

‘HLsy is an abstract algebra (with a derivation) which has exactly the same properties as the
algebra Ly (shuffle and differentiation). A realisation of HLy is then an algebra morphism
p: HLs — A that preserves the derivative. In particular, the hyperlogarithms Ly, are a re-
alisation of HLy,. We will in the following refer to this realisation as the standard realisation,

PG - HLs — Ly, w+— G(w; Z) R (3.43)

where we made a slight abuse of notation: if the word is w = z;, ...z, with |w| the
length of the word w, then we define G(w;2) = G(0yy,...,05,,;2). In the following also
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the dual of H Ly, will be important. The dual of C(X) is the space C((X)) of formal power
series in words.
Next, consider a realisation p of HLys, and consider the generating series

F,= Z plw)w. (3.44)

weX*

This generating series is a general series of the form (3.38). In particular, F), satisfies a
Picard-Fuchs-type equation

8 - xX;
5. = > Py (3.45)
=1

Conversely, every solution to eq. (3.45) gives rise to a realisation of HLy. Moreover, one
can check that if F’ is any other solution to eq. (3.45), then there is a constant series
T € C((X)) such that F’ = F,T. Finally, it is easy to see that we can find n solutions L7
such that close to the singularity z ~ o; we have L7 ~ (z —0;)%. Hence, we conclude that
there are Z;; € C((X)) that are constants with respect to z (but they still depend on the
singularities ¢;) and such that L% = L% Z;;. We refer to the Z;; as associators and they
play the same role as the Drinfeld associator in eq. (3.26). Note that Z;; Zjk = Zik, and their
inverses are ZZ-; - Zj;. The associators can be obtained as the shuffle-regularised values of
F, at the singular points [99]. In particular, if ¥ = {0,1}, we have Zy; = ®(xo,x1), where
® is the Drinfeld associator of eq. (3.27).

From now on we will always identify one of the singular points with 0, say o¢ = 0 (this
is always possible using SL(2, C) transformations). We define

Liz)=L"(z) = Y paw)w= > Gw;z)w, (3.46)
weX* weX*
and we write the associators as Z% = Zy;, so that L% (z) = L(z) Z%.
Due to the presence of the singularities in eq. (3.45), the solutions to eq. (3.45) will
in general have discontinuities with branch points at z = 0;. We denote by M, F, the
function obtained by analytically continuing F), along a small loop encircling z = o;. It is

easy to check that M, F), is still a solution to eq. (3.45), and so there must be a constant
series My, such that M, F, = F,M,,. We obtain

Mg, L% = L7 ™% and My, L = L(Z% )" ™ 2% . (3.47)

Note the similarity of the previous equations with the monodromies of iterated integrals
on Mo n, eq. (3.28) and (3.29).

One of the main results of ref. [99] is that there is always a solution to eq. (3.45)
with a prescribed monodromy. More precisely, if we are given n (grouplike) elements
Aq,..., A, € C{(X)), then there is always a realisation p : HLy — Ly Ly, with Ly the
complex conjugate of Ly, such that M, F, = F,A;. There are two particular cases of this:

1. If we choose Ay = (Z°%)~Le2™@r 79k V1 < k < n, we obtain the standard realisation

pG-
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2. We may also choose A = 1, V1 < k < n and we see that there is a realisation of
HLs, that is single-valued.

It is possible to write down a generating function for the single-valued realisation,
similar to the generating series L(z) for the standard realisation. Consider two alphabets
X ={x1,...,zp} and Y = {y1,...,yn} and two generating functions

Lx(z)= 3 Gwiz)w and Ly(z) = Y G(w;2)d, (3.48)
weX* weY *

where ~ denotes the operation of reversal of words, i.e., w is the word w with all its letters
in reversed order. We define
Lx(z)=Lx(z)Ly(2). (3.49)

Lx(z) is a solution of eq. (3.45), because

D £x(2) = L Lx(2)Iv(E) = R CLE R Dee CHCAY
The monodromies of Lx(z) are
Mo, Lx(2) = Lx(2) My, Ly (), (3.51)
with N N
M,, = Z°k(X) "t 2ok 7k (X) Zk(Y) e 2™k Z7k(Y) L. (3.52)

Obviously Lx(z) is single-valued if M,, =1, V1 < k < n, which implies that the letters in
X and Y are not independent. Infinitesimally, this condition becomes

Zo(Y ) g Z7F (V)L = 298 (X) " iy Z7% (X)) . (3.53)

This equation can be solved perturbatively in the length of the words. While solving the
constraints (3.53) is conceptually very algorithmic, explicitly constructing the solutions
order-by-order in the length of the words quickly becomes very tedious. Below we construct
an explicit solution to the constraints (3.53). Before doing so, we introduce some more
notation that will be useful to write down an explicit solution to the constraints (3.53).

Let us for now assume that we have obtained the solution to eq. (3.53) to any desired
order. If we substitute this solution into the definition of Lx, we obtain in this way the
single-valued realisation pgy of HLys,

Lx(z)= Y psv(w)w. (3.54)

weX*

Some comments are in order: first, in the case where ¥ = {0, 1}, the single-valued reali-
sation corresponds to the single-valued harmonic polylogarithms of ref. [83]. Second, the
solution for Y in terms of X is unique order-by-order in the length of the words, and so
the single-valued realisation is unique. Finally, psy and pg are really just two different
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realisations of the same abstract algebra HLs (just like an abstract group may have dif-
ferent representations). In other words, the standard and single-valued realisations have
exactly the same properties. In particular, they form a shuffle algebra and have the same
behaviour under holomorphic differentiation. We stress, however, that the behaviour under
anti-holomorphic differentiation is less obvious. We will address this issue in section 3.4.3.

In the following we write G(w;z) = Gy(2) = psv(w). Let us denote the algebra
generated by the functions G(w; z) by Lgv. We can define a linear map

sy : Ly — L3V | G(w; 2) — G(w; 2) . (3.55)
As Ly, and Lgv are just different realisations of H Ly, sy preserves the multiplication,
sy(a-b) =sy(a)- sx(b). (3.56)

Let us now return to the question of how we can explicitly solve the constraints (3.53).
In the following we denote by Z the algebra of multiple zeta values, and by 25" the algebra
of their single-valued analogues. It is possible to construct explicitly a homomorphism
sc : £ — 25V [100]. One can check that if G(w, z) € Ly, then its regularised version at
some singularity reduces to a linear combination of hyperlogarithms with one singularity
less and with MZVs as coefficients. In other words, we have

Reg,_,, G(w;2) € Z® Ly, , (3.57)

with ¥; = ¥/{o}} and where we see elements of Ly, as functions of oj. We denote by $y;
the natural map

Sm=sc®sy: 2@ Ly — 2V 0 LY. (3.58)

The single-valued maps preserve the multiplication, and so they commute with shuffle-
regularisation,

S, [Reg., G(w: 2)] = Reg._,, [su(G(w:2))] = Reg,_,, G(wiz).  (3.59)

Using these definitions, we can explicitly solve the constraints (3.53). We claim that
the solution for yj to eq. (3.53) is obtained by conjugating zj, by the single-valued analogue
of the associator Z7+(X),

Yk =8y, (Z7(X)) ™" a8y, (Z7+(X)) . (3.60)

Equation (3.60) states that the single-valued analogues of the hyperlogarithms, and thus
the map sy, can be constructed recursively in the number of singularities o;. The recursion
starts with the single-valued harmonic polylogarithms, in which case the associator involves
only MZVs, and so the map Sy, reduces to s.

In order to see why eq. (3.60) holds, let us cast the constraints (3.53) in the form

yr = 27 (Yx) "L Z27%(X) "Ly, 275 (X) Z7% (V)

= (240 7)) (270 274 (vx) oo
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where we write Yy instead of Y in order to indicate that this identity holds on the solution
to the constraints (3.53), i.e., we have inserted the solution to eq. (3.53) into the right-hand
side of eq. (3.61). The right-hand-side then only depends on the letters x;, and so eq. (3.61)
is a formal solution to the constraints. Comparing eq. (3.61) and eq. (3.60), we need to
show that

85, (Z7+(X)) = Z°%(X) Z°(Yx). (3.62)

This relation is in fact a generalisation of the relation between Deligne’s and Drinfeld’s
associators in the case where ¥ = {0,1} [100]. We start from the fact that the associator
can be written as the shuffle regularised version of Lx(z) at the point z = oy,

Z°%(X) = Reg,_,, Lx(z) and VAL (Y)= Regzzakfy(i). (3.63)

We assume that we have constructed all single-valued hyperlogarithms with a certain num-
ber of singularities, and we want to add one more singularity, i.e., we assume that we know
how to construct all the sy, , and we want to construct sy;. We have

85 (Z74(X)) = 85, [Reg.—p, Lx(2)]
= Reg,_,, [s2(Lx(2))]
= Reg.—,, [Lx(:) Ly (2)]

 Roteen (2] (Rt 2]

(3.64)

The first factor immediately gives an associator, Reg,_, Lx(z) = Z7%(X). The second
factor also gives an associator. Indeed, the solution Yy is independent of z, and so the
shuffle regularisation does not act on the letters y; and it commutes with the reversal of
words. Hence, Reg,_;, Lyy (Z) = Z7%(Yx), which finishes the proof. Note that at the same
time we have proved the identity

85, (£278(X)) = Reg,—,, Lx(2) (3.65)

In practise, it is often easier to use this last relation to construct the single-valued asso-
ciators than constructing the standard associators and then acting with the single-valued
map.

3.4.2 Single-valued iterated integrals from a differential equation on Mg,

In this section we extend the construction of the previous section to iterated integrals
on My . Our goal will be to find single-valued solutions to the KZ equation (3.16) on

Mo, To construct a generating series of single-valued polylogarithms on 9, we first
éj )
relations (3.22). We then have two copies of the KZ equation, one based on the d;;

take two copies of the infinitesimal pure braid generators, d;; and ¢;;, obeying the same

with dihedral coordinates v;; and one based on the 5§j with coordinates v;; respectively.

We then choose a vertex V' and pick a solution Ly, a formal series in the J;;, and the
corresponding L}, a series in the 8ij-
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Now we consider

Ly =LyL,, (3.66)

where the tilde operation means reversing all words in the 52]- generators. Now if we impose
that the v;; coordinates are the complex conjugates of the v;; then we obtain the following
results for the general monodromy of Ly,

Mijﬁv =Ly (I)V,V’ eQméij (I)V’,V (i)/\//,V 6_27ri6”‘j (i)/V,V’ L , (367)

where V' is again some vertex which sits on the singularity denoted by the pair {4, j}.
Single valuedness means imposing that there is no such monodromy and hence we have
®V7vl627ri6ijq)‘//7v(§/v/7v€_ D le — ]. (368)
for all {i,j}. This provides exactly the right number of conditions to eliminate the 62]- in
terms of the d;;. For the {7, j} in the triangulation Ty the relation (3.68) reduces simply to

(52]- = (5@' s {7,,]} eTy. (3.69)
for the other {7, j} it becomes
5§j = 0;; + higher order terms involving MZVs, {i,j} ¢ Tv . (3.70)

The series Ly then becomes a generating series for all single-valued multiple polylogarithms
on My . Since it is real-valued inside the polytope My ,,(R) and it has no monodromy, it
is real valued everywhere in 9 ,,. Expanding Ly over all words in the §;; modulo the pure
braid relations (3.22) gives all the single-valued multiple polylogarithms as coefficients,

Ly =Y wlyy. (3.71)

The advantage of this construction is that it shows that the construction of single-valued
polylogarithms does not rely directly on the decomposition into hyperlogarithms. However,
since both the generating series of single-valued hyperlogarithms and of single-valued
iterated integrals on M, satisfy the same holomorphic differential equation as their
non-single-valued analogues, we can repeat the very same argument given at the end of
section 3.3 to conclude that the algebra BSV of single-valued iterated integrals on Mg,
has a recursive structure similar to the recursive structure of B, (see eq. (3.41)). In
particular, working with a specific choice of simplicial coordinates, we have

BSV ~ BSV, ®q Lf(}fl’th_”tn%} , (3.72)

i.e., for a given choice of simplicial coordinates, every single-valued iterated integral on
Mo, can be written as a linear combination of products of single-valued hyperlogarithms.
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3.4.3 A purely algebraic approach to single-valued hyperlogarithms

So far we have seen that it is possible to define single-valued multiple polylogarithms, and
thus single-valued iterated integrals on 9 ,,, as solutions to a certain Picard-Fuchs equa-
tion with trivial monodromy. While the construction of these solutions is algorithmic, it can
be desirable to have a purely combinatorial definition of single-valued multiple polyloga-
rithms that does not require any reference to any differential equation. Inspired by ref. [100,
101] we present in this section such a purely combinatorial definition. We introduce a map
s that only relies on the Hopf algebra structure on multiple polylogarithms, and we show
that the resulting functions satisfy the Picard-Fuchs equation of section 3.4.1 and are
single-valued. Hence, they must be identical to the single-valued functions of section 3.4.1.

The results of this section make heavy use of the Hopf algebra structure underlying
hyperlogarithms [40]. We therefore start this section with a short review on this topic. In
this context it is convenient to use an alternative notation for the hyperlogarithms, where
we allow for more general lower integration limits. Following ref. [40], we define

2 dt
I(ap; an,...,a1;2) :/
a,

o t—an

I(ap;an—1,...,a1;t). (3.73)

It is easy to see that G(ai,...,an;2) = I(0;ap,...,a1;2). In ref. [40] it was shown that
these functions form a Hopf algebra. In order to write down the coproduct it is useful
to introduce some more notation. Consider the word @ = a,,...a; and write I(0;d; z) =
I(0;ap,...,a1;2). If b and ¢ are sub-words of @, then we denote by I;(0; ¢ ) the iterated
integral obtained by integrating over a contour which encircles the points in b, in that
order. We can always express [;(0;C; z) in terms of hyperlogarithms:

1. If b = () is the empty word, then 1y(0;¢ z) = I(0; ¢, z) is just a hyperlogarithm.

2. I:(0; ¢ z) = 0, unless b is a sub-word of ¢, because otherwise we take residues at

b
points where there are no singularities in the integrand.

3. I:(0; b; z) = (277@')'5', where |b| denotes the length of the word b.

4. If b=¢, ...ci, is a proper sub-word of ¢ = ¢; ... cg, we have

m

Ig(O, E, Z) = (271’1)‘5‘1(0, Cly.--yCi—1; Ci1) ce I(Cz‘m; Cipp+1s -+ -5 Ck; Z) . (374)

Using this notation, the coproduct on hyperlogarithms can be written in the following
compact form [40],

AI(ag;@2) = Y Ilao;bi2) @ | @ni) M Ii(ags @ 2) (3.75)
pChCa

where the sum runs over all subwords of @. The resulting bialgebra is graded by the
weight (i.e., the length of the words) and elements of weight zero are precisely the rational
numbers. It follows that there is a unique way to promote this bialgebra to a Hopf algebra
where the antipode is determined recursively in the weight through the condition

1(S ®id)A(G(@; 2))) = p(id ® S)A(G(@; 2))) = 0, if |a| > 1, (3.76)
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where p(a ® b) = a - b denotes the multiplication. For example, if |@| = 1, eq. (3.76) takes
the form

S(G(a;2)) + G(a;2) =0, (3.77)
and so the antipode of hyperlogarithms of weight one is uniquely determined. Similarly,
for hyperlogarithms of weight two eq. (3.76) reduces to

0 = S(G(a,b;2)) + S(G(a;2)) G(b;a) + S(G(b; 2)) [G(a; z) — G(a;b)] + G(a,b; z) (3.78)
= S(G(a,b;2)) — G(a; 2) G(b;a) — G(b; 2) [G(a; 2) — G(a; b)] + G(a, b; 2) '

where the last step follows upon inserting the result for the antipode of hyperlogarithms
of weight one. We see that S(G(a,b;z)) is uniquely determined by eq. (3.78). Repeating
the same construction for higher weights, we see that the antipode is uniquely determined
in a recursive manner through the coproduct. The antipode is an involution, S$? = id, and
it preserves the product and the coproduct,

S(a-b) = S(b)- S(a) and AS = (S® S)rA, (3.79)

with 7(a ® b) = b ® a.

Let us now show how we can use the coproduct and the antipode to define single-
valued hyperlogarithms. We use the notation of section 3.4.1 and we write Ly for the
shuffle algebra of all hyperlogarithms with singularities in ¥, Ly, is its complex conjugate
and Lx,Ly ~ Ly ® Lx.. Note that each of these algebras is actually a Hopf algebra for the
coproduct in eq. (3.75). Let us define a map

S:Ly —Ly; G@z) — (-DS5(G(@;2)), (3.80)

where S denotes the complex conjugate of the antipode. It is easy to check that S inherits
many properties from S. In particular, it is an involution and it satisfies

S(a-b) = S(b)-S(a) and AS = (S® S)rA. (3.81)

Unlike the antipode, S does not satisfy eq. (3.76). Rather, the equivalent equation for S
defines the single-valued map (see also ref. [100]),

s =u(S®id)A, (3.82)

i.e., we claim that G(d;z) = s(G(a;z2)) is the single-valued analogue of G(a;z). Before
proving single-valuedness, let us discuss some of the properties of the single-valued map
s. Unlike the definition of the map sy of section 3.4.1, the definition (3.82) is purely
combinatorial and does not depend on the set of singularities. It is easy to see that s is
Q-linear and that it preserves the multiplication (see appendix B for a detailed proof),

s(a-b) =s(a)-s(b). (3.83)

We stress at this point that s is only linear with respect to rational numbers. In particular,
this means that s may act non-trivially on non-algebraic periods. Indeed, we have [100]

s(im) =0 and s((,) = 2¢,, for n odd. (3.84)
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Let us denote by L%V C LyLy, the image of Ly under the map s. We use sugges-
tively the same notation as for the shuffle algebra of single-valued hyperlogarithms from
section 3.4.1. While Ly, and Ly Ly, are Hopf algebras, the algebra Lgv is not a sub-Hopf
algebra of Ly, Ly, but the Hopf algebra structure on Ly, Ly, turns Lgv into a graded Ly Ly-
comodule, whose coaction agrees with the coproduct on Ly Ly,

A: LYY - I3V © LyLy . (3.85)
In appendix B we show that the coaction is given by

As(I(agid;2)) = Y s(IAao;b;2)) ® | S (ao; & 2)) Ip(ao; @ 2) | - (3.86)

Let us now show that G(a;z) = s(G(a;z)) is single-valued. Following section 3.4.1
we denote by M,G(d;z) the result of analytically continuing G(a; z) along a small loop
(oriented counterclockwise) encircling the singularity o € ¥ (and no other singularity). In
order to show that G(a; z) is single-valued, we need show that

MyG(ad;2) =G(a;z), VoeXx, (3.87)

or equivalently
Disc,G(a;z) =0, VYoeXx, (3.88)

where the discontinuity operator is Disc, = M, —id. The proof that G(a; z) is single-valued
proceeds by induction in the weight. If |@| = 1, we have

: (3.89)

G(a: ) = Gla;2) + §(Glas 2)) = log 1 - =[]

and this function is manifestly single-valued. Let us now assume that all functions G are
single-valued up to a certain weight n, and let us show that a function G(d;z) of weight
n + 1 is still single-valued. Since the discontinuity operator only acts in the first factor of
the coproduct, ADisc, = (Disc, ®id)A, the graded comodule structure of Lgv implies that

ADisc,(G(a; z)) = (Disc, ® id)A(G(a; 2)) = Disc,G(a;z) @ 1. (3.90)
From eq. (3.76) we obtain
0 = pu(id ® S)ADisc,(G(a@; z)) = Disc,(G(a; 2)) - S(1) = Disc,(G(d; 2)) , (3.91)

and so G(d; z) is single-valued.

So far we have shown that s respects the multiplication and that the resulting functions
are single-valued. We now show that the functions G(d;z) agree with the single-valued
realisation pgy of HLy, see section 3.4.1. In order to see this we need to prove that the
single-valued map commutes with holomorphic differentiation,

0,8 =s80,, (3.92)

— 38 —



This follows immediately from the fact that derivatives only act in the second factor of the
coproduct, AJ, = (id ® 0,)A. We obtain,

50, = (S ®id)Ad, = u(S ® 8,)A = d.s — (9,5 ®id)A (3.93)

where the last step follows from the Leibniz rule, 9, = p(9, ®id+id®9,). The claim then
follows upon noting that S (G(@;z)) is always anti-holomorphic, and so 9,8 = 0. Hence,
we have shown that G(a, b; z) and G(a, b; z) behave in the same way under holomorphic

differentiation,
1 -
G(b; z). (3.94)

9. G(a,b;2) =

z—a
Moreover, it is easy to check that G(a, 5; z) vanishes as z — 0, and so the functions G(@; z)
coincide with the single-valued realisation of H Ly, defined in section 3.4.1. Note, however,
that the single-valued map does not commute with anti-holomorphic derivatives, d.s #
(s0,)*.

Single-valued hyperlogarithms naturally have both anti-holomorphic and holomorphic
parts. Hence, they carry a natural action of complex conjugation. We can again de-
compose a complex conjugated single-valued hyperlogarithm into standard single-valued
hyperlogarithms,

G(@2) =Y c;3G(:2). (3.95)
b

Note that the fact that complex conjugation acts non-trivially on single-valued hyperlog-
arithms (in the sense that the complex conjugate of a single-valued hyperlogarithm is a
linear combination of single-valued hyperlogarithms) is at the origin of why s does not com-
mute with anti-holomorphic derivatives. In appendix B we show that the action of complex
conjugation on single-valued hyperlogarithms is encoded in the map S. If § denotes the
complex conjugate of s, we find

s=sS5. (3.96)
As an example, we have
G(a,b;z) = 8(G(a,b; 2)) = G(b, a; 2) + G(b;a) G(a; 2) — G(a; b) G(b; 2) . (3.97)

In the same way, we can also easily compute anti-holomorphic derivatives, because we can
reduce the anti-holomorphic derivative to a holomorphic one via the map S. For example,
we find,

5.G(a,b;2) = —— G(ba) + ——(G(a;2) ~ G(a:h)). (399)
zZ—a zZ—b

We conclude this section by commenting on functional equations for single-valued hy-
perlogarithms. We can of course obtain functional equations by expressing single-valued
hyperlogarithms in terms of ordinary hyperlogarithms, and then applying functional equa-
tions to the latter. There is, however, a simpler way to obtain functional equations for
single-valued hyperlogarithms: assume we are given a relation between ordinary hyper-
logarithms. We can then act with s on it, and we obtain a relation among single-valued

hyperlogarithms. Since the action of s is, essentially, to replace G' by G, we conclude that
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single-valued hyperlogarithms satisfy the same identities as ordinary hyperlogarithms. Note
that eq. (3.84) is crucial for this to work. Let us consider an example to see how this works:
we start from the following relation among ordinary hyperlogarithms of weight three (valid
on some branch for the logarithm),

1
G (0, 1,1; > = —G(0,0,0;2) + G(0,0,1;2) + G(0,1,0; 2) — G(0,1,1; 2)
5 (3.99)
. 2 i3
+im [G(0,052) = G(0, 1;:2)] + o G(052) + G5 — .

We can act on both sides with s, and we obtain,
1
G (0.1,157) = =6(0.0,0:2) 4 6(0.0,1:2) 4 6(0.1,0:2) = G(0.1,1:2) + 2. (3100
z

This is indeed a valid identity among single-valued hyperlogarithms. We stress the impor-
tance of eq. (3.84) in order for this to be true.

4 MHYV amplitudes in MRK

4.1 An invitation: the six-point MHV amplitude

In this section we apply the machinery of single-valued iterated integrals on 9%y x_o of the
previous section to the computation of scattering amplitudes in MRK to LLA. We start
by reviewing the six-point MHV amplitude in MRK, and we generalise the discussion to
more external legs and other helicity configurations in subsequent sections. Most of the
techniques introduced in this paper apply also beyond LLA, and we will comment on how
to extend the results of this paper beyond LLA in section 7.

Traditionally, scattering amplitudes in MRK are computed by closing the integra-
tion contour in the Fourier-Mellin representation of the amplitude, eq. (2.37), and taking
residues at the poles of the integrand [74, 77, 80-82, 85]. In the case of the six-point am-
plitude, the resulting multiple sums can all be performed in terms of polylogarithms using
standard techniques [102-106]. For amplitudes with more external legs, performing the
multiple sums, however, soon becomes prohibitive.

The goal of this section is to introduce a new way to compute, or rather to circum-
vent, the Fourier-Mellin transform of eq. (2.37). The main idea is to use the convolution
theorem (2.48) and to perform the computation directly in z-space, rather than evaluating
the Fourier-Mellin transform explicitly. While in itself this idea is not new, performing the
convolution integral (2.49) requires the evaluation of some integral over the whole com-
plex plane, which seems a daunting task. We show that the fact that amplitudes in MRK
are single-valued functions on 9y y_o reduces the computation to a simple application of
Stokes’ theorem.

In order to illustrate our method, we apply it in this section to the six-point MHV
amplitude. While the results of this section are not new (see for example ref. [80, 81]), we
use them to show all the steps that enter the computation. We start from eq. (2.77), and
we obtain a recursion for the coefficients to LLA

o0 2) = —5 F [ ) Bl x ()] = l50(2) # FLBu]. (11)
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We see that increasing the number of loops is equivalent to convoluting the lower loop result
with the Fourier-Mellin transform of the BFKL eigenvalue. In order to start the recursion,
we need to know gSLl)Jr(z) analytically for some value of [. This can easily be achieved by
performing explicitly the Fourier-Mellin transform for [ =1 or | = 2, cf., e.g., ref. [80],

FI mx~(nm)] = 6i(2) ~ 5 Gol).
) (4.2)

Fx"(w,n)Evnx (v,n)] = 590,1(2) + %QLO(Z) —Gi1(2),

where we use the notation G, . 4, (2) = G(a1,...,ay;z). We also need the Fourier-Mellin
transform of the LO BFKL eigenvalue, which can easily be obtained by noting that the
functions x* (v, n) have a very simple interpretation in terms of Fourier-Mellin transforms:
they are related to derivatives in z-space,

20.F [x"(v,n) F(v,n)] = F[F(v,n)] . (4.3)

A similar relation holds when replacing z by z and x™ by x~. The Fourier-Mellin
transform of the LO BFKL eigenvalue is then given by

24z

£(2) = F [Bin) = 220, 0.F [ (05m) Bon X~ (5m)] = ~37— 5.

(4.4)

Next we discuss how we can evaluate the convolution integral. We assume for now that
in the multi-Regge limit we can express the amplitude to all loop orders in terms of single-
valued hyperlogarithms (This will be proven later in section 6). In ref. [107] it was shown
that convolution integrals of this type can be computed using residues. To see how this
works, consider a function f(z) that consists of single-valued hyperlogarithms and rational
functions with singularities at z = a; and z = co. Close to any of these singularities, f can
be expanded into a series of the form

f&) =D pnlog® 1= = (z—a)" (-a@)", 2 ai,
k,m,n v
o (4.5)
1 1 1
—_ E k
f(Z) _kmncz?m,n lOg ’z‘inmzin’ Z—r 0.

The holomorphic residue of f at the point z = a is then defined as the coefficient of the
simple holomorphic pole without logarithmic singularities,

Res.—af(2) = ¢ _10- (4.6)

In ref. [107] it was shown that the integral of f over the whole complex plane, if it exists,
can be computed in terms of its holomorphic residues. More precisely, if F' is an anti-
holomorphic primitive of f, 0,F = f, then

22
[ 55 16) = RessFl2) = 3 e F (o). (47)
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This result is essentially an application of Stokes’ theorem to the punctured complex plane.
Note that the anti-holomorphic primitive is only defined up to an arbitrary holomorphic
function. It was shown in ref. [99] that every single-valued hyperlogarithm has a single-
valued primitive, and the sum of residues is independent on the choice of the primitive [107].
It is clear that we can repeat the previous argument by reversing the roles of holomorphic
and anti-holomorphic functions.

As a pedagogical example, let us illustrate how this works on the two-loop remainder
function in MRK. Using the convolution theorem, we can write

F X" (vin) Enx” (vn)] = F [XT(v,n)x~ (v,n)] % €(2)
2 _ _
=[S o - i) gttt 6

2w Jw — 22

=f(w)

First, we need to compute the anti-holomorphic primitive. Since
Go(w) = Go(w) and Gi(w) = Gi(w), (4.9)

and single-valued hyperlogarithms satisfy the same (holomorphic) differential equations as
their non-single-valued analogues, we obtain

/dwf ~ s /0[50 ~60| S5
260,z (w) — 4G . (w) — Go,0(w) + 2G1 o(w) — 4G (w)Go(2)

- m
+4G1 (w)G1(2) + 2Go(2)G. (w) — 4G1(2)G. (w)] (4.10)
+ o [200+0) + 261 (1) + 261 (w)G0(2) — 201 (w)G1 2) ~ Go()G- (w)

+2G1(2)G:(w)] .

We anticipate, however, that for higher weights the relation between Gz(w) and Gz(w) will
not be as easy, but we have

Ga(w) =

b

Caggg(u_l) . (4.11)

We see that F'(w) has potential poles at w = 0, w = z and w = co. It is easy to check
that the residue at w = 0 vanishes (because single-valued hyperlogarithms either vanish at
w = 0, or they have logarithmic singularities). The residue at w = z is easy to obtain,

1 1
Resy=.F(w) = —190,0(2) —Go,1(2) — 591,0(2) +2G11(2) — G1,2(2)

1 1 (4.12)
= *Zgo,o(z) - 591,0(2) +G1.1(2),
where the last step follows from the identity
G1,2(2) = G11(2) — Go1(2) - (4.13)
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Finally, the residue at infinity is obtained by letting w = 1/u (and including the correspond-
ing Jacobian) and expanding the result around u = 0. Note that we obtain single-valued
hyperlogarithms of the form G(@;1/u). In order to proceed, we need inversion relations
for single-valued hyperlogarithms, which may be obtained from the inversion relations for
ordinary hyperlogarithms and then acting with the single-valued map s. We find

1 1
Resw:ooF(w) = §g0,1(2) - 19070(2) . (414)

Hence,
F [xT(v,n) Evn x~ (v,n)] = Resy—ooF(w) — Resy—. F(w)

1 1 (4.15)
= 590,1(2) + 591,0(2) - Gi1(2),

which is indeed the correct result. This construction is of course not restricted to two
loops, but we can now start from the two-loop result we have just computed and obtain
the three, and even higher, loop results by convoluting the two-loop result with the BFKL
eigenvalue €.

4.2 Higher-point MHV amplitudes and the factorisation theorem

The six-point example from the previous section shows that we can bypass the evaluation
of the Fourier-Mellin integrals and the multiple sums, and we can entirely work with con-
volutions and Stokes’ theorem. This procedure can of course be extended to amplitudes
with more external legs in a straightforward way. In particular, we obtain the recursion
gsz..l_’.'j[’ikﬂ"”’m’S)(zl, ceeyzN—5) = E(zk) * gsz;_l".jr"iN*‘r))(zl, e ZN—5) - (4.16)
In the previous equation the convolution is carried out only over the variable z;, even
though this is not manifest in the notation. In general, it will always be clear which is the
variable that enters the convolution integral. The starting point of the recursion is the two-
loop MHV remainder function in MRK, which is known at LLA for an arbitrary number
N of external legs [84, 85], cf. eq. (3.12). While a direct evaluation of the Fourier-Mellin
transform in terms of multiple sums becomes prohibitive because the number of sums
increases with the number of external legs, the recursion (4.16) requires the evaluation of
a single convolution integral at every loop order, independently of the number of external
legs. This is one of the key properties why the convolution integral combined with Stokes’
theorem gives rise to an efficient algorithm to compute scattering amplitudes in MRK.

In practice, however, if we try to evaluate the convolution integral in terms of residues
as we have done for the six-point MHV amplitude, then we have to face a conundrum: the
convolution and the BFKL eigenvalue are naturally written in terms of the Fourier-Mellin
coordinate zx. The residues, however, are most easily computed in simplicial coordinates,
where the poles in g$1+m -5) manifest themselves simply as points where simplicial co-
ordinates become equal to 0,1,00 or to each other. In general, the change of variables
from the Fourier-Mellin coordinates to simplicial coordinates is highly non-linear, and will
introduce complicated Jacobians. In addition, it will obscure the simple form of the BFKL
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eigenvalue. This problem arises for the first time for seven points, because for the six-point
amplitude the simplicial and Fourier-Mellin coordinate systems coincide.

In some cases it is possible to identify a set of coordinates which share the good
properties of the simplicial and Fourier-Mellin coordinates even at higher points. We have
seen in section 3.2 that there is always a (non unique) system of simplicial coordinates based

at zp with the property that t,(f) = 2;. This system of coordinates has already some of the

properties we want: it leaves the BFKL eigenvalue unchanged, because tlgk) = 2. However,
the change of coordinates may introduce a non-trivial Jacobian, because in general zj_o,
zr—1 and z; will depend on the new integration variable t,(f). There is, however, a special
case where the Jacobian is trivial: if we perform a convolution with respect to z;, and we
change variables to simplicial coordinates based at 2, only z; will depend on tgl) , and so
the Jacobian is 1. A similar argument can be made for zy_5, using a slightly different set
of simplicial coordinates. Alternatively, we know that we can exchange the roles of z; and
zZN_5 using target-projectile symmetry, so it is sufficient to consider z;. Hence, if we perform
a convolution with respect to the first or last cross ratio z; or zy_5, we can find a set of
simplicial coordinates with the right properties: it leaves the BFKL eigenvalue unchanged,
it has a unit Jacobian, and at the same time it exposes all the singularities of g$1+”\’ =) ip
a very simple form. The algorithm to evaluate the recursion (4.16) for the first or last cross
ratio is then clear: in order to perform the convolution over z1, we change coordinates to
the simplicial coordinates based at z1, and we evaluate the integral in terms of residues.
The change of coordinates requires the use of functional equations among single-valued

polylogarithms, which can be obtained using the techniques described in section 3.4.

While the previous considerations answer the question of how to perform convolutions
with respect to the first or last cross ratio, we still need to discuss the remaining cases.
In the following, we argue that all amplitudes can be constructed by convoluting over the
first or last cross ratio only. We only discuss from now on the case of zj; the case of
zZN—5 is similar by target-projectile symmetry. The proof of this claim relies on a certain
factorisation theorem which we present in the following.

In order to state the factorisation theorem, it is useful to introduce the following
graphical representation for the perturbative coefficients,

(i15yiN—5)

gh1...hN_4 (pl""7pN_5) = 1 . (417)

We work with the simplicial MRK coordinates pi defined in section 3.2. Every face of
the dual graph is associated with a point xj (cf. figure 5), and we work in a coordinate
patch where (x1,x2,xy_2) = (1,0,00). Every outgoing line is labeled by its helicity hy. In
addition, to every face we do not only associate its coordinate p; but also the index ig. In
the following we will not show the points 0, 1 and oo explicitly. Using this graphical rep-
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resentation of the perturbative coefficients the factorisation theorem takes the simple form

Pa ta .
Pa ta

o = h (4.18)

h Pe tc

Pc e

In other words, whenever the graph representing a perturbative coefficient contains a face
with index i, = 0 and the lines adjacent to this face have the same helicity, then this
perturbative coefficient is equal to the coefficient where this face has been deleted. We
stress that the factorisation theorem holds for arbitrary helicity configurations and is not
restricted to MHV amplitudes. In section 4.3 we will prove eq. (4.18) in the special case
of MHV amplitudes, and we defer the proof in the non-MHYV case to section 5.

Before turning to the proof of the factorisation theorem, we discuss its implications for
MHYV amplitudes. In that particular case, the factorisation theorem implies that we can
drop all the faces labeled by a zero,

gfﬂohl’0""’0’%2’0""’071%70""’0)(pl,...,PN—5) —gﬁ““ﬁ“” ’l%)(mal,ﬂz’%,...,pi%). (4.19)
Let us discuss the implications of this result. First, eq. (4.19) implies that we can compute
all MHV amplitudes by performing convolutions over the left-most variable z;. Indeed,
assume that we know all MHV amplitudes with up to IV legs. Then we can write

(1,i2,...,in—5) (04i2;--iN—5)

9t..+ (p1y-- s pn—5) = E(21) * g1 (P15 -y PN=5)
5(21) *95:27+7 )(p27"'7pN—5)a
(2,i2,..in—5) (Li,esin—s) (4.20)
94..+ (p17-~'7pN—5) :5(21)*g+ —+ (pl,...,pN_5)
5(2’1) * g(zl) * 93_2’4_’”\7 5)(p2, - 7PN75) R

and so on. The amplitude in the left-hand side is a known lower-point amplitude. At the
beginning of this section we have argued that we can always easily perform convolutions
over z1 by going to simplicial coordinates based at z1, because the change of variable has
unit Jacobian and leaves the BFKL eigenvalue unchanged. Hence, we conclude that every
MHYV amplitude can be recursively constructed in this way, and we have thus obtained an
efficient algorithm to compute scattering amplitudes in MRK.

Next, let us discuss the implications of the factorisation theorem for the structure of
MHYV amplitudes. Indeed, since the sum of all indices is related to the loop number, we
see that for a fixed number of loops there is a maximal number of non-zero indices, and
so there is only a finite number of different perturbative coefficients at every loop order.
This generalises the factorisation observed for the two-loop MHV amplitude in MRK to
LLA [84-86]. Indeed, if all indices are zero except for one, say i, then eq. (4.19) reduces to

0,...,0,30,0,...,0 o
g-(‘r----‘r ' )(plv"'va*n’)) :g_(i_:,_)([)a), (4.21)
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and so at two loops the amplitude completely factorises, in agreement with ref. [84-86],

RE , = > log 75 g\ (pi) (4.22)
1<i<N-5

As anticipated in ref. [85], the amplitude does no longer factorise completely beyond two
loops. However, we find that at every loop order only a finite number of different functions
appear. For example, at three-loop order at most two indices are non-zero, and so we have

3 1 2 1,1
RO =5 3 lognglle)+ Y. logmilogmig\ o). (4.23)
1<i<N-5 1<i<j<N-5
The only new function that appears at three loops that is not determined by the six-point
amplitude is gsrljrll, which is determined by the three-loop seven-point MHV amplitude.

At four loops we have

4 1 3
RO, =2 > log’nigll(m)
1<i<N-5
1 2,1 1,2
+3 > [logQTi log 75 g ¢ (pi, pj) + log 73 log? 75 0\ (i )| (4.24)
1<i<j<N-5

1,1,1
+ Y logmilogr logmi g (o oy k) -
1<i<j<k<N—5
The four-loop answer is determined for any number of external legs by the six, seven
and eight-point amplitudes through four loops. Similar equations can be obtained for
higher-loop amplitudes. In general, at L loops R(f)  is determined for any number of legs
by the MHV amplitudes involving up to (L + 4) external legs. In particular, the five-loop
MHYV amplitude is given by
5 1 4
RO, = By > log'n a1 (pi)
1<i<N-5
1 3,1 1 1,3
+ Y [6 log® 7 log 75 ¢\ (pi p) + glogTi log® 7 0\"Y (pi. p)
1<i<j<N-5

1 2,2
+4 log? 7; log? 7 ¢ &7 (o, pj)]
1 211 (4.25)
+ 5 Z [log2 7; log 7; log 7%, ggr++4)r(,0i7 P> Pk)
1<i<j<k<N-5

1,2,1
+ log 7; log? 7; log 75 g(+++i (P Pj» PE)

1,1,2
+log 7; log 7 log® 7 gi++i (pi, pjs Pk)]

1,1,1,1
+ > log 73 log 7 log 73, log 7 g\"5%) (pi pjs pis 1)

1<i<j<k<I<N-5

In appendix D we present the complete set of perturbative coefficients sufficient to
compute MHV amplitudes up to three loops for an arbitrary number of external legs. Re-
sults up to five loops are included in computer-readable form as ancillary material with
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the arXiv submission. Up to four loops and eight external legs, we have computed all
the perturbative coeflicients explicitly, including those that can be reduced to amplitudes
with fewer points via eq. (4.19). In this way, we have explicitly checked that the factorisa-
tion (4.19) holds. In addition, we have checked that our results have the correct soft limits
and are consistent with complex conjugation and target-projectile symmetry.

4.3 Proof of the factorisation theorem for MHV amplitudes

In this section we prove the factorisation theorem in eq. (4.18) for MHV amplitudes. The
extension of the proof to non-MHV amplitudes will be given in section 5. Since the fac-
torisation theorem is equivalent to eq. (4.19) in the MHV case, we will prove that we can
always drop all faces with a zero index in a MHV coefficient. The proof will rely on two
claims, which we will prove separately.

Claim 1 We can always drop sequences of 0’s at either end of the list of indices, i.e.,

(0,4,04ig5e N —5)

g+.,,+ (p17 o 7PN—5) = g-(}f{c_i.—;—.ﬂN_@(pka o 7/)N—5) ) (426)

and a similar relation holds if the sequence of indices ends in a 0.

Proof of Claim 1. Target-projectile symmetry implies that it is sufficient to prove
Claim 1 in the case where the sequence of indices starts with a 0. The proof relies on an
analysis of the Fourier-Mellin integral, and the argument is in fact identical to the argument
in appendix C of ref. [85], where the particular case of the two-loop seven-point amplitude
was obtained. Let us start from the Fourier-Mellin integral for gf’j_f’”"““” -5 and let us

concentrate on the terms that depend on (v1,7n1) and (v2,ng),

(0y+,048p5e 5N —5)
9+ (4.27)
dvi / / / /
1 ww14n1/2 _iv1—m1/2 ive—mo /2 _ive+ng/2
:/27r g 2, zZ, 2 Zy xt(vi,n1) Ct (v, ny,v9,m2) ...,
ni=—oo

where the dots indicate terms that are independent of v; and ni. Our first goal is to show
that the value of the integral is independent of p;. From eq. (3.11) we see that only z; and
zo depend on p1, so we do not need to consider the cross ratios z; with ¢ > 2. Due to the
symmetry in z; <> Z1, it is sufficient to analyse the holomorphic part, i.e., we let z; — 0,
with z; held fixed. This corresponds to taking only the residue at iv; = n;/2 for ny > 0.
After taking this residue, the sum over ny becomes trivial, and we are left with

(050,081, N —5) o + _ ivo+na /2
gy = o (=) X (v2,n2) [(1 — 21)29] (4.28)
=p2

We see that the integral does not depend on p;. Note the appearance of an impact factor.
If there is a second 0, we can iterate the procedure, with z; replaced by ps. The result is

(=L)X (3, ma) [(1 — po) 2] #3T7/2 .
N——

=p3

(4.29)
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Continuing this process, we see that

(0,4,0,k - iN—5)

9. .+ (ph s 7pN—5) = f(lok‘a s 7pN—5) ’ (430)

for some function f. We still need to show that f is the lower-point perturbative coeflicient.
This follows from the fact that f must have the correct soft limits. Indeed, we must have

(0,0+,04ig5-iN —5) (0,0+,048g5e- N —5)

yeeey PN—5) = lim ey PN—
9+ % (p2 PN-5) Jim 94 % (p1 PN-5) (431)
= f(ﬂka-'->PN—5) .

Similarly, we must have

(0,001, iN—5) (05,0, iN—5)

94, + (,037--->PN 5) - hm g+ (:027"'va—5)
(4.32)
= f(ﬂk:-'wPN—5) .
Continuing this way, we arrive at
’ a"'v' - s 07' 3y
g_(ik_‘_ N 5) (pka cee 7PN—5) = lim g-(}-lﬁ- N 5)(Pk 15 Pky - 7PN—5)
P10 (4.33)

which finishes the proof.

Claim 2 If f(p1, pi,s-- -, pi,) depends on a subset of simplicial MRK coordinates, then the
convolution with some function g(z1) will depend on the same subset with p1 added, i.e.,
we have

g<21) * f(pl,piu .- '7pik) = F(plvpilv s 7pik)7 (4'34)

for some function F.

In the right-hand side of eq. (4.34), the convolution acts on z;, and the simplicial MRK
coordinates p; should be interpreted as functions of the MRK coordinates z;. The relation
between the two sets of coordinates is given by eq. (3.11).

Proof of Claim 2. We proceed by changing variables to simplicial coordinates based at

(1))

z1. The relation between the two sets of coordinates is z; = t; (we write ¢; instead of ¢;

and,
t1 11—t ti1— 1 .
o= = BT o o N5, 4.35
tN—5 P 1—itn-5 pi ti-1 —tN—5 (4.35)

P1 =

We start by proving the claim in the case i; # 2. In that case the convolution integral
takes the form

g(z1) * mmw~mm

e
7|2 tN—5 tii—1 —tn—5 = ti—1—tn_s5/
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Shifting the integration variable 7 — ty_5 7 and writing z; = t;/tn_5, we see that the

integrand only depends on the x;. Hence, there is a function F(x1,z;,,...,x;, ) such that
1 [d*r /a1 Ti—1—T Tip—1—T
gzl *f 17 ] MR ) = - g()f(T”"'7k
( ) (,0 Piy ka) = |7_|2 - 21— 1 Ti1— 1 (4.37)
= F(z1, % -1, Tip—1) -

Finally, we can change coordinates back from t’s to p’s. We find

t1 t; _ P1L= Pt

= :p17 €T, = ; 122. 4-38
IN_5 T tnes 1= pin (4.38)

I

We see that no new p-coordinate is introduced, so the claim follows upon identifying
ﬁ(ml, Lijg—1y-- ’xik—l) with F(pl,pil, e 7pik)‘

To complete the proof, we still need to investigate what happens when i; = 2. pg is
not homogeneous in ¢n_5, and so the function F will now not only depend on the ratios
x;, but also explicitly on tx_5,

g(21) * f(p1, 02, Piy - - -5 i) = F(21,EN -5, Tiy—1, .-+, Tip—1) - (4.39)
We know already that the z;’s do not introduce any new p’s. Adding ty_5 will only add ps,
1—
tyos=—"2 (4.40)
P1— P2

which was already present in the original function f. Hence the claim is proven.

Proof of the factorisation theorem for MHV amplitudes. The factorisation the-
orem for MHV amplitudes, eq. (4.19), now follows from Claims 1 and 2. Assume that
eq. (4.19) holds for all perturbative MHV coefficients up to a certain number N — 1 of legs,
and let us show that it still holds for coefficients with one more leg. We denote the pertur-
bative coefficient with one more leg by ggf.l"‘jr"m*s)(pl, ..., pn—5) and we label the non-zero
elements in (i2,...,iN—5) by tay,- .., %a;, 2 < aj < N —5. If iy =0, then Claim 1 implies
that we can drop the first index. The resulting function is an (N — 1)-point amplitude,
where eq. (4.19) applies. So we have

(04i2,...,iNg) (i2,-iN—5) (tay s siay,)

g+..,+ (P17 e aPN75) = g+,_,+ (/327 s 7pN75) = g+..-+ (pa17 cee >Pak) ) (441)

in agreement with eq. (4.19). If i; # 0, we write the amplitude as a convolution using the
recursion (4.16). For the sake of the example, consider the case iy = 1. We have,

(02, )

p1y--pN—5) =E(21) x g (P2, -, PN-5)

(1i2,..sin )
9+...
ot ( . (4.42)
:g(zl)*ng...Jr r (pan'--apak)a
where we have used the fact that we know that eq. (4.19) holds for ¢; = 0. From Claim 2
we know that the result of the convolution will only depend on (p1, pa;, - - -, pa,, ). The only

thing left to show is that the function F' in Claim 2 is precisely the perturbative coefficient
(Lyiay y-eosiay,)

9.l . This follows immediately upon noting that the convolution integral used to
1 'a ,~~-,‘a . . .
compute giz iy o) is exactly the same as the one in eq. (4.42), up to a relabelling of the

variables. Repeating exactly the same argument for i; > 1, we see that eq. (4.19) holds in
general.
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5 Non-MHYV amplitudes in MRK

5.1 Helicity-flip operations

So far we have only considered MHV amplitudes. In this section we generalise all the
results from the previous section to non-MHV amplitudes. In particular, we extend the
factorisation theorem (4.18) to the non-MHV case. We start by introducing an additional
concept before we are ready to prove the factorisation theorem for non-MHV amplitudes.

Let us start by analysing what happens if we start from an MHV amplitude and we
flip the helicity on an impact factor. In Fourier-Mellin space, this amounts to replacing

xT(v,n) by x~(v,n),

F [X+(V, n) F(v, n)] — F [X_(V, n) F(v,n)
= F [X_(y, n)/X+(u,n)] * F [X+(V, n)F(u,n)] (5.1)

We see that flipping the helicity on an impact factor amounts to convoluting with the
universal helicity-flip kernel

w 3} . (5.2)

H(z)=F [z’z/ —n
The functional form of H(z) can easily be obtained by performing explicitly the Fourier-
Mellin transform. The integrand has only a simple pole at iv = n/2, and so we find

(1—2)2"

H(z) =H(1/z) = — (5.3)
Note that helicity-flip kernel is an involution, i.e., flipping the helicity twice on the same
impact factor returns the original helicity configuration, and so

H(z) « H(z) = F1] =76 (1 — 2). (5.4)

Similarly, if we flip the helicity on one of the central emission blocks and use eq. (2.57),
we obtain

F C’Jr(u,n,,u,m)F(V,n,,u,m)} — F [Cf(l/,n,,u, m)F(v,n, u, m)]

_F|Cnpm) * (v, n, p,m)F(v,n, p,m
= 7| G (O g ) (v )] .

_ [ X)X m) ] ) Pl
_I[X‘(Vm)xﬂu,m)} PO, m)

= H(z1) * H(22) * F [CT (v,n, p,m)F(v,n, p,m)] .

We see that the flipping of the helicity on a central emission block is controlled by the same
kernels as for the impact factor. As a consistency check, the helicity flip kernels allow us
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to show that MHV and MHV amplitudes are identical,

H(z1) * Ry—. —(21,.-.,2N-5)
H(z1) * H(z1) * H(z2) * Rys— (21, -+, 2N—5)
H

R,m,(zl, e ,ZN_5)

=H(z2) * Ryy—..—(21,...,2N_5)

= (5.6)
=H(zn-5) * Ry +—(21,...,2N-5)

=H(zn_s5) *H(ZEN_5) * Ry +(21,...,2N_5)

=Ry +(21,...,2N_5).

Let us conclude this section by making a comment about some classes of non-MHV
amplitudes with a special property. In ref. [79] it was argued that flipping the helicity on
an impact factor to produce an NMHV amplitude from an MHV amplitude is equivalent
to differentiating in the holomorphic variable and integrating in the anti-holomorphic one.
Let us see how this arises from the helicity-flip kernel. We have

R—+...+(Zl7 ) ZN*E)) = H(Z]_) * R-‘r...-‘r(z:h R ZN*E))

_ _/d2w 2 (5.7)

R . _5).
T ’lI)(’lU — 21)2 ++(w7 Z2 y RN 5)

We can evaluate eq. (5.7) in terms of residues. Let us denote by F' the anti-holomorphic
primitive,
dw

F(w,29...,2N_5) = ER++,,,+(U),22...,ZN,5). (5.8)
Then R_4. 4+ is obtained by summing over all the holomorphic residues of F. As MHV
amplitudes are pure functions, they have no poles, and so F' has no poles either. Further-
more, it is easy to check that there is no pole at infinity, and so the only residue we need
to take into account comes from the double pole at w = z; in eq. (5.7),

21 F(w,zg ey ZN—S)
(w—21)?
=210, F(z1,20...,2N_5) (5.9)

dw
:21821/wR++...+(w7Z2-~-7ZN—5)-

R_y +(21,...,2v-5) = Resy=z,

We see that we recover the rule of ref. [79], but with the differentiation and integration
given in the reversed order. While this may look like a minor difference, it is crucial in order
to get the complete result. In principle, we need to include a boundary condition when
computing the anti-holomorphic primitive. However, if the operations of differentiation and
integration are performed in the order shown in eq. (5.9), then no boundary condition is
needed, because the residue is independent of the choice of the anti-holomorphic primitive.
This is, however, not the case if the two operations are performed in the order given in
ref. [79], where one needs to include non-trivial boundary information already for six points.

It is of course tantalising to speculate if this simple rule generalises and all non-MHV
amplitudes can be computed by this simple differentiation-integration rule without having

~ 51 —



to include any boundary information. It turns out that this is not the case, because
in general the amplitude in the integrand of the convolution integral (5.7) is not a pure
function, but may itself have additional poles whose residues need to be taken into account
when performing the convolution with the helicity-flip kernel. An explicit counter-example
to the simple differentiation-integration rule without boundary terms can be constructed
from an eight-point NNMHV amplitude.

Although the simple rule does not hold in general, there are some special cases where
it does apply. Besides the case of R_, 1 discussed above, we have identified the follow-
ing special case in which we can apply the simple differentiation-integration rule without
boundary terms: consider an amplitude whose helicity configuration is given by

1, ifa<i<b
h; = ’ - = 5.10
‘ {—i—l, otherwise . ( )

This amplitude can be written as
R+...+7...7+m+ = H(Zafl) * /]‘[(Zb) * R+...+ . (511)

Let us first discuss the convolution with H(z). We can repeat exactly the same argument
as for R_4. 4+ and we conclude that

dz
H(zp) ¥ Ry = 250z, / ?bb Ryt (5.12)

Next we want to perform the convolution of this function with 7 (Z,—1). The function
H(zp) * R4+ will have poles, but all of them are holomorphic because they arise from
computing the holomorphic derivative with respect to z;,. Hence, they do not give rise to

any additional anti-holomorphic poles, and so we have
dze_
M=) * R

Ryttt = Za—1 3za1/ P
a ] (5.13)
= dzg— d
= Za—1 8Za_1/ “ lzbazb/szer+_

Za—1 Zp

The previous case covers in particular all NMHV amplitudes. Hence, all six and seven-point
amplitudes can be computed in this way.

5.2 The factorisation theorem for non-MHYV amplitudes

In this section we discuss the factorisation theorem (4.18) in the non-MHV case. In par-
ticular, we extend the proof of section 4.3 to non-MHV amplitudes.

We proceed by induction in the number of indices. Let us assume that eq. (4.18) holds
for up to k indices, and let us show that the theorem still holds for k + 1 indices. If the
first two helicities are not the same, we can factor out a helicity flip operator, e.g.,

(#1-ik41) (i1-ip41)

9 hghpen (P15 Pe1) = H(z0) g 5 (P1s s prg) - (5.14)

Hence, it is enough to prove the theorem in the case where the first two helicities are the
same, and Claim 2 implies that it will remain true in the case where the helicities are
different. We therefore assume from now on that the first two helicities are the same.
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We can use the recursion (4.16) with z; = 21 to reduce the value of i; to zero. If iy = 0,
we can repeat the proof of Claim 1 and we conclude that we can delete the index iy = 0.
Indeed, we see from eq. (4.27) that the proof of Claim 1 only relies on the structure of the
part of the Fourier-Mellin integral that depends on (v1,7n1) and the first two helicities, and
so we can repeat the proof of Claim 1 independently of the helicity structure of the rest of
the amplitude. After using Claim 1 to delete the index i1 = 0, the number of indices has
decreased by one, and so the factorisation theorem (4.18) applies by induction hypothesis.
To complete the proof, we need to perform the convolution integrals that were introduced
to reduce the value of ;. By Claim 2, this does not introduce any new variables except for
p1, and so the factorisation theorem is proven.

Let us make a comment about the difference in the factorisation in the MHV and non-
MHYV cases. In the MHV-case the factorisation theorem is equivalent to deleting vanishing
indices, see eq. (4.19). This simple rule is no longer true for non-MHV amplitudes. Consider

the seven-point two-loop NMHYV amplitude 7'\’,(,22r +. We can write

R, =H(z) » REL, =logm H(z1) xa\h (o) +logmaH(z1) g\ (p2) . (5.15)

It is easy to check that the first term behaves as expected,

H(z1) * g\ (1) = o (o). (5.16)

The second term, however, also depends on ps, and so Claim 2 implies that this term
should be a function of both p; and p2. By explicit computation, one establishes that this
is indeed the case, and so we obtain a new non-MHV building block with a vanishing index,

R, =logr 6" (p1) + log 2 0% (o1, p2) (5.17)

Hence, the simple factorisation observed for MHV amplitudes, eq. (4.19), is no longer valid
for non-MHV amplitudes.

As a consequence, unlike for MHV amplitudes, the number of building blocks is no
longer finite at each loop order in the non-MHV case. As eq. (4.19) is no longer valid
for non-MHV amplitudes, the number of different coefficients is no longer bounded. In
particular, unless there is another mechanism at work that waits yet to be uncovered,
there should be an infinite tower of different non-MHV coefficients already at two loops,
because the factorisation theorem does not allow us to reduce the coefficients corresponding
to alternating helicities to simpler functions.

We have computed explicitly all non-MHV amplitudes up to eight external legs and four
loops. Analytic results for the independent helicity configurations are shown in appendix D
up to three loops for six and seven external legs and up to two loops for eight external legs.
Results up to four loops and eight points are included as ancillary material in computer-
readable form with the arXiv submission. We have checked that in all cases our results have
the correct soft limits and symmetry properties. These results are sufficient to compute all
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two-loop NMHYV amplitudes. If h; = —1 and all other helicities are positive, we obtain

2 1,0 0,1
Rsr)—+ =log7i—1 gi_i(/’i—la pi) +logT; gi_i(m—h pi)

1,0,0
+ Z logTngr+_3r(pj,pi—17pi)

= (5.18)
0,0,1
+ Z logTjgi__H)r(pi—l,Pi,Pj)-
i<j<N—5

The previous formula is not valid for ¢ € {1,2, N — 5, N — 6}, in which case we have

N-5
R®, . =logm g} (p1) + > logT 9" (o).

7= (5.19)

N-5
2 1,0 0,1 0,0,1
RY . =log g% (o1, p2) +1og 7o 0" (o1, p2) + Y log 7y 0 (o1, p2. )

Jj=3

and the remaining cases can be obtained from target-projectile symmetry.

5.3 Leading singularities of scattering amplitudes in MRK

In the previous section we have shown how we can compute non-MHV amplitudes via
convolution with the universal helicity flip kernel H. Due to the double pole in the helicity
flip kernel, non-MHV amplitudes are no longer pure, but the transcendental functions
are multiplied by rational prefactors. This is in agreement with the expectation for the
structure of scattering amplitudes in full kinematics, where these coefficients are identified
with the leading singularities of the amplitudes [108]. In this section we present a way to
determine the set of all rational prefactors that can appear in a given non-MHV amplitude
in MRK at LLA.

Let us start by defining some concepts that are useful to state the main result. We
define interfaces of the perturbative coefficients g,(blllh;]:f’) (p1,.-.,pN—5) as the faces of its
graph (see eq. (4.17)) that are bounded by two external lines with opposite helicities. In
the following we refer to a face of the graph simply by the index of the corresponding dual
coordinate (cf. figure 5). We call an interface holomorphic if the helicity changes from —1
to +1 in the natural order induced by the color ordering, and anti-holomorphic otherwise.
We denote by I = {ai,...,a.} the set of all interfaces of the graph (equipped with the
natural order induced by the color ordering) and we let ap = x2 and a,411 = xy_2. For
1 < k < k we define the sets

B ={blag-1 <b<ar} and E* ={blar <b < api1}. (5.20)
We also define the cross-ratios

Upael » for holomorphic interfaces a ,
Rpoe = (5.21)
Upael » Tor anti-holomorphic interfaces a,
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with
Vbael = (Xb - Xa)(Xc - Xl)
“ (xp — %¢)(Xa — X1) '

(5.22)

We are now ready to state the main result of this section. We claim that it is possible
to write the perturbative coefficients in such a way that all rational prefactors multiplying
pure functions take the form

II Reae. beEf, ceEf, (5.23)
acsS

where S C I is a (possibly empty) subset of interfaces and we have introduced the definition
B} ={bla <b}. (5.24)

This implies in particular that the building blocks of all rational prefactors in MRK at
LLA are contained in the set

L={Ryclacl,beEl ceEf}. (5.25)

The cross ratios in this set are at the same time the building blocks for all leading singu-
larities in MRK at LLA. We emphasise that this set is an upper bound for the rational
prefactors that can appear for a given helicity configuration. In particular, one may wonder
whether the asymmetry in eq. (5.23) and eq. (5.25) between EY and Ej could not be lifted,
and we could restrict the building blocks to the more symmetric set

Lsym = {Rpacla € I,b € B ,c € EV}. (5.26)

Unfortunately, this is incorrect, because the cross ratios Ry, are not independent, but they
satisfy intricate non-linear relations, e.g.,

Ro3c + Ro3a Rage = Rose Rage + Ro3a Roge, a<c, a€l. (5.27)

The apparent asymmetry in the set of building blocks in eq. (5.25) can then be lifted
through such relations. It would be interesting to have a classification of all the relations
among the building blocks Rpq.. Our building blocks are, however, linearly independent,
and so we can restrict to the more symmetric set Lqyy, in situations where there is at most
one interface of a given type (holomorphic or anti-holomorphic). Helicity configurations
involving products of building blocks of the same type require at least three interfaces, and
the simplest such amplitude is R_4_,. We observe by explicit computation that in this
case the restricted set Lgym is indeed insufficient and a new building block Razs ¢ Lsym
appears (see appendix D).

Before we prove our result, let us discuss some of its implications. First, it is evi-
dent from eq. (5.23) that every interface contributes at most one factor to the product in
eq. (5.23), i.e., we never encounter higher powers of Rpqc.

Second, we see that for a given helicity configuration there is always a finite number
of different rational prefactors, independently of the number of loops. The complete set of
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rational prefactors for a given helicity configuration shows up when all indices are non-zero.
In particular, we will see that eq. (5.23) is consistent with the factorisation theorem (4.18)
in the sense that we never need to consider faces b and ¢ bounded by external lines with
equal helicities and vanishing index.

Finally, we note that the ratios Rp,. transform non-trivially under target-projectile
symmetry. Target-projectile symmetry obviously maps interfaces to interfaces, and we have

Rypoe = BN b N—aN—c=1—BRN_cN—a,N—b- (5.28)

Let us now illustrate the content of eq. (5.23) on some simple examples. MHV and
MHV amplitudes do not have any interfaces, so these amplitudes should not contain any
non-trivial rational prefactors, in agreement with known results. The simplest amplitudes
having a single interface are NMHV amplitudes of the form R_...;. Since these amplitudes
have a single interface, we have £ = Lqy,. The amplitude must then take the form

N-2
Rojoy =a+ Y Ragebe, (5.29)
c=4

where a and b, are pure functions to all loop orders. In the special case N = 6 eq. (5.29)
reduces to the known structure of the six-point NMHV amplitude in MRK [79],

Ry =a+Ropb=a+ "1 b. (5.30)
p1—1
Equation (5.23) implies that this structure generalises to an infinite class of N¥MHV am-
plitudes, k£ > 1, with a single holomorphic interface,

a—1 N-2

Rocqy=a+ Z Z Rpac bic (531)

b=2 c=a+1

where a is the holomorphic interface and a and by, are pure functions. Products of rational
prefactors contribute for the first time for amplitudes with two distinct interfaces, which
appear precisely for the helicity configurations considered in eq. (5.10). The interfaces
are located at (aj,a2) = (a + 1,0+ 2). One of them is holomorphic and the other one
anti-holomorphic, so we can work with the symmetric set Lgyy,. We find

a;—1 a2 as—1 N-2

§ : § : 5} 1 E : § 2
R+...+ ..... 4.4 =0a + Rcald bcd + Rcagd bcd

c=2 d=a1+1 c=a1 d=az+1

(5.32)

a1—1 as as—1

N-2
+ R R cl?
crai1dy leaaads Yepdycads

c1=2di=a1+1c2=a1 do=as+1

where we have indicated the anti-holomorphic rational functions by Rpq. for clarity and a,
4 Y

beg nd €2 g cody

Let us conclude this section by discussing the soft limits of the rational prefactors.

are pure functions.

First, we can see that Rp,. has simple poles for x;, = x. and x, = x3. None of these
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singularities corresponds to a soft limit. This implies in particular that the weight of the
pure functions does not drop when taking a soft limit. Next, we see that

lim Rpee =0 and lim Rp,.=1. (5.33)

Xp—rXa Xe—Xq

In order to understand the implication of these relations, let us consider a NMHV ampli-
tude, which can be written in the form of eq. (5.32) with a = a1 = a2 — 1,

a—1 N-3

Rypgp =a+ Zﬁca(aﬂ) bia-l—l + Z Raa+1)a bgd
c=2 d=a+2
a—1 N-3

- 12
+ E E Rca(a+1) Ra(a+1)d ccl(a—i-l)adz :
c=2 d=a+2

(5.34)

In the limit where the gluon with negative helicity becomes soft, x, — X441, the NMHV
amplitude reduces to an MHV amplitude, which is a pure function. Equation (5.33) guar-
antees that this is indeed the case, and we find,

a—1
: _ 1
xall)gi+l R+...+_+...+ =a-+ CZQ bc(aJrl) . (535)

5.3.1 Proof of the structure of leading singularities in MRK

Let us now prove our claim about the structure of the rational prefactors in MRK to LLA.
Before turning to the proof itself, we make the following observation: every perturbative
coefficient can be built up by a finite sequence of the following three operations:

1. Flipping the leftmost helicity by convolution with #(z1) or H(Z1) respectively.
2. Increasing the first index by convolution with £(z1).

3. Adding more particles to the left with index zero and equal helicities.

In particular this implies that every non-MHYV amplitude can be constructed from a NMHV
helicity configuration of the form —+ ...+ by successive application of these three elemen-
tary operations (we can always assume the rightmost helicity to be hy_4 = +1). It is
evident that we can reach a similar conclusion by adding more particles to the right and
convoluting with £(zy_5) and H(zny_5).

Let us illustrate this procedure on a short example. Note that in the following we
consider all convolutions to be over z; and we see all the simplicial MRK coordinates p; as

functions of the z;. The perturbative coeflicient gsrlf’f’,o’,lfl(m, ..., pe) can be constructed
in the following way: we start with the perturbative coefficient g(jﬁ(pl, p2) and flip its

leftmost helicity ,

gﬁffl(pl,pz) — g2 (p1,p2) = H(=1) * ggffi(m,pz) : (5.36)

Next, we add additional particles with index zero and negative helicity to the left and we
use the factorization theorem to remove zero indices,

g(_lfi(pl, p2) — g@’_o’_lfl(pl, coypa) = g(_lfi(pg, pa) - (5.37)
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Note that this operation is equivalent to simply shifting the indices of all the simplicial
MRK coordinates. Next, we increase the first index by convolution with £(z;) and perform
another shift in simplicial MRK coordinates to add one more external particle,
0,0,1,2 2,0,1,2 0,0,1,2
g2 (o1, pa) = gD (o1, pa) = E(1) % E(1) + gV (o, pa)

(072707172) (2707172)

(5.38)
_>g————++(p17 s 7p5) = g———++(p27 o 7P5) .

Then we flip the first helicity and perform one more shift in simplicial MRK coordinates,

0,2,0,1,2 0,2,0,1,2 _ 0,2,0,1,2
g(————+—)i-(p17 R PS) — g—(‘,————-i-—)‘,—(pl? sty PS) - H(Zl) * g(—————i-—)‘,—(plu e 7p5) 5 39
(0,0,2,0,1,2) _(0,2,0,1,2) ( ’ )
=94+ 2 (o1 pe) = 94T (p2y - p6) -

Finally, we arrive at the desired perturbative coefficient by increasing the first index by
one unit,

gff’_Q’_o’_lfj)L(ph T gsrlf’_z’_o’_lfi(pl, cooype) =E(21) * gff’_z_o’_lfi(pl, cooype) - (5.40)

Let us now turn to the proof of the structure of the leading singularities in MRK. More

precisely, we will proof that the building blocks in eq. (5.25) exhaust all rational prefactors
of non-MHV amplitudes in MRK for any number of particles and any loop order.

As a warm-up, let us consider the case of a NMHV amplitude where the first gluon
emitted along the ladder has a negative helicity, and all other gluons have a positive helicity.
We can construct this amplitude by starting from an MHV amplitude and then we flip the
first helicity, cf. eq. (5.9). As MHV amplitudes are pure functions, the anti-holomorphic
primitive will itself be pure. If we work in simplicial coordinates based at z1, where t1 = 21,
we can write eq. (5.9) in the form

. . 1 .
g (o, pn) = 010 / di Egiﬁ?ﬁ;””)(m, e Pn) s (5.41)

where we interpret the simplicial MRK coordinates p; as functions of the simplicial coor-
dinates based at z;. The rational prefactors are entirely generated by the action of the
holomorphic derivative. Since the anti-holomorphic primitive is pure, all rational prefactors
take the following form in simplicial coordinates based at z1,

31 (x3 — x2)(Xi43 — X1) .
= = R 7: 3 0 S (3 S n, 542
t—7  (Xigs—X2)(x3 —x1) o0t (5:42)
with
0, ifi=0,
=41, ifi=1, (5.43)

t;, otherwise,

in agreement with eq. (5.29). We thus see that the claim is true for all NMHV amplitudes
of this type.

At the beginning of the section we have argued that every non-MHV configuration can
be obtained from the helicity configuration (—, +...+) through a successive application of
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the three elementary operators (convolution with £ and H and adding particles). Since the
claim holds for this particular helicity configuration, it is then sufficient to show that the
elementary operations preserve the structure of the rational prefactors. As all convolution
integrals will be performed in simplicial coordinates based at zp, it is instructive to see
what the Ry, look like in these coordinates. We find,

t1— Tg—3
RQac )

31 e (5.44)
Rpge = 22— 7073 p29,

Te—3 — Ta—3

We see that Rp,. depends on t¢; if and only if b = 2. This has important implications for
the analytic structure of the perturbative coefficients. Indeed, assume that our claim (5.23)
is true for a certain amplitude. Then every term can contain at most one factor of the
form Raqe, because a must be the first interface (in the natural order on the interfaces).
From eq. (5.44) we see that all poles in t; must be simple, and moreover they are all either
holomorphic or anti-holomorphic, depending on whether the first interface a is holomorphic
or anti-holomorphic. As a consequence, repeating the discussion at the end of section 5.1,
we see that in those cases where our claim is correct, we can always compute the convolution
with #(z1) by differentiating and integrating.

Let us now show that if the claim is correct for a given amplitude, then it remains
true if we perform any of the three elementary operations on it. In the following we always
assume that the poles in ¢; are holomorphic. The extension to the anti-holomorphic case
is trivial. Let us analyse the effect of each of the elementary operations in turn.

e Adding new particles: adding £ new particles with the same helicity and index zero
as the first one is equivalent to a shift in the simplicial MRK coordinates, p; — pj+¢-
This shift has a very simple effect on the cross ratios Rp,.. Indeed, if b > 2, we have

(Pa—2 = pop—2)(pe—2 — 1)
(pe—2 = po—2)(pa—2 — 1)
(Pa—2+0 — Po—2+0) (Pe—2+0 — 1)

- =R a c+0) -
(pc—2+€ - pb—2+€)(pa—2+£ - 1) (b+0)(atE)(c+)

Rbac =

(5.45)

In the case b = 2, we find

pa—2(pc—2 - 1) pa72+2(pc72+é - 1)
2ac pc—2(pa—2 - 1) Pc72+£(Pa72+£ - 1) Ha+f)(e+h) ( )

In order to complete the argument, we need to show that (a+/¢) is the first interface in
the shifted amplitude. This is automatic in this case, because we only add particles
with the same helicities to the left, and so no new interface is introduced. Note
that at the same time we have shown that we can always drop faces with vanishing
index, consistently with the factorisation theorem (4.18). Indeed, we see that when
adding particles we do not add any new rational prefactors to those that were already
present, and we only relabel the variables in the shifted amplitude.
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e Increasing the first index: this is equivalent to convoluting with £(z1),
(i1+17"'7iN—5) (i17"'7iN—5)

Iy (P1se e pN=s) = E(21) x gy T N 1y PN=5)

d*w (1150-iN—5) wty + wiy
- _/ o Ty (Wt oINS ) g (5.47)

d*w (115N —5) 1 w+it  w
__/ o Ihy.hy_4 (w>t27"-7tN—5) U)(’ll)—tl) w_t—l _5 .

We evaluate this integral in terms of residues. By hypothesis, the perturbative coeffi-

cient has only holomorphic poles in w. Since w only enters via linear denominators in
the integration kernel in eq. (5.47), the anti-holomorphic primitive of the integrand
is a pure function (seen as a function of w).

Next, we have to compute the holomorphic residues. The anti-holomorphic primitive
may still contain holomorphic poles in w, but we know from eq. (5.44) that these poles
are all simple and can only enter through rational prefactors of the type Roq (the
integrand may contain other rational prefactors proportional to Rp,. with b #£ 2, but
those will not spoil the argument, because they do not enter the convolution integral).
By induction hypothesis, a is the first interface. Our goal is to show that by taking
holomorphic residues, we do not introduce any new rational prefactors. In order to

see that this is true, let us multiply Rs,. by the two rational functions quUerjil) and
wi 7 in the integrand of eq. (5.47), and apply a partial fractioning in w. We find,
wH+tT w—Te—3 1 2 1
2 = _*R3ac+ 7R2ac+ 7(1 _2R2ac+R3ac) )
w(w —1t1) w—Te—3 w w—1 W — Te3
1 W — Tgq-—3 1 1
= Roge + ——— (1 — Rage) - (5.48)
wW—11 W— Te—3 w — 11 W — Te—-3

The previous expressions are multiplied by pure functions in w, and so the holo-
morphic residues are obtained by evaluating the pure functions at the simple poles
at w =0, w = t; and w = 7._3. Hence, we see that no new rational prefactors are
introduced in the process. In order to complete the argument, we need to check that
the residue at w = oo does not spoil this result. Letting w = % and multiplying with
the respective Jacobian, the denominators in eq. (5.48) give rise to a pole at u = 0.
It is easy to check that taking the residue at this pole does not introduce any new
rational prefactor. Finally, the previous argument can easily be extended to the case
where the factor Ro,. is absent, i.e., where the anti-holomorphic primitive has no
pole in w. We thus conclude that increasing an index does not change the building
blocks for the leading singularities.

e Flipping the first helicity: by hypothesis, we assume that the perturbative
coefficient before flipping the helicity has only holomorphic poles in ¢;. This means
that the first interface before the helicity flip is holomorphic, and so the next
flipping will produce an anti-holomorphic interface, i.e., we need to convolute with
an anti-holomorphic helicity flip kernel H(z).
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As all the poles in t; before the helicity flip are holomorphic and simple, we can apply
the result from the end of section 5.1 and compute the convolution with #H(Z;) by
first computing a holomorphic primitive, followed by an anti-holomorphic derivative,

_ _ dtq
M) ¢ gome =00 [ o (5.49)
After partial fractioning in ¢;, we see that the holomorphic primitive is pure as a
function of ¢;. Hence, all rational prefactors in ¢; are produced by anti-holomorphic
differentiation of a pure function, and so they all take the form

_ = Rose, (5.50)

which completes the proof.

Let us conclude this section by commenting on the asymmetry of the set £. Throughout
the proof we have shown that the elementary operations do not produce any new rational
building blocks that are not in the set £ defined in eq. (5.25). The proof relies on the fact
that we can construct any helicity configuration algorithmically by adding particles to the
left and by convolution with £(z;1) and #H(z1). The asymmetry in the construction is most
manifest in the helicity flip operation, because the range of ¢ in the rational functions in
eq. (5.50) is naturally given by the set ES, and it is not restricted in any obvious way to Ei’

One may wonder, however, if we could restrict the range by adding particles to the
right and convoluting with £(zny—_5) and H(zny_5). Applying exactly the same reasoning
as in the other case leads to a new set of building blocks

L' ={Ryclacl,be B! ce Ef}. (5.51)

As the result for the amplitude should not depend on the way it was obtained, one would be
inclined to believe that the set of building blocks could also be restricted to the symmetric
set in eq. (5.26),

Loym = LN L. (5.52)

This is incorrect, because non-linear relations between the cross ratios (cf. eq. (5.27)) allow
one to express building blocks from £’ which are not in £ as non-linear polynomials in
elements in £. In the case that there is a single holomorphic interface, however, the linear
independence of the cross ratios Ry, allows one to consider only the restricted set Leym.

5.4 Explicit two-loop, seven-point NMHYV check

In this section we outline an explicit check of our discussion for the leading logarithmic
contribution to the two-loop seven-point NMHV amplitudes in MRK. The symbol of this
amplitude was obtained in ref. [109].* More precisely, the quantity discussed in ref. [109]
is the so-called ‘BDS-subtracted’ amplitude, equivalent to the exponentiated remainder
function multiplied by the ratio function. It is given in supersymmetric notation as follows

3 1 2
ABDS subtracted = | =(12) + 2(18) + Z(14) + eye.| X +[(67)Ver + (47)Var + cye]. (5.53)

4We thank the authors for providing a file with the relevant expressions.
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In the above formula the quantities X, Vg7 and V7 are pure functions based on the heptagon
alphabet arising from the cluster algebra structure on Gr(4,7), as discussed in ref. [32].
The quantities (ij) above represent the R-invariants which encode all the possible NMHV
configurations of external states by use of Grassmann odd variables n;.

We recall that all on-shell states in N' = 4 SYM theory can be described by the on-shell
supermultiplet written in superspace notation as a function of Grassmann parameters 7
transforming in the fundamental representation of su(4),

A B, C, D

1 1 =D 1 _
®(n) = G+ Ta+ 0" Sap + g n"nCeapcpl™ + " nnPeapepG . (5.54)

2

The R-invariants generically depend on five indices [ijklm]. In the seven-point case, how-
ever, we may simply denote them by the two indices which are absent, e.g.,

(12) = [34567] . (5.55)

Furthermore, at seven points all R-invariants are of the form [rs—1st¢—1¢] for some r, s,t
and in this regard we find it helpful to employ the formula of eq. [110] which we express
as follows,

5%(q)
(12) ... (nl)

X

[rs—1st—1t] =

(s — 18)(t — 10D (Z,4) (5.56)

x§t<r|$majst|t — IW(r|mpsase|t) (r|Tremes|s — 1) {(r|xpais|s)

We have included in the above formula the supersymmetric Parke-Taylor-Nair prefactor
to exhibit all the relevant 1 dependence. The delta function 6%(g) is a consequence of
supersymmetry and is explicitly given by

%(q) = &° (Z Ami), (5.57)

where the \; are the spinor-helicity variables introduced in eq. (2.2). The argument of the
other Grassmann delta function in the numerator of eq. (5.56) is given by

t—1
rst = Z < |‘T7”S$St| Th + Z |33rt1:ts| (558)
i=r+1 i=r+1

Next we calculate the limits of the pure functions X, V;; in MRK and we evaluate
the R-invariants in this limit. To perform the second task it is helpful to formulate the
passage to multi-Regge kinematics in term of spinor-helicity variables. It is sufficient for
us to parametrise our spinors with different powers of € in such a way so as to systematise
the strong ordering of the kinematics in the MRK limit, similar to ref. [84]. For example
in the 12 — 34567 kinematics, the A spinors are parametrised as

0 3 ¥ i
\/Pj e
1 )\2 (_Zz 3pz+ - 5) >‘J — J

AL = 2o\ 2 = =y, 5=i (5.59)
< -Xi %65%) 0 \/Tja?e ’
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where j = 3,...,7and the X are obtained by conjugation. After calculating the R-invariants
using this parametrisation we can recover the MRK value by taking ¢ — 0.

Projecting out the components of the n’s corresponding to the desired helicity config-
uration and taking the MRK limit we find the following non-vanishing R-invariants for the
(— + +) configuration,

(12) > 1, (23)—>1—M, (17)—>p1”11,

(27) — M, (13) — 1 — plpi - (37) — Z;S:Z; - pl"'i - (5.60)
For the (+ — +) configuration we find
N
R
R~

Combining these formulas, we find that the two NMHYV helicity configurations become
Rty =X +Vig+ Vg + Rasa <V73 - ‘723) + Rass (Vn - V73) ;
Ryt = X + Vas + Vi + Va2 +R234<V34 — Vi — V62>
+ R3u5 (Vm - ‘736> + Ry34R345 (‘714 — Vau + ‘736> : (5.62)

Here the Vij are the MRK limits of the pure functions Vj; of eq. (5.53). In appendix D
we give the explicit form of the ‘A/Z-j at LLA (of course, since we started from just the
symbol, these formulas are valid up to terms proportional to multiple zeta values). Note
that individually these functions may have beyond-leading log divergences. These extra
powers of divergent logarithms cancel when combined into the combinations outlined in
eq. (5.62). These explicit limits may then be compared to the general structure outlined
in eq. (D.11) and the predicted pure functions presented in egs. (D.20) onwards.

6 Analytic structure of scattering amplitudes in MRK

It is believed that MHV and NMHYV amplitudes are expressible in terms of multiple poly-
logarithms [42], but it is expected that for more complicated helicity configurations more
general classes of special functions may appear [60, 111]. Knowing that in some limit
scattering amplitudes can always be expressed in terms of multiple polylogarithms inde-
pendently of the helicity configuration and the number of external legs can thus provide
valuable information and constraints on the analytic structure of scattering amplitudes. A
proof of such a property previously only existed for the six-point amplitudes when expanded
to leading order around the collinear limit [112] and to LLA in MRK [81, 82].

In section 5.3.1 we have argued that it is possible to construct all amplitudes in MRK
to LLA via a sequence of three elementary operations. In this section we show that this
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recursive structure of scattering amplitudes in the multi-Regge limit implies that they
can always be expressed in terms of single-valued multiple polylogarithms of maximal and
uniform weight, independently of the loop number and the helicity configuration.

Let us start by discussing MHV amplitudes. The algorithm of section 5.3 allows us to
construct all MHV amplitudes by adding particles and by convoluting with £(z1). We now
show that the perturbative MHV coefficients g$1+’k) are pure polylogarithmic functions of
uniform weight w = 1+i;+...414,. Obviously, the factorisation theorem (4.18) implies that
the claim remains true under the elementary operation of adding particles, so it suffices to
show that convolution with £(z1) has the same property. The proof proceeds by induction.

Assume that g$1+““) is a pure function of uniform weight w =144, + ...+ i, and let us

show that gglilz’“) =&(z1) *g$1+l’“) is a pure function of uniform weight w+1. We have

E(z1) * g™ (o1, ps)

W (i1,.in_s) Wty + wiy
= —/27_‘_9++ (w,tQ,...,tN_5)m (61)
PPw iy, in_s) 1 w+i  w
= - —_— T to, ..., tn— — — — | .
/ 5 9 (w,ta,...,tN—5) ww—t)\o-5 @

We evaluate the integral in terms of residues. As g$1+ZN -5) is assumed pure by induction

hypothesis and all the denominators are linear in w, the anti-holomorphic primitive is
a pure function (seen as a function of w) of uniform weight w 4+ 1. The convolution in
eq. (6.1) can then be written in the form

E(z1) * gﬁ}.ijg’iN_5)(p1, . PN=5)

dw [1 1 (6.2)
=— | — |—F to,...,tN— E to,...,tN—
/27T LU 1w, tg, ..., tN 5)+w—t1 2(w, b2, ..., tN=5) | ,

where F and F5 are pure single-valued polylogarithmic functions of weight w+1. As all the
poles are simple, the holomorphic residues can be computed by simply evaluating the pure
functions of weight w+1 at w = 0, w = t; and w = oo (and dropping all logarithmically di-
vergent terms). Hence, £(21)* g$1+m -5 isa pure polylogarithmic function of weight w-+1.
While the previous result is not unexpected for MHV amplitudes, we show in the
remainder of this section that we can extend the argument to non-MHV amplitudes, in-
dependently of the helicity configuration. More precisely, we show that the pure functions
multiplying the rational prefactors defined in section 5.3 are always pure polylogarithmic
functions of uniform weight w = 1+ +...+1%;. The proof in the MHV case relies crucially
on the fact that the anti-holomorphic primitive was a pure function of weight w + 1 and
that all the holomorphic poles were simple. Since non-MHV amplitudes are in general not
pure but contain rational prefactors, it is not obvious that the same conclusion holds for
arbitrary helicity configurations. In addition, for non-MHV we also need to analyse the
effect of the helicity flip operation, which should not change the weight of the function.
We proceed again by induction. Let us start by showing that also in the non-MHV case
a convolution with £(z1) will increase the weight by one unit. From section 5.3 we know that
all poles in z; are simple and either holomorphic or anti-holomorphic. In the following we
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discuss the anti-holomorphic case and the extension to the holomorphic case is trivial. The
integrand of the convolution integral in the non-MHV case may have additional poles in w
at points where R, is singular, see eq. (5.44). It is easy to see from eq. (5.44) that none of
these additional poles is located at w = 0 or w = t1, and so all the anti-holomorphic poles
entering the convolution integral are simple. We can thus repeat the same argument as in
the MHV case, and the anti-holomorphic primitive will be a pure polylogarithmic function
of weight w + 1. Moreover, there are no additional holomorphic poles in w introduced by
the rational prefactors, and so we can compute all the holomorphic residues by evaluating
the pure functions of weight w + 1 at w € {0,¢1,00}. Hence, a convolution with £(z1)
produces pure polylogarithmic functions of weight w + 1 also in the non-MHYV case.

To complete the argument, we need to show that flipping the leftmost helicity does
not change the weight of the functions. In section 5.3 we have seen that, since all poles
in t; are simple and either holomorphic or anti-holomorphic, we can always compute the
effect of the helicity flip by integrating and differentiating, cf. eq. (5.49). Since all poles
are simple, the integration will increase the weight by one unit. This effect is compensated
by the differentiation, so that the total weight of the functions remains unchanged. Hence,
we conclude that non-MHV amplitudes in MRK to LLA are polylogarithmic functions of
uniform weight w =1+ 47 + ... + i independently of their helicity configuration.

7 Discussion and conclusion

In this paper we have introduced a new method to compute scattering amplitudes in MRK
kinematics through LLA. The cornerstone of the method is the realisation that an N-point
kinematic configuration in MRK is equivalent to a configuration of (N — 2)-points in CP!,
i.e., to a point in My y_o. Using this framework, the evaluation of convolution integrals
is reduced to a simple application of Stokes’ theorem and the residue theorem. We have
proved a factorisation theorem which generalises a factorisation observed for the two-loop
MHYV amplitude and which allows one to represent a given multi-leg amplitude in terms
of building blocks with fewer legs. We have applied our new framework to obtain analytic
results for all MHV amplitudes up to five loops and for all non-MHV amplitudes up to
four loops and eight points. The techniques introduced in this paper are generic and apply
to scattering amplitudes in MRK at arbitrary logarithmic accuracy. In the following we
comment on how to extend the results of our paper beyond LLA.

Beyond LLA scattering amplitudes in MRK can still be computed using the techniques
outlined in this paper, because neither the convolutions nor the kinematic considerations
about the moduli space of Riemann spheres with marked points relie on LLA. Nonetheless,
there will be some differences which we outline in the following. Although we currently do
not know the exact form of the Fourier-Mellin representation of a multi-leg amplitude be-
yond LLA, it is reasonable to believe that this representation will involve a Fourier-Mellin
transform very similar to eq. (2.37). The main difference will be the appearance of higher-
order corrections to the BFKL eigenvalue, the impact factor and the central emission block.
Currently, the BFKL eigenvalue and the impact factor are known to arbitrary loop order
from integrability [68, 73, 78, 80, 91], but the central emission block is only known to LO.
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The higher-order corrections will give rise to new building blocks that enter the convolution
integrals. Once these Fourier-Mellin transforms of building blocks are known, we can in-
crease the loop order at fixed logarithmic accuracy by convoluting with the LO BFKL eigen-
value, just like at LLA. Similarly, we can relate non-MHV amplitudes to MHV amplitudes
via helicity flip operators. We emphasise that the helicity flip operators receive quantum
corrections beyond leading logarithmic accuracy that are known to all orders [49, 73].

The factorisation theorem (4.18) will, however, break down beyond LLA, at least in its
simple form quoted in this paper. Indeed, in ref. [86] it was observed that unlike at LLA
amplitudes at NLLA receive non-factorisable contributions that depend on two simplicial
MRK coordinates simultaneously already at two loops. The breaking of the factorisation
theorem in its present form at NLLA can be traced back to the following: quantum correc-
tions to the BFKL eigenvalue and the impact factor contribute already at six points, and so
they will not violate the factorisation. The NLO correction to the central emission block,
however, couples two Fourier-Mellin integrations, which leads to a violation of eq. (4.18).
Indeed, the proof of Claim 1 relies crucially on the analytic structure of the LO central
emission block, see eq. (4.27). The NLO correction will alter eq. (4.27), thereby invalidat-
ing the proof of Claim 1 and thus the factorisation theorem. At the same time, we see that
the violation is restricted to the appearance of the NLO corrections to the central emission
block, leading to the more general factorisation observed in ref. [86]. It would be interesting
to study these effects to higher orders. Along the same lines, it would be interesting to see
if the structure of the leading singularities discussed in section 5.3 will change beyond LLA.
Indeed, the analysis of section 5.3 took into account the BFKL eigenvalues and helicity flip
operators only at LO, so the results of that section may change beyond LLA.

Finally, let us comment on the validity of the analysis of section 6 beyond LLA. The
analysis of section 6 relies on the fact that, loosely speaking, the space of single-valued
iterated integrals on Mg, is closed under convolutions due to Stokes’ theorem. Since at
fixed logarithmic accuracy every amplitude can be written as a convolution of a small set of
building blocks, the analysis of section 6 will fail if at some order in perturbation theory the
Fourier-Mellin transform of the BFKL eigenvalue, impact factor, central emission block or
helicity-flip operator cannot be expressed in terms of single-valued multiple polylogarithms.
From integrability we know that (at least empirically to very high orders) the BFKL
eigenvalue, impact factor and helicity-flip operator can be written at every order as a
polynomial in the following four building blocks [73, 80]

Eun, Dy:—z’g, N=x"-x", V:—l(xﬂrx—). (7.1)
v 2

Fourier-Mellin transforms of functions that are polynomials in these variables lead to single-
valued harmonic polylogarithms [80], and so there is a strong indication that the Fourier-
Mellin transforms of the BFKL eigenvalue, impact factor and helicity-flip operator give
rise to single-valued polylogarithms to every order in perturbation theory. Any appearance
of functions in MRK that are not polylogarithmic should thus be associated to higher-
order corrections to the central emission block. An explicit computation of higher-order
corrections to the central emission block is currently under investigation.
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A Fourier-Mellin transforms and convolutions

In this appendix we prove the inversion formula and the convolution theorem for the
Fourier-Mellin transform of eq. (2.45). We start by proving the formula for the inverse
transform, eq. (2.46). If F(v,n) = F~'[f(z)], we have,

Frem = 3 (3" [T e s

n=—oo

- [ 22 fw jf ()" [T

o0

(A1)

2iv

In polar coordinates we have w = 7 €*¥ and z = 1 €*?0
© dr 2T dip = dv 2iv
Fml= [0 [T ) 3 emtemo [T (1))
0 T 0 ™ R —c0 27T

The sum and integral over n and v can now be performed in terms of § functions. Indeed,
the sum over n is just a Fourier sum,

+o0
Z e~ Te=20) — 27 6(p — ) . (A.3)

n=—oo

Similarly, letting v = iv, we get

+o00 dv 0 v +i00 dv r 20 r 2 ro
/Oo o ( ) B /ioo 2mi <7’0> =0 (1 o <T0) =5 o(r—ro). (A.4)
Hence,

p 27r
Fv,n)] / d/ 0) 28 — p0) 2 6(r — 7o) = 1 (). (A5)
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Next, we prove the convolution theorem (2.48) for the Fourier-Mellin transform. We

have
= z n/2 oo dv 2iv
FiF-al= 3 (3) | P F ) G, (A.6)
1 [ dPw; dwy X (zmw\"? (A | 2 [V
= [ Tt 0t 3 (S) [ o
1 d2w1d2w2 o 2
Y e 9 6 g 11— (1
= [ fartut fm st st e 1- ()
dridry  [*" , . T r
<2 I s (56 § (20 81+ 00 128 (s 2)
rire  Jo 2rq ry

2
T
_1/ dry /Qﬂdcmf (r1e") g (roe"(%_%)>
s T
1
T

s (2)

= (f*9)(2)-

B Details on the algebraic construction of single-valued functions

In this appendix we present some background material to section 3.4.3. We show that it is
possible to define analogues of the single-valued map s in a purely algebraic way, without
any reference to polylogarithms. This shows that the construction of section 3.4.3 is purely
combinatorial and follows directly from the Hopf algebra structure on hyperlogarithms. In
addition, we present some proofs that have been omitted in section 3.4.3.

Consider two graded and connected Hopf algebras (H1, 1, A1, S1) and (Ha, 2, Ag, S2),
each equipped with their own multiplication pu;, coproduct A; and antipode S;, and assume
that they are isomorphic via some isomorphism ¢ : H; — Ho. This implies that

Asp= (@)A1, op1=p2A(d®@p), Sa¢=0S. (B.1)

The tensor product H1 ® Ho carries a natural Hopf algebra structure with a coproduct and
an antipode given by

A =(1d®7®id)(A1 ® Ag) and Si2 =51 ® Sy, (B.2)

with 7(a®b) = b®a. In the following we show how we can construct analogues of the single-
valued map s in this very general and abstract setting. The special case of hyperlogarithms
considered in section 3.4.3 is then recovered by considering H1 = Ly, Ho = Ly, and the
isomorphism ¢ is simply complex conjugation, and all coproducts are given by eq. (3.75).
Let us now define the analogues of the map S from eq. (3.80). We define linear maps
S; by
Sy iHy = Hay z = (—1)98) ()

’ (B.3)
So :Hy — Ha; x> (—1)1lg 18y (x),
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where |z| is the weight of x. In addition, it is easy to see that these maps satisfy
gl,ul = ,LLQT(S]_ & gl) and Aggl == (51 & gl)TAl 5 (B.4)

and similar properties hold for Ss. These properties follow directly from the corresponding
properties of the antipodes. It is easy to see that

Sop =185 . (B.5)
Moreover, S; and Sy are inverses of one another, because
$:81(w) = (=12 67182081 (2) = ¢! SFo(w) = ¢ () = . (B.6)

Using the maps S;, we can define the analogues of the single-valued map s for hyper-
logarithms defined in eq. (3.82). More precisely, we define two maps s;, i = 1,2, by
s1 = (S1 @id)A; : Hy — Ha @ Hy ,

e (B.7)
Sy = (SQ@Id)AQ Ho — H1® Ho.

In the remainder of this section we show that these maps enjoy all the properties of the
single-valued map s.

We start by showing that the s; are algebra morphisms. We only discuss the case of
s1. We have

S1p1 = p12(s1 ®@s1) . (B.8)
Indeed, writing Aq(z) = 3 (,) 21 ® 2, We obtain

s1(x)-s1(y) = (2 ® py)(id @ 7 ®id)(S; ® id ® S; ® id) (AL (z) @ A1(y))

= (p2 ® 1) Z (S1(z1) @ S1(y1) ® 22 @ y2)
(@) (B.9)

= (S ®id)A(z - y)
=si(z-y).
The maps s; and s are not independent, but they are related by the isomorphism ¢,

520 = (07" ® ¢)s1 . (B.10)

Indeed, we have
26 = (S2 ®1id)Asg = (S2¢ @ $)A1 = (¢ 151 @ )A1 = (¢ ® )81 . (B.11)

This relation generalises the action of complex conjugation, and in particular (¢~ ® ¢)s;
corresponds to the complex conjugated single-valued map § of section 3.4.3.

Next, let us show that the maps s; and so are related via 5’1 and 5’2 in the same way
as s and § are related via S, cf. eq. (3.96). More precisely, we have

$951 = T8, (B.12)
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and a similar relation holds for Sy. Starting from the left-hand side, we see that
Sggl = (gQ X id)AgS’l = (Sle X gl)TAl = (id X Sl)TAl = T(Sl X id)Al =T81. (B.13)

Let us define ’Hf V. i=1,2, as the image of H; under the map s;. In the following we
only discuss the case i = 1. We show that the coproduct A5 turns va into a Ho ® H1-
comodule. The coaction is given by

Aqgs1 = (Sl & 51 & ld)(TAl (%9 ld)Al . (B14)

H{V inherits the grading from Ha ® H; in an obvious way. In the following we give the
proof of the formula for the coaction. Note that in the case where A; is the coproduct
on hyperlogarithms defined in eq. (3.75), this proves at the same time the formula for the
coaction in eq. (3.86). Expanding the left-hand side of eq. (B.14), we get, for x € H,

Aposy(z) = (id @ 7 ®id)id(Ag ® A1)(S; ® id)A; ()
(ld RXTR ld)(Azgl &® Al)Al(.T)
(id @ 7 ®id) ((7(S; ® S1)A1) ® A1) AL () (B.15)

= Z Si(x12) @ 221 ® S1(x11) ® Ta2.
(z)

We do the same for the right-hand side of eq. (B.14) and we obtain

(Sl X 5'1 & id)(TAl X id)Al(ib') = ((5'1 & id)Al X (51 &® id))(’l’Al &® id)Al(:U)

= Si(r121) @ 2122 ® S1(11) @ 2

(z)
= (51®id® 51 @id)(A1©71) Y w12 @12 @ 71,

()
= (51®id® S ©id)(i[d@ider)(id® Ay @id) Y 21 ® o @21, (B.16)
(z)
=(S1®ide S @id)(id®ide 7)Y 712 @1 ® w22 ® 71,1
(z)

= Z gl(xlz) ®T21 ® S (z11) @ x22,

(z)

and the last line agrees with eq. (B.15).

C Explicit expression for single-valued hyperlogarithms

In this appendix we present explicit expressions of single-valued hyperlogarithms up to
weight three in terms of ordinary hyperlogarithms. We only give the results for Lyndon
words. All other cases can be reconstructed from the fact that single valued hyperloga-
rithms form a shuffle algebra.
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C.1 Single-valued hyperlogarithms of weight one

Go(2)
Ga(2)

Go(z) + Go(2) . (C.1)
Ga(2) + Ga(2) .

Il
I
—~
Q
[\
~—

C.2 Single-valued hyperlogarithms of weight two

Go.a(2) = Go,a(2) + Gap (2) — Go(a)Ga (2) — Go (a) Ga (2) + Go(2)Ga (2) - (C.3)
Gap(2) = Gap(2) + G g (2) + Gola)Ga (2) + Gy (@) Ga () (C4)
— Ga(b)Gy (2) + Ga(2)Gy (2) — Ga (b) G5 (2) -

C.3 Single-valued hyperlogarithms of weight three
90707(1(2) = GOVO(G)G ( ) + G070 (d) Ga (2) + GQ@(Z)G@ (5) — Go(a)G@o (2) (05)

— Go (@) Ga (2) + Go(2)Gao (2) + Gap (2) + Gola)Go (@) Ga ()
— Go(CL)G()( ) a (5) — Go(Z)G() (EL) Gy (5) + G070,a(z) .

G0,a,a(2) = —Go,a(a)Ga (2) + Ga (2) Gou(2) + Goa (@) Ga (2) — Go(a)Ga,a (2) (C.6)
— Go (a) Gaa (2) + Go(2)Gaa (2) + Gaao (2) + Goaal(z) -
Go,ab(2) = Gy(a)Gap (2) + G5 (2) Go,a(2) + G (2) Goa (b) — Ga (2) Gopla) (C.7)
Ga (2) Gy (@) + Gy (2) Gao(b) + Gy (@) G ()*G (2) Gpo(a)
Ga (2) Gy (@) — Ga(b )Gbo z) — Ga (b) Gbo — Go(a)Gyq (2)
— Go(a) Gy 5 (2) + Go(2)G g (2) + Gy a0 (2) — Go( ) Gb(a)Ga (2)
+ Go(2)G(a)Ga (2) — Go(a)Gy (@) Ga (2) + Go(2)Gy (a) Ga ()
+ Go (b) Ga(b)Gy (2) — () a(0)G5 (2) + Go(a)Ga (b) G (2)
+Go (@) Ga (b) G (2) — )Ga (b) G (2) + Goap(2) -
Gaab(2) = Gp(a)Gaa (2) + Gy (2) Gaa (D) + Gj (2) Gaa(2) + Gy (2) Gaa (D) (C.8)
+ G5 (a) Gaa (2) — Ga (2 )Gba( ) + Ga (2) Gg 5 (@) — Ga(b)Gy 5 (2)
+ Ga(2)Gp g (2) — Ga (b) Gy g (2 )+Gbaa( )+Gb(a) ( ) a (%)
— Ga(b)Gy (a) Ga (2) + Ga(2)Gy (@) Ga ( ()G )
— Go(b)Ga(2)Gy (2) + Ga(b)Ga (b) Gb( Ga() 2) + Gaap(2) -
Gapp(2) = Gy (a) Gy 5 (2) — G5 (2) Gap(b) + G5 (2) Gap(2) + G5 (2) G5 (b) (C.9)
+ Ga (2) Gyp(a) + Go(a)Gy 5 (2) + Ga (2) Gy (@) — ( )be(f)
+ Ga(2)Gp (2) — Ga (b) Gy (2) + Gy 54 (2) + Gia)Gy (@) Ga ()
— Gq (b) Gj (@) Gj (2) — Gy(a)Ga (b) G5 (2) + Gapp(2) -
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a(2) +Ge(2) Gap(2) — Gy (2) Gae(b) + Gz (2) Gy (€) (C.10)

D Explicit results

In this appendix we present explicit analytic results at two and three loops for all amplitudes
with up to seven external legs and for all eight point amplitudes attwo loops. Additional
results through four loops, as well as the five-loop nine-point MHV amplitude, are given
as ancillary material in computer-readable from to the arXiv submission.

D.1 Six-point amplitudes

The results of this section are not new but they have already been obtained in ref. [46, 77—
82]. We show them here using the same notation and conventions as the higher point
amplitudes. We only show independent helicity configurations where the last helicity index
is positive. The remaining configurations can be obtained by complex conjugation. The
six-point MHV amplitudes at two and three loops are given by

1 1 1
gﬁﬂ(m) = —190,1 (p1) — 191,0 (p1) + §g1,1 (p1) - (D.1)

1 1 1 1 1
gfi(l)l) = —gg0,0,l (p1) — 19010 (p1) + 590,11 (p1) — ggl,0,0 (p1) + 59101 (p1) (D.2)

1
+ 5@1,1,0 (p1) —Gia1(p1) -

The NMHV amplitudes at two and three loops can be written in the form
" (p1) = o, (p1) + Rasa 82, (p1), (D.3)

where the pure functions agl and b(f)Jr are given by

') (p1) = *igl,o (p1) (D.4)
6 (p1) =~ 7900 (p1) + 3610 (1) (0.5)
a?(p1) = —égo,l,o (p1) — igl,o,o (p1) + %gl,l,o (p1) , (D.6)
6% (p1) = —égo,o,o (p1) + %go,l,o (p1) + %gl,o,o (p1) = G110 (p1) + G5 (D.7)
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D.2 Seven-point amplitudes

There is one new perturbative MHV coefficient through three loops that cannot be reduced
to six-point by virtue of the factorisation theorem (4.18). It is given by

1,1 1 1 1 1
(01, p2) = =012 (1) = G0t (01) + 51 (1) = G000 (1) (D.8)

1 1 1 1
= g9p210 (1) + 2Gp 11 (p1) + 1 G101 (1) = 591 (P2) G (1)

1 1 1 1
+ =G1 (p1) Goo (p2) — ggo (p2) Go,1 (p1) + ggl (p2) Go,1 (p1) — ggpz (p1) Go,1 (p2)

8
1 1 1 1

+3G (p2) Go,ps (p1) — g9 (p2) G10 (p1) + 9 (p2) G1.0 (p1) + g9 (p2) G11 (p1)
1 1 1 1

- ggl (p2) G11 (p1) — ggl (p1)Gi1 (p2) + ggm (p1) G (p2) + ggo (p2) G1,p5 (P1)

1 1
+30 (P2) Gpa0 (p1) — g9 (p2) Gpo,1 (1) -

It is worth noting that we have performed an independent check of the above formula,
or equivalently of the factorisation (4.23) of the three-loop MHV seven-point amplitude,
by computing the multi-Regge limit of its symbol [59]. In fact, to LLA we can uniquely
fix an ansatz of single-valued multiple polylogarithms describing all possible beyond-the-
symbol terms, by virtue of the double discontinuity (it determines all terms proportional
to m multiplied by a function of weight two), and the expected behaviour under soft limits,
described in section 2.4. Thus the aforementioned check extends to full function level.
There are three new NMHYV coefficient through three loops,

g(jflj)(m, p2) = agil,’zf) (p1,p2) + Rass b§ff_2)+(p1, p2) + Raas bé’;i’fi(m, p2) (D.9)
+ R345 Rasa cﬁiﬂ(m, p2)
(41,i2) _(i1,42) (41,i2) (41,i2)
937 (p1,p2) = a2l (p1,p2) + Raza by "7 (p1, p2) + Rass by 7 (p1,p2), (D.10)

g(_lif)(m? p2) = a(_”_’lj) (p1,p2) + Rass b§fi’3)+(p1, p2) + R3us b(zz,l_’zfzr(m, p2) - (D.11)
As our convention is to choose the independent helicity configurations to end in a positive
helicity, we present the result for the NMHV configuration (—, —,4). The pure functions
multiplying the rational prefactors are listed below.

1 1 1 1
al”!) (p1,p2) = —7910(p2) = 1911 (p1) + 1 G, (p1) + 1 G0 (p2) Gr (p1) - (D.12)
1 1 1 1
bfﬁ+ (p1,p2) = Zgl,o (p1) + Zgl,l (p2) — Zgl,pz (p1) — Zgo (p2) G1 (p1) (D.13)
1 1
= 190 (p1) G1 (p2) + 761 (p1) G1 (p2) -
(0,1) 1 1 1 1
by 1~ (p1,p2) = —Zgo,o (p2) + 591,0 (p2) + Zgl,l (p1) — 191,;;2 (p1) (D.14)

1 1 1 1
+ 1 Gpaut (p1) — 19202 (p1) — 190 (p2) G1 (p1) — 190 (p2) Gps (1) -
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1 1 1 1
cﬁ?ﬁL (p1,p2) = 590,0 (p2) — Zgo,l (p2) — 191,0 (p1) — 591,0 (p2)

1 1 1 1
+ 19102 (P1) = 19020 (1) + 1 Gpa.pa (p1) = G0 (p1) Go (p2)

+ 1go (p2) G1 (p1) + %go (p1) G1 (p2) — %gl (p1) G1 (p2)

(D.15)

(D.16)

(D.17)

(D.18)

(D.19)

(D.20)

4
+ 500 (52) Gpa (1) = 161 (92) G (1) -
12 (p1,2) = 1611 (91) ~ 2611 (01) — 100 ()G (1)
6 (p1,2) = — 3910 () + 110 (p2) — 7911 (p2) + 791,02 (1)
+ 790 (22)G1 (1) = 790 (1) 61 (p2) + 761 (1) 61 (p2)
057, (p1, ) = —igo,l (p1) + igO,pz (p1) — igl,l (p1) + igl,m (p1)
+ 101 (91) = JGpnn (1) + 790 (22)G1 (1)
i (o1, p2) = —igo,o (p1) — igo,o (p2) + %go,l (p1) + igo,l (p2)
- igo,m (p1) + 391,0 (p1) — igl,m (p1) + igpz,o (p1) — %gm,l (p1)
+ igpz,pz (p1) + igo (p1) Go (p2) — %go (p2) G1(p1) — %gl (p1) G1 (p2)
= 390 (52) Gy (91) + 161 (02) G (1)
o) (o1, p2) = —égo,l,o (p2) — igl,o,o (p2) + %gl,l,o (p2) — égl,l,l (p1)
+ égl,l,pz (p1) — igl,pz,l (p1) + igl,pmpz (p1) — égpzyl,l (p1)

1 1 3
+ ggpg,l,pz (p1) + 191 (p1) Goo (p2) — ggl (p1) G10 (p2)
1 1 1
— ggpz (p1) G0 (p2) + égo (p2) G11 (p1) + 190 (p2) G1,p5 (p1)

1
+ g% (p2) Gpy1 (p1) -

1 1 1 3
bg?f)_Jr (p1,p2) = gg0,0,l (p2) + ggO,l,O (p2) — ggo,l,l (p2) + §g1,0,0 (p2)

1 1 1 1
+ 261,01 (p2) + g9LL0 (p1) — 79110 (p2) — J9111 (p2)

8
1 1 1 1

— g9 (p1) + 191020 (p1) — 191022 (p1) + 39210 (p1)
1 1 1

- 591 (p1) Goo (p2) — ggo (p1) Go1 (p2) + 191 (p1) Go,1 (p2)

1 1 3
+ 390 (p1) Go.1 (p2) + G0 (p2) Gro (p1) — 91 (p2) G1o (p1)
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1 5 1
- Zgo (p1) G10 (p2) + =Gi (p1) Gi0 (p2) + ggpQ (p1) G1,0 (p2)

8
1 1 1
- ggo (p2)Gi1 (p1) + ggl (p2) Gi1 (p1) + 590 (p1) G11 (p2)
3

1 1
—2G1(p1)G11(p2) — 3Yr2 (p1) G11 (p2) — 590 (p2) G1,p5 (P1)

8
1 1 1

+ 391 (02) Gps (p1) = G1(p2) Gpao (p1) = G0 (P2) Gpat (1)
1 1

+ ggl (;02) gpz,l (pl) - égpz,l,pz (/01) .
1 1 1

bé?f)_Jr (p1,p2) = —ggo,o,o (p2) + 590,1,0 (p2) + 591,0,0 (p2) — G110 (p2) (D.22)

1 1 3 3

+ §91,1,1 (p1) — ggl,l,pz (p1) + ggl,pz,l (p1) — égl,pz,m (p1)

3 3 1 1
+ ggpz,Ll (Pl) - ggpz,l,pz (Pl) + ggm,pml (Pl) - ggpz,pzpz (Pl)

3

1 1
- égl (p1) Go,o (p2) — ggm (p1) Goo (p2) + 591 (p1) G1,0 (p2)

1 1 3
+ 590 (p1) Gro (p2) = g9 (p2) Gi1(p1) — gYo (p2) G1,p5 (p1)

3 1
- ggo (p2) Gpo1 (p1) — ggo (P2) Gpaps (p1) + G5

"D (pr.p) = %go,o,o (p2) — 290,0,1 (p2) — 290,1,0 (p2) + %go,l,l (p2) (D.23)
— G100 (p2) + %gl,o,l (p2) — égl,l,o (p1) + G110 (p2)
+ égl,l,m (p1) — ggl,pz,o (p1) + ggl,m,pz (p1) — ggm,l,o (p1)
+ 201 (01) = im0 (1) + 5 (1) +
— 590 (1) Goo (92) + 361 (91) G0 (02) + £ (1) Goo (12
+ %Qo (1) Go1 (p2) — ggl (1) Go1 (p2) — ggm (1) Go,1 (p2)
- ggo (p2) G0 (p1) + %gl (p2) Gro (p1) + %go (p1) G1,0 (p2)
- ggl (p1) G (p2) — ggpz (p1) G1o (p2) + égo (p2) G11 (p1)
- égl (p2) G, (p1) — Go (p1) Gr1 (p2) + %gl (p1) G11 (p2)
+ 500 (91) G1t () + 500 (92) G (1) — 551 (2) G (1)
= 590 (52) Gpn (1) + 301 (92) G (1) + 590 (02) Gy (1)
- ggl (r2) Gp.1 (p1) + igo (2) Gpa.pz (P1) — %91 (P2) Gpz 0 (P1) -

ol (p1, p2) = égo,l,l (p1) — égo,l,m (p1) + égl,o,l (p1) — égl,o,pz (p1) (D.24)
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5611 (01) = 56010 (91) = 561 (1) G0 (92) — G0 (p2) Go (1)
+ igl (p1) G1o (p2) — égo (p2) G1a (p1) — égo (p2) G1,p, (P1) -
b3, (p1,p2) = —égo,l,o (p1) + égo,l,pz (p1) + égl,o,o (p1) + égl,o,o (p2) (D.25)
— 79101 (91) + 561002 (1) = G110 (1) — 79110 (p2)
+ égm,l (p2) + égm,pz (p1) — igl,pmo (p1) + igl,pz,l (p1)
- égl (p2) Go,0 (p1) + %gl (p1) Go,0 (p2) + égo (p2) Go,1 (p1)
+ égl (p2) Go1 (p1) — %gl (p1) Go,1 (p2) — igo (p2) G0 (p1)
+ ggl (p2) G10 (p1) — %gl (p1) Gr0 (p2) + %QO (p2) G11 (p1)
— 561 (22611 (1) + 50 (1) 611 (p2) — 561 () G (02)
+ ggo (2) G1,p, (P1) — igl (r2) G1,p, (P1) -
bglﬁ)_Jr (p1,p2) = —égo,l,l (p1) + égo,l,pz (p1) — %QO,pQ,I (p1) + égo,pz,[& (p1) (D.26)
- égl,o,l (PlHégl,o,pg (Pl)—%gl,l,l (Pl)Jr%gl,l,pg (pl)_‘_igpz,pml (p1)
— 59201 (01) + 59000 () = 511 (91) + 5Gpat (1)
+ égl (1) Goo (p2) + égo (p2) Goa (p1) + %QO (p2) Go,pz (p1)
= 391 (1) G10(p2) + 500 (p2) Gt (01) + 550 (92) G, (1)
+ égo (P2) Gpo1 (p1) — %QO (P2) Gpapo (1) — %gm,pz,m (p1) -
Cglﬁ)_Jr (p1,p2) = —ggo,o,o (p2) + igo,o,l (p2) + égo,l,o (p1) + %%,1,0 (p2) (D.27)
- égo,l,l (p2) — égo,l,pz (p1) + %go,pg,o (p1) — %go,pz,pQ (p1)
- égm,o (p1) + %9170,0 (p2) + 391,0,1 (p1) — 391,0,1 (p2)
- égl,o,m (p1) + égl,l,o (p1) — %gl,lmz (p1) + i%,m,o (p1)

1 1 1 1
— 19121 (p1) — ggpz,o,o (p1) + 1901 (p1) — ggpz,o,pg (p1)

1 1 1 1

+ ggpg,l,o (pl) - égpz,l,m (Pl) - ng,f)z,l (pl) + EQPQ,P2,P2 (pl)
1 1 1

- ggo (p2) Goo (p1) + 9 (p2) Goo (p1) + ng (p1) Goo (p2)

3 3 1
- ggl (p1) Goo (p2) — ggpz (p1) Goo (p2) + égo (p2) Go,1 (p1)
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3 1 1
— =G1(p2)Go1 (p1) — ggo (p1)Go1 (p2) + 191 (p1) Go1 (p2)

8
+ G0 (91) Gou (92) = 190 (92) Go (91) + 551 (02) G (1)
+ 390 (02910 (1) = 561 (92) Gr0 (1) = 100 (1) G0 (92)
+ igl (1) Gr0 (p2) + igpg (1) Gr0 (p2) — éga (p2) G1,1 (p1)
501 (p2) Grx (1) + 56 (01) Gt (92) — 55 (01) Gt (2
- ggo (p2) G1,p5 (p1) + igl (p2) G1,ps (1) + igo (p2) Gps,0 (p1)
- égl (P2) Gpo0 (P1) — ggo (P2) Gpo,1 (p1) + %gl (p2) Gpo.1 (p1)
+ 500 (02) G (1) — &
o> (p1,p2) = 390,1,1 (p1) — %gO,lm (p1) — égl,o,l (p1) + égLO,pz (p1) (D.28)

+ égl,l,o (p1)—%g1,1,1 (P1)+§gl,1,p2 (pl)_égl,pz,o (p1)+ig1,p2,1 (p1)
+ égl (p1) Goo (p2) — %go (p2) Go (p1) — égl (p1) Go,1 (p2)
- égo (p2) Gro (p1) + ggo (p2) G (p1) + égl (p2) G1,1 (p1)
+ 200 (92) Gt (1) = 561 (02) G (91) = G (1)

60, (01 p2) = — 260,10 (1) + 260,10 (1) = 36100 (91) ~ 56100 (1) (D.29)
+ %Ql,o,l (p1) + égl,o,l (p2) — égl,o,pg (p1) + %gl,l,o (p1)
+ égm,o (p2) — égl,m (p2) — %gm,pz (p1) + 291,,)2,0 (p1)
- égl (p2) Goo (p1) — ggl (p1) Go,0 (p2) + %go (p2) Go (1)
+ égl (p2) Go,1 (p1) + ggl (p1) Go,1 (p2) + %go (p2) G0 (p1)
+ égl (p2) Gro (p1) + %Qo (p1) G10(p2) — égl (p1) Gro (p2)
— 50 (2)G1.1 (1) — 561 ()61, (1) — 50 (1) G (p2)
+ égl (p1) 1 (p2) — %go (2) G1,pz (1) + %gl (p2) G102 (p1)
501021 (p1) + $G1nn (1)

65" (p1,p2) = —igo,o,l (p1) + igU,O,pz (p1) — égo,l,o (p1) + igo,l,l (p1) (D.30)
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(20
LA+—+

(p1,p2) =

— égo,LpQ (p1) + %go,pg,o (p1) — %go,pg,l (p1) + égO,pz,pz (p1)

+ égl,o,l (p1) — égl,O,pz (p1) — %91,1,0 (p1) + %gl,l,l (p1)

— 291,1,,;2 (p1) + éngg,O (p1) — 391,@,1 (p1) + égl,pzm (p1)

+ 395201 (01) = 39200 (1) + 5000 (1) ~ 3G (91

+ ggpg,l,pg (p1) — égpg,pg,o (p1) + igpQ,pg,l (p1) — égpmm,m (p1)

1 3 1
- ggl (p1) Goo (p2) + ggo (p2) Go1 (p1) — §g1 (p2) Go,1 (p1)

1 1 1
+ ggl (p1) Go1 (p2) — ggo (p2) Go,ps (P1) + ggl (p2) Go,ps (P1)
1 3 1
- ggo (p2) G10 (p1) — ggo (p2) G1a (p1) — ggl (p2) G11 (p1)
1 1 1
- ggo (p2) G1,ps (1) + égl (p2) G1,ps (P1) — ggo (P2) Gpo1 (p1)
1 1 1
+ o (P2) Gpo,1 (p1) + g0 (P2) Gpo o (P1) — 9 (P2) Gpa,po (P1) -
1 1 1 1
—390.00 (p1) + 39000 (p2) + 59001 (p1) — 59001 (p2)

3 7 1
— gg0,0,pz (p1) + ggo,l,O (p1) — ggo,l,O (p2) — Go,,1 (p1)

1 1 3 1

1 3 1 1
— ggﬂ,pz,pz (p1) + ggm,o (p1) — 591,0,1 (p1) + <G1,0,00 (p1)

8
1 1 3 1
— 59110 (p1) + 39110 (p1) — gngz,o (p1) + 591p2.1 (p1)

1 1 1 3
= 3G (p1) + 392,00 (p1) — 590201 (p1) + 3Yr2.0.02 (p1)

1 1 3
= 590210 (1) + Gpo1.1 (P1) = 500,10 (P1) + SGparpa0 (1)

1 1 3
+ ggo (p2) Go,o (p1) — ggo (p1) Go,o (p2) + §g1 (p1) Go,0 (p2)

1 7 3
+ ggpz (p1) Go,0 (p2) — ggo (p2) Go,1 (p1) + §g1 (p2) Go,1 (1)

1 3 1
+ ggo (p1) Go,1 (p2) — §g1 (p1) Go,1 (p2) — ggpz (p1) Go,1 (p2)

3 3 3
+ g% (p2) Go,ps (P1) — 9 (p2) Go,ps (P1) — g0 (p2) Gro (p1)

1 1 1
-39 (p2) Gr0 (p1) + g9 (p1) Gro (p2) — 3Yr2 (p1) G0 (p2)

1 1 1
+ 590 (p2) Gi1 (p1) + 591 (p2) G11 (p1) — §g1 (p1) G1,1 (p2)

1 3 3
+ 39 (p1) Gia (p2) + g0 (p2) G1,p5 (P1) — 9 (p2) G1,p5 (P1)
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1 1 1
= 390(02) Gpa0 (p1) + G1(p2) Gpao (p1) + 590 (p2) Gpa.t (1)

8 8
1 3 3
= 591(02) Gpo1 (p1) = L (P2) Gpo.po (p1) + 91 (P2) Gpa,pa (1)

1 1
- §gpz7p2,1 (p1) + ggpz,p%pz (p1) +G3.

a0 (p1,p2) = —igo,l (p2) — 391,0 (p2) + %gl,l (p2) + igl,pz (p1) (D.32)

+ 79 (00)+ 100 (92) 1 () = 191 (1) G (p2) = 361 () Gy (1)

60 (p1.p2) = 7901 (p1) + 701 (p2) = 7911 (02) = 10 (1) (D33
— 390 (1) G1 (p2) + 161 (02) G (1)

b5, (p1,p2) = igo,o (p2) — igo,l (p1) — igo,l (p2) — igﬂ,pz (p1) (D.34)
- igo (p1) Go (p2) + %Qo (p1) G1 (p2) -

a2 (p1,p2) = —égo,o,l (p2) — igo,l,o (p2) + %go,l,l (p2) — %9170,0 (p2) (D.35)

+ %gl,o,l (p2) + %gl,l,o (p2) — G111 (p2) + %91,1,@ (p1)
+ 1011 (01) + Gt (91) + 50 (1) + (Gt (1)
+ égl (p1) Go0 (p2) — ggl (p1) Goa (p2) — égpz (1) Go,1 (p2)
- igl (p1) G1o (p2) — igpz (p1) Gio (p2) + égo (p2) G11 (p1)
- %gl (p2) G (p1) + %gl (p1) G (p2) + %gpz (p1) G1,1 (p2)
+ 590 (22) G (1) = 591 (22) G (1) + 190 () G (1)
= 261 (92) Gyt (91) = 561 (92) Gy (01) + Gt (1)

6%, (p1,p2) = igo,o,l (p2) + igo,l,o (p2) + égo,m (p1) — 290,1,1 (p2) (D.36)
+ igﬁ,l,pz (p1) + égO,m,l (p1) + 391,0,0 (p2) — 291,0,1 (p2)
— 16110 (92) + 56111 (92) — 5911 (01) = 3Gt (1)
+ igo (p2) Go (p1) — ggl (p2) Go1 (p1) — égo (p1) Go,1 (p2)
+ 59 (1) Goa (2) = 591 (22) o (1) = 190 (1) G0 (02)
+ %gpz (p1) G0 (p2) + %QO (p1) Gr1 (p2) — %gpz (p1) G11 (p2)
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bé?’_23r+ (p1,p2) =

a(_l_,'_l_)’_ (plu PQ) =

bg_}ferr (p17 PQ) =

b§1_13r+ (p1,p2) =

1 3 1
— =Go (p2) Gps1 (p1) + 91 (P2) Gpo,1 (p1) + 9 (P2) Gpa.po (1)

4
1
§g02,p2,1 (Pl) .

1 5 1 1

19000 (p2) = SGo0.1 (p2) = G010 (p2) = G011 (1) (D.37)
1 3 3 1 15}

+ §g0’1’1 (p2) — ggo,l,pz (p1) — ggo,pz,l (p1) — §g07pz7p2 (p1) + %
1 3 1

— égo (p1) Go,o (p2) — égo (p2) Goa (p1) + 591 (p2) Go, (p1)

1 1 1
+ 590 (p1) Goa (p2) — égo (p2) Go,p (P1) + 591 (p2) Go,p (p1)

1 1 1
+ 590 (p1) G1,0 (p2) — Go (p1) G1.1 (p2) — 591,0,0 (p2) + §g1,0,1 (p2) -

1

1 1 1
—ggl,(),pz (Pl) - ggl,l,pz (Pl) - ggl,pzﬂ (Pl) - ggl,pz,l (pl) (D.38)

1 1 1 1
+ ggl,pg,pz (p1) — ggpz,m (p1) — ggpz,l,o (p1) + ggpz,pg,l (p1)

1 1 1
+ §gl (p1) Goo (p2) — égm (p1) Go,1 (p2) — ggo (p2) G10 (p1)

1 1 1
+ §Q1 (p2) Gr0 (p1) — égo (p2)Gi1 (p1) + égl (p2) G11 (p1)

1 1 1
- §g1 (p1) Gi,1 (p2) + ggpz (p1) G11 (p2) + ggo (p2) G1,p5 (1)

1 1
+ §g1 (p2) Gps,0 (p1) — ggl (p2) Gps.po (p1) -

1 1 1 1

gY001 (p1) = gGoo.1 (p2) = G010 (p1) + G011 (2) (D.39)
1 1 1 1

— égo,pg,l (p1) — 191,0,1 (p1) + ggl,o,l (p2) — ggl,l,l (p2)

1 1 1 1
+ 191,,)2,1 (p1) + ggpg,o,l (p1) + ggpg,l,o (p1) — ggpz,pml (p1)

1 1 1

— §Q1 (p2) Goo (p1) + ggo (p1) Go,1 (p2) — 191 (p1) Go,1 (p2)

1 1 1

+ 3902 (p1) Go,1 (p2) + 5G1 (p2) Go,p0 (1) + 791 (p2) Gr0 (1)
1

1 1
- ggo (p1)Gi,1 (p2) + 191 (p1)Gi,1 (p2) — ggm (p1) Gi1 (p2)

1 1 1

— Zgl (p2) 91,0 (p1) — ggl (p2) Gps,0 (p1) + §g1 (p2) Gps,p2 (p1) -
1 1 1 1

—égo,o,o (p2) — égo,m (p1) + égo,m (p2) — égo,o,pz (p1) (D.40)
1 1 1 1

+ 59010 (p1) + G010 (p2) = G011 (p2) + SG0.10 (1)

1 1 1 1
+ 390,20 (p1) — 390,202 (p1) + 7 G104 (p1) + 7 G100 (P1) + %
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1,0
ol

1,0
b,

(p1, p2)

(p1, p2)

p(10)

2,——+ (p1,p2)

1,1
a(,,l (p1,p2)

b(lvl)

1,——+ (p1,p2)

b (LD

2,——+ (p1,p2)

- %go (p2) Goo (p1) + igl (p2) Goo (p1) + égo (1) Goo (p2)
- igl (1) Go,0 (p2) + égo (r2) Go.1 (p1) — %gl (2) Go1 (1)
= 590 (1) o (p2) + 161 (p1) G (p2) — 500 () Go s ()
+ %gl (p2) Go,py (1) + %go (p2) Gro(p1) — %Ql (p2) G0 (p1) -

1 1 1
= Zgl,l (p1) — Zgl,m (p1) — Zgo (p2) G1 (p1) - (D.41)
1 1 1 1
= Zgo,o (p2) — 190,1 (p1) — 190,1 (p2) + Zgo,pz (p1) (D.42)
1 1
= 390 (p1) Go (p2) + 5G0 (p2) G (p1) -
1 1 1 1
= —4900(p2) + 7 G0 (p2) = 1 G10 (p1) + 1 G11 (p1) (D.43)
1 1 1 1
+ ngg,o (p1) — ngz,l (p1) + ZQO (p1) Go (p2) — Zgl (p1) G1 (p2)
1 1
- ZQO (p2) Gps (p1) + Zgl (p2) Gp, (1) -
1 1 1 1
= ggo,m (p1) — égo,l,pz (p1) + ggl,l,o (p1) — §g1,1,1 (p1) (D.44)
1 1 1
- ggl,pz,o (Pl) + Zgl,pg,l (Pl) - ggl,pg,pQ (Pl)
1 1 1
- 3% (p2) Goa (p1) — 39 (p1) Goa (p2) — g% (p2) G1,0 (p1)
1 1 1
+ 791 (p1) G0 (p2) + 391 (p2) G1,1 (p1) — 391 (p2) G1,p, (p1) -
1 1 1 1
= ZQO,O,O (p2) — ggo,(n (p2) — égo,l,o (p2) — égo,m (p1) (D.45)
1 1 1 1
+ %0152 (p1) — g0 (p1) + 390022 (p1) = 7 G100 (p2)
1 1 1
— ggo (p1) Goo (p2) + 191 (p1) Go,0 (p2) + ggo (p2) Go,a (p1)
1 1 1
+ g% (p2) Go,p2 (P1) + 790 (p1) Gr0 (p2) = 591 (p1) G0 (p2)
1 3
+ 191,0,1 (p2) + % .
1 1 1 1
= —790.00(p2) + 39001 (p2) + 30,10 (p2) + G100 (p2) (D.46)
1 1 1 1
- 191,0,1 (p2) — ggl,l,o (p1) + §Q1,1,1 (p1) + ggl,pz,o (p1)
1 1 1 1
= 9121 (P1) = 5Gpa10 (p1) + £Gpa1a (p1) + 39220 (P1)
1 1 1
+ 39 (p1) Go,o (p2) — Fi (p1) Go.0 (p2) = 3 Gps (p1) Goo (p2)
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2,0
a%)

2,0
",

2,0
b,

(p1,p2) =

(p1,p2) =

(p1,p2) =

1 1 1
+3G (p1) Go,1 (p2) + 3Yr2 (p1) Goa (p2) + gYo0 (p2) G1.o (p1)

1 1 1
— =Go (p1)G10(p2) + <G (p1) Gi0 (p2) + ggpQ (p1) G10 (p2)

4 8
1 1 1
=591 (2) G (1) = 550 (p2) G (1) + £G1 (p2) G (1)
1 1 1
+ 39 (P2) Gpo0 (p1) — 9 (p2) Gpo1 (p1) — 3% (92) Gpy.po (1)
+ ggl (P2) Gpz,p0 (P1) — égp27p271 (p1) — % .
1g 1g 1g 1g D7
3 0,1,1 (p1) — 3 0,1,p2 (p1) — ] 1,0,1 (p1) + 3 1,0,00 (p1) (D.47)

1 1 1 1
+ 191,1,0 (p1) — 591,1,1 (p1) + Zgl,l,pz (p1) — Egl,pg,o (p1)

+ 501 (91) Goo (92) — 590 (62) o1 (p1) — 761 (1) G (02)

4 4
1 1 1
- Zgo (p2) Gro (p1) + Zgo (p2)Gi1 (p1) + 191 (p2) Gi.1 (p1)

1 3
+ 190 (p2) G1,p5 (1) = 191 (p2) Gp, (p1) + g9l (p1)

(R N -

- *gl,pz,pz (Pl) :

3 1 3
—=Go,0,0 (p2) — ggo,m (p1) + ég0,0,l (p2) + égo,o,m (p1) (D.48)

1 1 1
— =Go,1,0(p1) + ggo,l,o (p2) + 590,1,1 (p1) — égo,l,l (p2)

3 1 1
- 7g0,17P2 (:01) + ggO,pz,O (Pl) - igO,PQ,l (pl) + gg(),pzmz (:01)

— =Go (p2) Goo (p1) + %go (p1) Go,0 (p2) — %gl (p1) Go,0 (p2)

— 00| = 0ol w ©I— oo

-~J 0o

3 1
+ ggo (p2) Go,1 (p1) — ggl (p2) Go.1 (p1) — ggo (p1) Go,1 (p2)

1

3 3
+ 591 (p1) Go,1 (p2) — ggo (p2) Go,ps (p1) + §g1 (p2) Go,ps (p1)

1 1 1
+ 590 (p2) G1,0 (p1) — Go (p2) Gi1 (p1) + 591,0,1 (p1) — §g1,07p2 (p1) -

1 1 1 1
39000 (p2) + G001 (p1) = gY00.1 (p2) = 900,02 (1) (D.49)
1 1 1 1
+ ggO,l,O (p1) — ggo,l,o (p2) — ggo,m (p1) + ggo,u (p2)

1 1 1 1
= 390,20 (P1) + G001 (p1) = G100 (p1) + G101 (1)

1 1 1 1
+ 79110 (p1) — J9111 (p1) + 19110 (p1) — 39120 (p1)

1 1 3 1
+ 3912 (p1) + g9re00 (p1) — g9re01 (p1) + 19p2.0.02 (P1)

1 1 1 1
— 19210 (p1) + 5911 (p1) — 19212 (p1) + ggpz,pz,o (p1)
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1 1 1
+ =Go (p2) Go,0 (p1) — g% (p1) Goo (p2) + §g1 (p1) Go,0 (p2)

8
+ G0 (91) Goo (92) = 500 (p2) Gou (1) + 551 (2) Got (1)
+ 59 (1) Go1 (p2) = 561 (p1) Got (92) = 50 (1) G0 (92)
+ %90 (p2) G0,z (1) — %gl (p2) G0,z (1) — %go (p2) G10 (p1)
- égl (p2) Gro (p1) + égl (1) Gr0 (p2) — égpz (1) G10 (p2)
+ igo (p2) Gia (p1) + igl (p2) G (p1) — égl (p1) G11 (p2)
+ égpz (p1)G11 (p2) + égo (p2) G1,p (p1) — égl (p2) G1,p5 (1)
- %QO (P2) Gpo0 (P1) + %gl (P2) Gpo0 (p1) + %go (p2) Gpa1 (p1)
= 391 (52) Gyt (1) = 500 (02) G (01) + 551 (02) G (1)

1
- ggm,pz,l (p1) -

Here we present the MRK limits of the pure functions appearing in the seven-point
NMHYV amplitude as described in section 5.4.

c_ 1, 3 Ao sy by e _ 1 2
X = 5 log®(71) + T log®(72) 5 log*(71) log(72) % log(m1) log”(72) (D.50)

1 1 3 1 1
+10g?(m) (= 15G0ln) — g500(om) + 5G1(p1) = 16G1(02) ~ 35G0m(00))

+1082(72) (55 alon) ~ 55G0(p2) — 1691(01) + 5561(02) ~ 55001 )
+1og(m)10g(72)  £500(0n) ~ $561(01) = 1661(02) + 16lo0)) +108(7) = gGnalo)

3 9 3 7 13 1
+ TGQO,O(F)Q) — Ego,l(m) — EQQJ(/&) + EQO,M (p1) — T691,0(p1) + Egl,O(PQ)
7 3 3 7 1 5
+ Tﬁgl,l(ﬁl) - ggl,l(M) — g9 (p1) + Egpw(ﬂl) - ggpml(pl) — 169202 (p1)
1 3 9 1 1
- TGQO(Pl)go(Pz) + §g1(p1)Qo(p2) - Egpz (p1)Go(p2) + ggo(m)gl(ﬂz) + 1*691(01)91(/’2)
5 5 17 5 3
+ Egl(/h)gpz (Pl)> + log(72) ( - Ego,o(pl) — Ego,o(pz) + Ego,l(l)l) + ggo,l(ﬁ)z)
Lg g lg iy g °g g
t1 0,02 (P1) + 16 10(p1) + A 1.0(p2) — 3 11(p1) + T 1.1(p2) + 16 12 (P1) + 16 p2,1(P1)
5 1 3 1 7
— 169202 (p1) + §QO(P1)QO(P2) - T691(p1)go(pz) — 1592 (p1)Go(p2) — TGQO(Pl)gl(P2)

- 501G (52) ~ 26142160

~ 1 1 1 1
¥ia = g5 08 (r) — g5 108" () +1og?(m) (55 Gnlen) ~ §Gr(on)) (D.51)

#10g2(72) (= g5Goln) + 501(p1) — 151 (p2) ) + lox(m) os(ra)  — 3o(o)
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1 1 1 1 3 1
+791(p1) = 7G5 (P1)> + log(71) <890,0(Pl) = g90.0(p2) + SGoa(p1) + S Go.1(p2)

3 3 1 1 1 1
— <%0, (p1) + ggl,O(pl) - §g1,o(P2) = 5911(p) + ggm(/)z) + 19102 (p1)

8 2 4
3 3 1 1 5

= 9r20(p1) + 2Gpa o (p1) + £ G0(p1)G0(p2) = 591(p1)G0(p2) + £ Gpa(P1)G0(p2)
1 3 1 9 1

+ 191(01)91(02) - ggl(pQ)gpz (Pl)) + log(72) <4QO,O(P1) + ggO,O(m) - §QO,1(p1)
5 1 3 5 3 1

- ggo,l(pz) - Zgo,pz (p1) — ggl,O(Pl) - ggl,o(pZ) + ggl,l(ﬁ'l) + Zglal(m)
1 3 1 1 1

- igp%l(pl) + ggpmm (pl) - §g0(p1)g0(p2) + igl(pl)go(pQ) + ggﬂ? (’Dl)go(pQ)
3 3 1

+590(p1)G1(p2) = 2G1(p1)G1(p2) + $G1(p2)Gp, (Pl))

o Lo L on(r) T0s2(r) + Tog? () [ LG Lg (D.52)
23 = 55 log (1) log(m2) + 3 og(71) log™(72) + log (71)<32 o(p2) + 39 1(p1) :

) ) 1 1 1 1
+ Egl (p2) + @gpz (Pl)) + log? (1) < — @go(ﬁ’l) + @go(fb) - 591(/)2) + @gpz (Pl))

1 1 3 1
+ log(71) log(72) ( - TGQO(pl) - T691(Pl) + 1691(Pz)> + log(71) ( - 1—6Q07o(p2)
+ 6 0,1(p1) + 6 0,1(p2) — 6 0,05(P1) + 16 10(p1) + 6 10(p2) + 16 11(p1)
1 1 1 1 1 1
+3911(02) + G102 (1) = 76902.0(01) + 2Gp21(01) = 16Gpaipa (P1) = 15G0(p1)Go0(p2)

+ é% (p1)Go(p2)— %gﬂz (p1)Go(p2)— %go(Pl)gl (p2)— %91 (p1)G1 (P2)+T1691(P2)gp2 (Pl))

1 1 3 3 1 3
+ log(72) (1690,0(,01) - Tﬁgo,o(m) - Tﬁgo,l(/’l) - TGgl’O(pl) + 191,0@2) - Egl,l(m)
1 3 1 1 1
- Eglxﬂz (1) + Egpz,l(m) - TGgﬂz,Pz (1) — EQO(ID)QI (p1) + ﬁgl(m)gl(pl)

GG (e2) 15 Gop2o1) )

Vo = 5 log?(m1) log(m) + 2 log(71) log?(72) + log?(m) (3290(p2) + 372g1 (p1) (D.53)

! | 1 1 1

+ 1691(02) + 5590, (m)) +log®(2) ( ~ g390(P1) + 33G0(p2) = 5561(p2)
1 1 1 3

+ 32%2(/)1)) + log(71) log(72) ( - EQO(Pl) - Egl(/’l) + 16g1(P2)>
: 1 1 3 1 1

+ log(m)| — ZgO’O(pl) - Ego,o(m) + Ego,l(m) + Egoﬂ(m) - Egovﬂz (p1)
11 1 1 1 1 1

+ T691,0(P1) + 17691,0(,02) + Egl,l(Pl) + Zgl,l(/&) + ggl,pz (p1) — Egme(Pl)

1 1 1 1 1
+39p21(01) = 169202 (P1) = 1590(p1)G0(p2) + $G1(p1)G0(p2) = 15Gpa(P1)G0(p2)

~ )G 2) = TG (910 (92) + 156 (020G 1)) +1ox(r2) (TGt
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3 3 1 3 ! !

+ 25900(p2) = 15901(p1) = 790, (p1) = 15 G10(p1) + 7G10(p2) — 75911 (p2)
1 1 1 L !

= 159102 (P1) = 1591 (91) = 75 G0 (01) = 7G0(p1)Go(p2) — 75G1(01)Go (p2)

N %Qm (p1)Go(p2) + 136%(‘“)91(’)2) + %gl(pl)gl(”) * igl(pz)g’” <p1)>

. 1 1 ! .
Yoy = = 10g2(7_1) log(7s) + ) log(m1) 1og2(7'2) + 1og2(7'1) <32g0(p2) + ﬁgl(pl) (D.54)
1 1 1 L .
+ 17591(/)2) + ﬁgpz (P1)> + log? (1) ( - 3—290(/)1) + 3390(02) - 3—2g1(p2)
1 1 ! i
+ @gﬂ2 (p1)> + log(71) log(2) ( — EQO(Pl) - E%(Pl) + 1691(/’2))
1 ! ’ 1 1 3
+log(m) < . Ego,o(pﬂ + TGQO,I(pl) + Eg071(p2) - Ego,p2 (p1) + Egl,o(pl)

1 1 L L ! .
T 3gIr0e2) F gGr1en) + 3011(02) F g1 (1) = G 0(p1) + GG (01)

1 1 1 ! .
= 1gTr202(P1) = 7590(p1)90(p2) + £G1(p1)G0(P2) = 75902 (P1)90(p2) = G0 (p1)G1(p2)

5 1 ! : 1
m@mwmm+m@mmam0+mwmm%ﬂmm%ﬂm+m%“m

1 3 L 7 ! 1
+ 1%,1(/’2) - Egl,o(m) + Zg1,O(P2) - Tﬁgl’l(m) B ﬁgl’” (p1) = 176%2’1([)1)

1 1 1 5
= 259 (p1) = 7590(p2)G1(p1) + 7561 (p2)G1 (p1) = 1G0(p1)1 (p2)

- %690(,02)%2 (p1) + igl(pQ)gPZ (p1)>

. 1 1 1 !
Vig = I 10g3(7-2) + logz(Tg) ( - Ego(l)l) + TGQI(PI) - 1691(/}2)) (D'55)

+ log(r1) log(r2) ( - égo(pl) - égo(”) - igl(m) B égl(pz) - ;g”(pl))

1 1 5 3 5
+log() ( = g900(P1) = 500.0(p2) + g1 (p1) + 5o (P2) = FGopu (1)
3 3 1 L ! .
T gGrolo) +gGuole2) = 5G1a(01) = gGuap2) + 561 (1) = gsolor)
1 1 3 > .
- ggpz,l(pl) + ngz,pz (p1) + ggo(m)go(Pz) - §g1(/>1)go(ﬂ2) + ngz (p1)Go(p2)

- 1Q()(Pl)g1(f)2) + g%(m)gl(m) - lgl(m)gm (pl)) +log(72) <leg0’0(p1)

1 8
11 1 7 1 i !
+ §g0,0(/’2) - §go,1(P1) - §g0’1(p2) B §g°’f'2 (p1) = ggl’o(pl) - ggl,o(pz)
3 1 1 L 5 °
+ 591101 + 5901(02) = g0n0(01) = 3901 (01) + gGaps (P1) = gG0(p1)G0(p2)
1 3 ! ? .
4 591(,01)90(172) + ggp2 (p1)Go(p2) + §Qo(p1)g1(/’2) - ggl(Pl)gl(,@) - ggl(p2)g,02 (Pl))
Vor — = log2(r)1 L log? log? lg lg D.56
%_&%ﬁoﬂm+&%@mmm+%m(&am—&um (D.56)
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1 1 1 1 1
+ §QM (p1)> + log?(72) ( - @go(/’l) + 590(02) - @gl(m) + ﬁgpz (Pl))

1 1 1 1

+ log(71) log(72) ( = 1g90(p1) + 7 G1(p1) + 1691(92)) + log(71) ( ~ 1g%0.0(r2)
1 1 1 1 1 3

+ T6g071(ﬂ1) + T6g0,1(p2) - Ego,pz (p1) + T691,0(01) + 591,0(02) — Tﬁng(pl)

1 1 1 1 1 1
+ 3910 (p1) — Egl)mo(pl) + ggﬂz,l(pl) — 169202 (p1) — Ego(ﬂl)go(m) + ggl(m)go(ﬂz)

1 1 1 1 1

= 16 (P)50(02)~ 1501 (1)6 (p2) 561216y 1) ) ()  5G0alion)~ 15l
1 1 1 1 3 1 1

- ﬁgo,l(l)lﬂggo,l(m)—T691,0(01)+§91,0(P2)—Tﬁgl,l(02)+f691,pz (p1)+ﬁgp2,1(p1)
1 1 1 1 1

= 1gTrar2(P1) + 1590(p2)G1 (1) = 15G1(p2)G1(p1) = 76G0(p1)G1(p2) = 7590(p2)Fz (1)

16 16
1
+ 390 00))

N 1 1
Vs =~ log*(m) — 12

L 5108 +108(m) (15 nlon) = 1GGhon) + 16Gu(p) ) (D5T

16

+log*(72) ( - %690(01) + %91(01) - 11691(,02)> + log(ﬁ)log(7'2)(— égo(ﬂl)

1 1 1 1 1 1
+ -Gi(p1) + §g1(p2) - ng (P1)> + log(71) <8go,o(p1) - ggo,o(pz) + =Go.1(p1)

) 2
Lg 3G 'g lg lg Lg
+ 3 0,1(p2) — 3902 (p1) + 3 1o(p1) + 5 1,0(p2) + 3 1,1(p2) + 1 1,02(p1)
3 3 1 1 5
- ggpz,o(pl) + ggm,pz (p1) + ggo(m)go(pz) - igl(m)go(ﬂz) + ggm (p1)Go(p2)
3 1 3 1
= 200001 (02) + 161(61)6(p2) ~ S01(p2)Gal0) )+ 108() 100t
9 1 1 1 1 1
+ ggo,o(Pz) — ng(pl) - §g0,1(p2) — Zgo,pz (p1) — Zgl’o(pl) — §g1,0(P2)
1 3 5 3 1 1
+ ggl,l(l)l) - égl,pz (p1) — ggpz,l(pl) + gngPz (p1) — §QO(P1)QO(,02) + égl(m)go(m)
1 1 1 1
+ 592 (P1)G0(p2) + 1 G0(p1)G1(p2) + 1G1(p1)G1(p2) + 1 G1(p2)Gp (Pl))
. 1 ) 1 1 1
Vas = — 35 log’ (1) + log? () (16%(01) = 1% () + 1691@2)) (D.58)
1 1 1 1
+ log(71) log(72) < - ggo(m) - §G1(p1) + Zgl(PQ) - ggpz (P1)>

1 1 3 1 3
+ log(71) <8g0,o(P1) + ggo,o(/%) + ggo,l(ﬂl) - ZQO,pz (p1) + §g1,0(P1)

1 1 3 1 3 3
- 191,0(/’2) + 591,1@1) + ggl,l(ﬂz) - ggl,m (p1) — ggm,l(m) + ggpzam (p1)

1

- GG (01) = 36102051 (01) ~ GGG (p2) + SGolp2)G1a(o))

1 1 1 1 1 1
+ log(72) <4g0,0(02) - ggo,l(pl) + ggo,l(PZ) — ggo,pg (p1) — §g1,o(p1) — §g1,o(pz)

— 86 —



1 1 1 1 3 1
- 191,1(/’1) - 591,1@2) - ggLPz (p1) — ggpz,()(pl) - ggm,l(pl) + ng,m (p1)

— $00(p1)Go(p2) — 5G1(p1)Gop2) + 10: ()G (p2) + 7G0(p1)G1 ) + 3G1(p1)Gi )

8 8
1
+ 3612000
N 1 1 1 1
Vi1 = —@bgg(ﬁ) + log*(my) (1690(01) - Egl (p1) + Egl (P2)> (D.59)

1 1 1 1
+1og(r) 107 — §G0l) — G1(00) + 161(00) ~ 5Gnlon))
I Lg Lg Lg 3g Lg
+ Og(ﬁ)<8 0,0(p1) + 3 0,0(p2) + 3 0,1(p1) + 3 10(p1) — 1 1,0(p2)

1 3 1 1 1 1
+=Gi1(p1) + §Q1,1(p2) + ggl,m (p1) — §Qp2,1(/)1) + ggpz,pz (p1) + ggo(m)gl(ﬂl)

4
3 1 1 1
29102061 (01) ~ GG (p2) + §(p2)Gap)) + () = Lo
1 1 1 3 1 3
+ ggo,l(/b) - ggo,pz (p1) — ggm(m) + §g1,o(P2) - 591,1(/?2) - ggl,pz (p1)
1 1 1 3 1
- ggpz,o(ﬂl) - §9p2,1(91) - ggo(/’l)go(ﬂz) - ggl(ﬂl)go(m) + Zgo(Pl)gl(Pz)
1
+ 30,6 (r2) + S (r2)G,())
Ve :—i103(7)+102(7) _ig( )_,_ig( )_ig( ) (D.60)
62 48g 2 g (T2 160,01 161p1 16102 .

1 1 1 1 1
+1og(r1)og(72) = Galon) + 5Go(o) + 01(01) ~ §G1(02) ~ $G(o1) )
1 1 1 1 3
+ log(71) < - 190,0(%’2) + §g0,1(01) + ggo,l(m) - ggo,pz (p1) + ggl,O(Pl)

1 1 1 3 3 1
+ =Gio(p2) — 591,1(/?1) + 3910 (p1) — ggpz,o(m) + ggPQ,l(pl) + =Go(p1)Go(p2)

8 8
= 3G )Galp) + 590 (1)0(p2) + S0P (2) — 3G (020G (01))

1 7 1 5 1 3
+ log(2) (49070@1) + ggo,o(pz) - égo,l([)l) - §g0,1(1)2) - ggo,pz (p1) — §g1,0(01)
de iy Lg Lg Lg Lg
~3 1.0(p2) + 3 11(p1) + 1 11(p2) + 3 02,0(P1) — 1 p21(p1) + 390202 (p1)

- %go(m)go(m) + %gl(m)go(m) - égpz (P1)Go(p2) + igo(m)gl(m) - 291(01)91(02)

+ é%(m)gpz (P1)>

D.3 Eight-point amplitudes

There is no new perturbative MHV coefficient through three loops. There are four NMHV-
type perturbative coefficients for eight particles,

(i1,92,i3) (i1,12,i3) (i1,02,13)

g++_+ (pl; P2, p3) - Cl++_+ (p17 P2, P3) + R245 b17++—+(p17 P2, PB) (DG]‘)

— &7 —



(41,i2,i3)

+ Rays béffjﬁ)(pl, P2, p3) + Rase by 777 (1, p2, p3)

(41,12,13) (i1,02,i3)

+ Raas Rase 1 V7% (p1, p2, p3) + Raas Rase ¢y Y 2% (p1, p2, p3)

g{283) (5 po, p3) = a(f;ff)(ph p2, p3) + Razs bffff’l(m, P2, P3) (D.62)
+ Raas béfi’ffﬁ(m, P2, p3) + Rae bgﬁffﬂl(m, P2, P3)
+ Rozs Rass cﬁfi’fiﬁ(m, p2, p3) + Rosa Raue Céﬁfﬁﬁz(pl, p2; 03)

g2 (1 0y, ps) = a2 (p1 p, ps) + Rasa b%i’ﬁffﬁ(ﬁl, P2, P3) (D.63)
+ Ra3s bgi’ffﬁ(mmz, p3) + Rase béﬁi’?ﬁiﬁ(m, P2, P3) 5

" (o1, pa, ps) = a2 (o1, pa, pa) + Ras b2 (p1, 2, p) (D.64)

(41,12,i3)

+ Rss6 bgl_’lffﬁ(m, p2,p3) + Rase b3 " 277 (p1, p2, p3) -

For eight external legs, there are for the first time also independent NNMHV helicity

configurations,
95:21_2’.&3) (p1,p2,p3) = agﬁz—zf’) (p1,p2, p3) + Ross bﬁ“ﬁiﬁ (p1,p2,p3) (D.65)

(i1,42,i3)

+ Rags bé“ﬁiﬂ (p1,p2; p3)+ R3s6 béﬁ?iﬁ (P15 p2, p3)+Rase by Y "L (p1, p2, p3)

(41,32,13)

+ R34 R3se Cg“fffﬁ (p1,p2, p3) + Raza Rase ¢3 2] (p1, pa2, p3)

(i1,12,13) (i1,12,13)

+ Razs Rase ¢3 "% (p1, pa, p3) + Rass Rase ¢i ) (p1, p2, p3)

g2 (o1, pa, p3) = a2 (o1, p2, ps) + Rasa bﬁ”fjﬁ) (p1, P2, p3) (D.66)
+ Rase béflfiﬁ) (p1,p2, p3)+ Raas béfl_’zjﬁz (p1, p2, p3)+ Rase bzl_’zj’fﬁ (p1, p2; P3)
+ Rosa Raas ¢ 2"2") (p1, pa, p3) + Rase Raas &%) (p1, pa, p3)
+ Ra34 Rase Cgﬁi’ffﬁ (p1, p2, p3) + Raze Rase Cfﬁl_’z_ifgl (p1, P2, p3)
+ Raus Russ Céfl_’liﬁz (p1, p2, p3) + Roza Raas Rase ngl_’ffﬁ (p1,p2,p3)
+ Ra36 Raus Rase béft’jf’ﬁ (p1,p2,p3) -
(1,0,0) _1 1 1
a2 (prp2,p3) = 1911 (p1) = G, (p1) = G0 (p3) G (1) - (D.67)
1,0,0 1 1 1 1
0114 (p1. p2,p8) = = 7G10 (1) + 7610 (ps) = 7911 (p8) + 7 G (1) (D.68)
1 1 1
+ 190 (p3) G (p1) = G0 (p1) G1 (p3) + 1 G1 (p1) Gr (p3) -
1 1 1 1
3.4 (1,02, 8) = =G0t (p1) = 5G10 (p) + 1Gua (1) + 1Gu1 (o) (D69)

+ igo (p1) G1 (p3) — igl (p1) G (ps) -
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1 1 1
052 4 (o1, 02.23) = — Gyt (1) + Gy (02) = 1902 (P1) G (02) (D.70)

+ 700 (09) 01 (p1) = 71 (p1) G1 (p2) + 161 () Gy (1)

1
+19 (p1) Gps (p2) -

L0 (pr.pa.p) = 1600 (p2) — 1900 () + 1601 (99) = G0 (o) (D7)
- igl,o (p2) + igl,ps (p2) + igm,o (p1) — igpg,ps (p1)
= 390 (p1) Go p2) + 190 (01) G (p2) + 560 (p2) G ()
- %go (p3) G1 (p1) + igo (p3) G1 (p2) — %gl (p2) G1 (p3)
— 790 (92) Gy (p1) + .90 (1) G (2) — 30 (93) Gy (02)
= 591 (01) Gy (92) + 391 (42) G (02) + 191 (1) G (o)

s (1, p2, p3) = —igo,o (p2) + igo,o (p3) — igo,l (p3) + igo,pz (p1) (D.72)
+ G0, (72) + 7910 (92) = 3910 (01) = 161, (02)
+ 760 (1) Go (02) — 390 (1) Go (p3) — 30 (p2) 61 (1)
+ igo (p3) G1 (p1) — %Qo (p3) G1 (p2) + igl (p2) G1 (p3)
— 790 (1) G (2) + G0 (98) Gy () + 71 (91) Gy (2
— 261 (9) G (p2)

a8, (92, p5) = — 1001 (ps) — 1610 (0) & 5611 (ps) + Grps (02) (D7)

+ %gpe”l (p2) — igl (p2) G1 (p3) — igl (p3) Gps (p2)
+ igo (p3) G1 (p2) -

600 (91,92, 98) = =G0 (92) — 3Gt (02) + 71 (93) Gpa (02) (.74
- igo (p3) G1 (p2) + i% (p2) G1 (p3) -

60, (o1, 2, p3) = G0 (02) + G0 () — 3501 (1) — 1601 (p3) (D.75)

1 1 1
+ 19102 (P1) = 3 Gpa1 (p2) + 1G1(p3) Gps (p2)

+ 500 () G (p1) — 161 (1) G (p2) — G0 (p2) G (1)

— &89 —



+ 391 (1) 61 (ps) + 361 (92) G (01) = 501 (92) Gy (1)

60, (o1, 2,p3) = G0 (ps) — 350, (p2) — 3901 (93) — 1o (92) (D.76)
+ 3911 () = 36102 (1) + 3Gt (1) = 1o (1)
- igo (p2) Go (p3) — igo (p2) G1 (p1) + igl (p1) G1 (p2)
+ 500 (92) G1 (03) = 161 (91) G1 (63) = 30 (43) Gy (1)
— 261 (02) Gy (92) + 561 (29) G (02) = 30 (92) Gpa (1)
+ 500 (95) Gy (91) = 791 (08) Gy (92) = 3502 (1) G (p2)
+ 500 (01) G (92)
0L (p1.p2. p3) = —igo,l (p2) + %gl,o (1) — igl,pz (p1) + %gps,l (p2) (D.77)
- igo (p2) G1 (p1) + igl (1) G1 (p2) — igo (1) G1 (p3)
+ 700 (52) G1 (p5) — 761 (02) Gy (1) + .61 (03) G ()
— 261 (09) G (p2)
0N (2o ps) = 3901 (02) + G0, (92) = 7610 (p1) + 3G (01) (DT
= 2900 (01) + 3G (01) = 150 (1) Gy (02)
~ 190 (1) G0 (43) + G0 (02) Go (s) + 3G (92) G (1)
- igl (1) G (p2) + %go (p1) G1 (p3) — %go (p2) G1 (p3)
+ 200 (95) Gy (1) + 761 (92) Gy (1) — 561 (49) G 1)
+ 360 (02) Gy (01) + G0 (1) Gy (02)
a0 (1, p2, p3) = —igl,l (1) + 391,1 (p2) + %gl,m (1) — %gl,ﬂa (p2) (D.79)
+ igo (p3) G1 (p1) — %go (p3) G1 (p2) -
60 (91,2 s) = 3911 (2) = 301 (42) = 300 (03) G (p2) (D50)
0, (p1, 2. ps) = igl,o (p1) — %gl,o (p2) + %gl,o (p3) — 391,1 (p3) (D.81)

1 1 1
= 1910 (P1) + 5915 (p2) + 761 (p1) G1 (p3)

— igo (p3) Gi (p1) + %Qo (p3) G1 (p2) — igo (p1) G1 (p3)
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1 1 1 1
b;(g?jrl’,o),+ (p1,p2,p3) = Zgo,o (p3) — Zgﬂ,l (p2) — Zgo,l (p3) + Zgo’pB (p2) (D.82)

1 1 1 1
+ 1911 (p1) + 7G10, (P1) = 5G15 (1) + 59021 (1)
1 1 1 1
- igpz,p:’, (p1) — Egpa,l (p1) — ngs,m (p1) + §gp3,p3 (p1)

— 1Qo (p2) Go (p3) + igo (p2) G1 (p1) — %go (p3) G1 (p1)

4
+ %go (p3) G1 (p2) — igl (p1) G1 (p2) + igl (p1) G1 (p3)
— 790 (08) Gy (91) = 361 (02) G (02) = 50 (92) Gy (1)
+ 500 (08) Gy (p2) + 361 (92) Gy (91) — 761 () Gy (1)
+ 500 (91) G () = G2 (91) G (2)
03" (1. p2, p3) = —igo,o (p3) + %go,l (p3) — igl,o (p2) + 391,1 (p2) (D.83)
- igm,l (1) + igpz,ps (1) + igpg,o (p2) — %gpaml (p2)
+ 100 (92) Go (03) — 161 (92) G1 (p3) + 360 (43) Gy (1)
— 790 (08) Gpu (p2) + 761 () G (p2)
1 (12, ps) = —3G01 (92) + {0 () + 610 (01) = (61 (p1) (D34
- igpg,ﬂ (p1) + %g/):s,pz (p1) = %gpg (P1) Gps (p2)
~ 190 (1) G0 (43) + G0 (02) Go (s) — 3G (92) G (1)
+ igl (1) G (p2) + %go (p3) Gp» (p1) = igl (P2) Gps (p1)
+ 700 (52) Gy (1) + G2 (91) G (92)
e (1, p2, p3) = 390,1 (p2) — igU,p:’, (p2) + igl,o (p2) — %gl,l (p2) (D.85)
+ 501 (02) = 1020 (02) + 101 (92) = 190 (91) G (p2)
+ 560 (01) Go (p5) — 390 (42) Go (o) — 30 (91) G (02)
+ 500 (09) G (02) = 50 (p3) Gy (p1) + 61 (02) Gy (1)
+ igo (p1) Gps (p2) -
S (o1, o, ps) = %go,o (p2) — %go,o (p3) + %go,l (p3) — %gO,ps (p2) (D.86)

1 1 1 1
- 591,0 (p1) + 591,;)3 (p1) — Qgpz,o (p1) + §gp2,p3 (p1)

~9] —



(0,1,0)

¢ (p1,p2sp3) =

6(0,0,1)

5(07071)

1 1
5. 1.4 (p1,p2,p3) = — %00 (p3) + 5910 (p3) -

b(0,0,l)

6(0,0,1)

1 1 1
+ §gp3,0 (p1) — §g,037/)3 (p1) + §gp3 (p1) gp3 (p2)

— 1Qo (p1) Go (p2) + %QO (p1) Go (p3) + %go (p3) G1 (p1)

2
+ %QO (p1) G1 (p2) — %go (p3) G1 (p2) — 391 (p1) G1 (p3)
590 (92) Gy (p1) = 360 (95) Gy (p2) = 361 (92) Gy ()

1 1
+ §g1 (p3) gp3 (p1) — §QP2 (p1) gp3 (p2) -

1 1 1 1
—Zgo,o (p2) + Zgo,o (p3) — Zgo,l (p3) + Zgo,ps (p2)

1 1 1
+ =G0 (p2) — Zgl,ps (p2) + ngz,o (p1) — ng%/)s (p1)

+ EQO (p1) Go (p2) — %go (p1) Go (p3) — igo (p3) G1 (p2)
1

+ 761 (22)G1 () = 50 (42) G (1) = 150 (1) G (02)

1 1 1
+ 290 (p3) Gps (p2) — 19 (p3) Gps (p2) + 1902 (p1) Gps (p2) -

(D.87)

[R N -

1 1 1 1
a(_of’_ll (p1,p2,p3) = —191,0 (p3) — 191,1 (p2) + Zgl,m (p2) + 190 (p3)G1(p2) . (D.88)
1 1 1
L+ (P12, 03) = 2611 (p2) = 7 G1,5 (p2) = 790 (p3) G (p2) - (D.89)
(D.90)
1 1 1 1
3.4+ (P1,p2:p3) = 1910 (p2) + 1911 (p3) + 1910 (p1) — 19105 (p2) (D.91)
1 1 1
+ 1921 (1) + 191 (p2) G1 (p3) = 761 (p1) G1 (p3)
1 1 1
190 (p3) G1(p1) = 1 G1(p3) Gpo (p1) — 7 G0 (p3) G1 (2)
1
— ZQO (p2) G1 (p3) -
1 1 1 1
14t (P1,2,03) = = 390,0 (p3) + 5910 (p3) + 7G11 (p2) = 791,06 (p2) (D.92)

(0,0,1)

(0,0,1)

1 1 1 1
+ ng3,1 (p2) — Zgl)mps (p2) = ~Go (p3) G1 (p2) — Zgo (p3) Gps (p2) -

4

200, (o1, 2 3) = 1001 (01) = 7610 (92) + (G (92) = 1Gpa (1) (D.93)
+ %go (p3) G1 (p2) — igo (p1) G1 (p3) + igo (p2) G1 (p3)
— 191 ()1 (99) + 101 (93) G 1)

200 (o1, 2. ) = 300 (ps) — 3901 (1) — 7901 (93) = 750 (1) (D.94)

— %gl,o (p3) — igo (p1) Go (p3) + %go (p1) G1 (p3) -
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(0,0,1)

[ R (p1,p2,p3) =

(0,0,1)

¢y 4oy (p1,p2,p3) =

(0,0,1)

c5,——{-——}— (p17 P2, p3) =

0,0,1)

o0 (b1, 2, p3) =

(0,0,1)

05 4 (p1sp2,p3) =

(0,1,0

a—li-,——)f— (pla P2, p3) =

b(O,l,O)

142y (p1,p2,p3) =

b(0,1,0)

2, —+—+ (pla p2, p3) =

b(0,1,0)

3,—+—+ (Pla P2, PS) =

1 1 1 1
*19171 (p2) + Zgl,ps (p2) — ngs,l (p2) + ngg,ps (p2) (D.95)
1 1
+ Zgo (p3) Gi1 (p2) + ZQO (p3) Gps (p2) -
1 1
Ego,o (p3) — 591,0 (p3) - (D.96)
1 1 1 1
5900 (p3) — 1901 (p3) — 1910 (p2) — 3910 (p3) (D.97)
1 1 1 1
+ Zngs (p2) — ngml (p1) — ngz,ps (p1) — ngs,o (p2)
1 1 1
+ ng?”pg (P2) + §g0 (P3) gﬁs (:02) - Zgl (p3) gpg (pQ)
1 1 1
- 49 (p2) Go (p3) + 190 (p3) G1 (p2) + 590 (p2) G1 (p3)
1 1 1
- 191 (p2) G1 (p3) — Zgo (p3) Gpy (p1) + 591 (p3) Gpy (1) -
1 1 1 1
_Zgo’l (p1) — 1907/}3 (p1) + Zgl’o (p2) — 1g17p3 (p2) (D.98)
1 1 1 1
+ ngz,l (p1) + ngz,PB (p1) + ng,o (p2) — ngg,pg (p2)
1 1 1
- 49 (p1) Go (p3) + 190 (p2) Go (p3) — ng (p3) G1 (p2)
1 1 1
+ 590 (p1) G1 (p3) — 590 (p2) G1 (p3) + na (p2) G1 (p3)
1 1 1
+ 190 (p3) Gps (p1) = 561 (p3) Gos (p1) = 590 (p3) Gps (p2)
1
+ 191 (p3) Gps (p2) -
1 1 1 1
—590,0 (p3) + 190,1 (p1) + 190,1 (p3) + Zgo,pg (p1) (D.99)
1 1 1
+ 5910 (p3) + 390 (p1) Go (p3) = 5G0 (p1) G (ps) -
1g 1g 1g 1g D.100
— 91 (p1) + 1911 (p2) + 1910 (p1) — 19105 (p2) (D.100)
1 1
+ Zgo (p3) G1(p1) — Zgo (p3) G1 (p2) -
1 1 1
1911 (p2) = 2G1p4 (p2) = 7G0 (p3) G1 (p2) - (D.101)
1 1 1 1
Zgo,o (p3) + Zgo’l (p1) — 590,1 (p2) — Zgo,l (p3) (D.102)

1
4

1 1 1 1
—191,0 (p2) + 191,0 (p3) + 191,1 (p1) — 191,1 (p3)

1 1 1
Go,ps (1) + 590,05 (P2) = 790 (1) Go (p3) + 550 (p3) G (p2) -

(D.103)

1 1 1 1
+ 5910 (P1) = G105 (P1) + 1 G105 (P2) + 1G22 (1)

+ %QO (p2) G1(p1) — %QO (p3) G1 (p1) + igo (p3) G1 (p2)
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- %gl (p1) G1 (p2) — igo (p2) G1 (p3) + 391 (p1) Gi1 (p3)

4 }gl (02) g1 (pg) — 1gl (P3) gPQ (Pl) :

4 4
p(0:1.0)

1 1 1 1
4,—+—+ (/)1, /027/)3) = _ZQO,I (PQ) + 1907/}3 (PQ) - Zng (P2) + zgl,m (pQ) (D-104)

1 1 1 1
+ ng,l (Pl) - ng,ps (Pl) + ng:s,l <P2> - ng&ps (P2>

— 2100 (09) G1 (1) + 190 (p5) G (2) + 1G1 (1) G (p2)

— %gl (p2) Gps (p1) — %gl (p1) Gps (p2) + igpz (p1) Gps (p2) -

1 1 1 1
{70 (prpa.ps) = 7901 (p1) = 7910 (p2) + 79100 (P2) = 79t (1) (D-105)

+ 790 ()61 (p2) — 790 (1) 61 (p5) + 190 (42) G ()

_ %gl (p2) G1 (ps) + igl (p3) Gp» (P1) -

1 1 1 1
tg?’_lf)_+ (p1, P2, p3) = 590,0 (p2) — 590,0 (p3) — 590,1 (p1) + 590,1 (p3) (D.106)

1 1 1 1
= 590,02 (P1) + 590,05 (p1) = 590,05 (p2) = 5G0 (p3) G1 (p2)

- %go (p1) Go (p2) + %go (p1) Go (p3) + %go (p1) G1 (p2) -

0,1,0 1 1 1 1
Ci(),7—+)_+ (p17p27 P3) = Zgo,l (pl) - 190,;)3 (Pl) - ngg,l (p1) + ngmpg (Pl) (D107)

1 1 1
= 19031 (P2) + 3 Gps.ps (P2) = G2 (P1) Gps (P2)

- igo (p1) G1 (p2) + %go (p3) G1 (p2) — igl (p2) G1 (p3)

+ 501 (02) G (p2) + 70 (91) Gy (p2) — 70 (03) Gy (02)

+ 3Gy (p3) Gy (2) -

4
1 1 1 1
Cf’_lf)_Jr (p1,p2,p3) = —Zgo,o (p3) — 190,1 (p1) + 590,1 (p2) + 190,1 (p3) (D.108)

1 1 1 1
+ 390,05 (P1) = 5G0,05 (p2) + 7G0 (p1) Go (p3) = 590 (p3) G (p2) -

1 1 1 1
cé?’_lf)_+ (p1,p2,p3) = —~Goo (p2) — Zgo,o (p3) + §Qo,1 (p2) + Zgo,l (p3) (D.109)

4
1 1 1 1
= 190,05 (P2) + 1910 (p2) = 1 G1,p5 (p1) = G195 (p2)
1 1 1 1
- igl?z,l (Pl) - ngz,pz (Pl) =+ §gf72,ﬂ3 (Pl) + ng:s,o (pQ)
1 1 1
- §gﬂa71 (p2) + zgp3,p3 (p2) — ng (p1) gpg (p2)

+ igo (p2) Go (p3) — igo (p2) G1 (p1) + igo (p3) G1 (p1)
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(07170)
01—

(0,1,0)
02—+

(1,0,0)
a_+—+

b(LO»U)
1,—+—+

b(LO,U)
2,—+—+

b(lvovo)
3,—+—+

b(lvovo)
4,—+—+

(1,0,0)
¢ —+—+
(17070)
€2, —+—+

(1,0,0)
€3,—+—+

4

4 2

1 1
+ 10 (p1) Gps (p2) + 9 (p3) Gps (P2) -

1 1 1 1
(p1,p2,p3) = 5@0,0 (p2) — 590,1 (p1) — 590,1 (p2) — Zgo,m (p1)

1 1 1 1
+ §g0,/)3 (pl) + §QP2,1 (Pl) + ng,pz (101) - igm,ps (101)

— 160 (98) 61 (p2) — 361 (02) G1 (43) = 360 (92) Gy (1)

+ 1Qo (p3) Gpo (p1) + 1gl (p2) Gp, (p1) — %go (p3) Gps (p2)

(D.110)

1 1 1 1
= 19030 (2) + 59051 (P2) = 1 G03,5 (P2) + 1 Gps (p1) Gps (p2)

- igo (p1) Go (p2) + igo (p1) Go (p3) — igo (p2) Go (p3)

+ %go (p1) G1 (p2) — %go (p3) G1 (p2) + %gl (p2) G1 (p3)

4

1 1 1
L (p1) Gps (p2) + 590 (p3) Gps (p2) — J91 (P3) Gps (p2) -
1 1 1 1
(p1,p2,p3) = —590,0 (p2) + 590,0 (p3) + 590,1 (p1) — 5%,1 (p3)

2 2

2

1 1 1
(p1,p2,p3) = 1 G11 (p1) = 1 G1ps (p1) = ;G0 (p3) G1 (p1) -
(p1,p2,p3) =0.
~lg L Lg Ls
(p1, p2, p3) = 1900 (p3) — 1901 (p1) — 1901 (p3) + 790,05 (p1)

— igo (p1) Go (p3) + %gﬂ (p3) G1 (p1) -

1 1 1 1
(p1,p2,p3) = —=G10(p1) — 191,1 (p1) + Zgl,m (p1) + Zgo (p3) G1 (p1) -

4

1 1 1
(p1,p2,p3) = _ng%l (p1) + Zgﬁmps (p1) — igm (p1) Gps (p2)

4

1
+ 191 (p1) Gps (p2) -
(/7171027/)3) =0.

1 1 1 1
(p1,p2,p3) = —Zgo,o (p1) — Zgo,o (p3) + Zgo,l (p1) + 19071 (p3)

4

1 1 1 1
(p1,p2, p3) = —3 901 (p1) + 1901 (p2) + 1905 (p1) — 19005 (p2)
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+ 360 (02) G (01) = 30 (55) Gy (91) — 561 (02) Gy (1)

1 1 1 1
+ 590,00 (p1) — 590,ps (p1) + 590,;)3 (p2) + 5%0 (p3) G1 (p2)

+ 560 (1) Go (02) — 590 (1) Go (s) — 550 (1) G (p2)

+ 1go (p3) G1 (p1) — igl (p1) G1 (p2) + igl (p2) Gps (1)

(D.111)

(D.112)
(D.113)

(D.114)

(D.115)

(D.116)

(D.117)

(D.118)

1 1 1 1
— —~Go,ps (1) + 591,0 (p1) + Zgo (p1) Go (p3) — 590 (p3) G1(p1) -

(D.119)



1 1 1 1
— 191,1 (p2) + 191,,33 (p2) + nga,l (p1) — ngznos (p1)

— 200 (01) G1 (p2) + 190 (p5) 61 (2) + 561 (1) G (p2)

= 161 (92) Gt (35) = 761 (02) G (1) + 70 (1) Gy 12)

= 790 (69) Gy (02) = 51 (91) Gy (92) + .61 (03) Gy (02)

+ G0 (1) G ()

00 (o1, 2, ps) = —igo,o (p3) + igo,l (p1) + %go,l (p3) — %go,pg (p1) (D.120)
+ igo (p1) Go (p3) — %QD (p3) G1 (p1) -

cgff),+ (p1,p2, p3) = igl,pz (p1) + %Qm,o (p1) + igng (p1) — igm,m (p1) (D.121)
= 2Gnn (1) = 161 (01) G, (92) + G (1) G (92)
+ 200 (p2) G1 (1) = 10 (93) G1 (1) = 30 (92) G (1)

agl—of)—Jr (p1,p2,p3) = —%go,o (p1) — igo,o (p2) + igo,l (p1) + %Qom (p1) (D.122)
- igO,ps (p1) + igO,ps (p2) + %gl,o (p1) + igl,o (p2)

1 1 1 1
— 590 (p1) — 710 (p2) — 1920 (p1) — 1921 (p1)

1 1 1
+ 19202 (p1) + 19020 (p1) — 1902 (P1) Gps (p2)

+ 760 (1) Go (p2) — 590 (02) 61 (p1) — 790 (43) G (2

+ 501 (92) G1 (p5) + 790 (02) Gy (1) — 70 (1) G (p2)

1 1 1
+ Zgo (p3) Gps (p2) + le (p1) Gps (p2) — Zgl (p3) Gps (p2) -
(1,0,0) _ 1 1 _ } — 1 D.12
05 54 (1,2, p3) = 7900 (p1) + 7900 (p3) = 7901 (1) = 7901 (p) (D.123)

1 1 1 1
+ Zgo,pg (p1) — 591,0 (p1) — Zgo (p1) Go (p3) + 590 (p3) G1 (p1) -
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