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Abstract. We present a software framework for statistical data analysis, called HistFitter,
that has extensively been used in the ATLAS Collaboration to analyze data of proton-proton
collisions produced by the Large Hadron Collider at CERN. Most notably, HistFitter has become
a de-facto standard in searches for supersymmetric particles since 2012, with some usage for
Exotic and Higgs boson physics. HistFitter coherently combines several statistics tools in a
programmable and flexible framework that is capable of bookkeeping hundreds of data models
under study using thousands of generated input histograms. The key innovations of HistFitter
are to weave the concepts of control, validation and signal regions into its very fabric, and to
treat them with rigorous statistical methods, while providing multiple tools to visualize and
interpret the results through a simple configuration interface.

1. Introduction
HistFitter [1] is a software framework for statistical data analysis extensively used in the ATLAS
Collaboration [2] in (mainly) searches for supersymmetric particles, analyzing data of proton-
proton collisions produced by the Large Hadron Collider at CERN. HistFitter consists of a C++
part for CPU-intensive calculations and of a Python part for configuration purposes. The tool
is built on top of the packages ROOT [6, 7], RooFit [5], HistFactory [3] and RooStats [4], where
RooFit and HistFactory are used to build parametric models, RooFit to fit those models and
RooStats to perform statistical tests.

HistFitter extends the functionalities of RooFit, HistFactory and RooStats in four key areas:

e HistFitter offers a programmable framework to perform complete statistical analyses
starting from a user-defined configuration file.

e Typical analysis strategies in particle physics using control, validation and signal regions
are deeply woven into the design of HistFitter.
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e HistFitter keeps track of numerous data models including the construction and statistical
tests in an organized way.

e HistFitter provides a collection of tools for interpreting results of statistical analyses such
as determining the statistical significance of signal hypotheses, estimating the quality of
likelihood fits and for producing plots and tables presenting the results.

2. Data analysis strategy with HistFitter

Particle physics experiments analyze large samples of data to measure properties of fundamental
particles or to discover new physical processes. The data is usually interpreted using external
predications for background and signal processes which are summarized in statistical models
aiming to describe the observed data. HistFitter configures and builds such parametric models
and provides various tools to help in the interpretation of the data.
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Figure 1. Schematic analysis strategy with
control (CR1 - CR3), validation (VR1 - VR3)
and signal regions (SR1 - SR3).
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Figure 2. A typical analysis strategy flow with HistFitter involving the control regions CR 1 -
CR N, validation regions VR 1 - VR N and signal regions SR 1 - SR N.

In the construction and handling of the models HistFitter deeply relies on the concept of
statistically independent control, validation and signal regions as illustrated in Figures 1 and 2.
Signal regions are regions in a phase space, defined by cutting on kinematic variables, that are
enriched in potential signal in comparison to the predicted background level. To estimate the
background in signal regions in a semi-data-driven way, control regions enriched in background
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are defined. The predicted background is normalized to data in the control regions using a
likelihood fit to data. The normalized background model is extrapolated to a signal region using
a transfer factor, which is the ratio of expected event counts between each control and signal
region. This extrapolation is verified in validation regions located between control and signal
regions.

The parametric model describing the data is represented by a Probability Density Function
(PDF). PDFs are built for every control, validation and signal region using HistFactory [3]. The
regions being statistically independent, the PDFs can be fitted simultaneously to data, adjusting
the parameters of the PDFs. An important point in the analysis strategy of HistFitter is the
possibility to share parameters of the PDFs in different regions. This allows the consistent use
of information on signal and background processes and systematic uncertainties in all regions.
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Figure 3. The HistFitter
software framework.

The HistFitter software framework, illustrated in Figure 3, is designed based on the analysis
strategy in Figure 2. Starting from a user-defined configuration and input data, binned
histograms are created by HistFitter in a first processing step. In a second step, PDFs are
constructed based on the histograms using HistFactory tools. In subsequent steps, the model
is analyzed by performing fits, calculating limits and presenting the results in plots and tables.
These steps use tools both from RooFit and RooStats, but also HistFitter specific tools as
discussed in Section 4 and 5.

3. Configuration and construction of PDF's

The analysis flow presented requires substantial bookkeeping and an extended configuration
machinery, in particular if working with hundreds of different models e.g. for different hypotheses
for new physics beyond the Standard Model.

The configuration consists of a user-defined configuration file which interacts with a
configuration manager within HistFitter. The configuration manager is realized as two singleton
objects, one in Python with which the user interacts, the other one in C++. It organizes and
creates fitConfig objects. A fitConfig object contains the PDF of a certain model along with
meta-data providing information about fitting, visualization and interpretation of the model.
The fitConfig object thus represents one row in Figure 3 and acts as factory of a model. The
configuration manager thus functions as ‘factory of factories’.

PDFs are constructed using HistFactory. The resulting likelihood has the general form of

L(n, eo‘ﬂsiga b,0) = PSR X PCR X Csys‘m (1)
being the product of Poisson distributions of event counts in signal and control regions (PgR and
PR ) and of additional constraint terms for systematic uncertainties (Cgygt). The likelihood
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depends on number of observed events in all regions (n), nuisance parameters parameterizing
the impact of systematic uncertainties (@) with their central values 0°, signal strength Hsig and
predictions b for various background sources.

The likelihood has three different building blocks: channels, samples and systematics.
Channels include all control, validation and signal regions. Signal and background processes
compose the samples and systematic uncertainties summarize statistical, experimental and
theoretical uncertainties.

HistFitter extends and mirrors the classes in HistFactory for these building blocks as
illustrated in the following.
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Figure 4. Illustration of an example fit strategy in HistFitter.

The three building blocks are put together by a fitConfig object in the construction of
each PDF, as illustrated in Figure 4, and links them to the input data. A fitConfig object
can have multiple channels that may be one- or multi-bin and are either control, validation or
signal regions. Samples, corresponding to components of the PDF decorated with meta-data,
are attached to a channel, and may also be correlated between multiple channels. The data
input for the sample may be provided as ROOT TTree or TH1 or also as float numbers by the
user. Systematics attached to a sample and possibly correlated between samples are typically
provided by 1o up and down histograms of the nominal histogram of the sample(s). Systematics
can be implemented using different methods of interpolation between up and down histograms
and extrapolations. HistFitter allows the description of a complicated PDF by few lines of code
through the ‘trickle-down mechanism’: this mechanism takes care of adding samples that were
added to a fitConfig object also to all depending channels. Similarly, all systematics added
to a fitConfig or channel are also propagated to the depending channels and samples.

The trickle-down mechanism together with the concepts of the fitConfig class and the
configuration manager eases the construction of complex analyses setups considerably.

4. Fit strategies and presentation of fit results
HistFitter provides different fit strategies to fit the PDF as illustrated in Table 1. The
background-only fit using only control regions and background samples aims for estimating the
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background yields in validation and signal regions by extrapolating from the control regions. The
model-dependent signal fit is used to derive exclusion limits on a specific model or to measure
the properties of an excess. This fit strategy uses background and signal samples in control and
signal regions. The simultaneous fitting of multiple signal regions is possible and often used to
increase the exclusion power (‘shape fit’). The model-independent signal fit is used to derive
model-independent limits on the number of events beyond the expected number of events in a
specific non-binned signal region (other signal regions are not allowed in this fit). No assumption
is made on the signal which may only appear in the signal region but not in the control regions.

Table 1. Summary of the different fit strategies possible with HistFitter.

Fit setup Background-only fit Model-dependent Model-independent
signal fit signal fit
Samples used backgrounds backgrounds + signal backgrounds +
dummy signal
Fit regions CR(s) CR(s) + SR(s) CR(s) + SR

The results of the fits can be presented in e.g. tables or plots indicating the before and after
fit event yields in the regions or in pull plots illustrating the agreement of the fitted background
estimates with the observed data. Examples are given in Figures 5 and 6.
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Figure 6. The agreement between estimated
Figure 5. The jet multiplicity background yields and observed data (top) can be
distribution after fitting it to data. illustrated in a pull plot (bottom).

5. Interpretation of results

The observed data can be interpreted in hypothesis tests in HistFitter through calls to the
appropriate functions and classes of RooStats [4]. HistFitter also provides macros for plots and
tables to display the results.

The interpretations are based on either the model-dependent or model-independent signal fit.
Using e.g. the model-dependent fit strategy, limits on a certain signal model can be placed by
either deriving exclusion limits on this specific model in comparison to a background assumption
in a hypothesis test or by evaluating an upper limit on the allowed signal strength given the
data. Figure 7 shows an example giving the exclusion limits as function of parameters important
for a specific model class.
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6. Summary
We have presented a software framework for statistical analyses, called HistFitter. This
programmable framework is used to build, fit and test data models of nearly arbitrary complexity.
Starting from a user-defined configuration file and using HistFactory and RooFit functionalities
PDFs are configured, constructed and fit. Interpretations of the models are possible through
statistical tests using RooStats functionalities.

Among the innovative features of HistFitter is the modular configuration interface with
a trickle-down mechanism which eases the construction of complicated PDFs. HistFitter is
designed to provide the bookkeeping to work with hundreds of different signal models at once and
thus provides an additional level of abstraction over existing tools. Built-in concepts of control,
validation and signal regions allow a particular rigorous statistical treatment of extrapolations
from control to signal regions as used in numerous background estimation techniques in particle
physics. In addition, HistFitter offers a sizable collection of tools for presenting final results in
a publication-style quality.
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