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1 Introduction

An important issue of superstring theory is to calculate quantum effects [1-
7], which may remove the degeneracies of the classical superstring vacua, and
lead to realistic mechanisms for gauge- and supersymmetry breaking.

In calculating these effects, it is important to take into account all the
string symmetries, which severely constrain the superstring effective action
describing the low-energy dynamics of the massless (or nearly massless) ex-
citations. An example of these invariances is the duality symmetry [8] in
the background moduli fields, which relates large and small radii as com-
pared with the string size. These effects cannot be seen in Kaluza-Klein
compactifications of the ten-dimensional point field theory limit, since the
latter can only give information for large values of the moduli: in the sigma-
model approach to two-dimensional world-sheet dynamics, such a situation
corresponds to a weakly coupled theory. On the other hand, in the four-
dimensional point field theory limit string loop corrections correspond to
ordinary Feynman diagrams, with both massless and massive states circu-
lating in loops. In four-dimensional superstrings, the loop effects on gauge
couplings and other physical quantities are field-dependent.

For instance, qualitatively, the integration over the massless modes gives
a correction to the gauge couplings [9] which is related to the standard field
theory result

o
9*(Q?)

This result is correct provided the scale @ is much smaller than the in-
verse of the Kaluza-Klein radius R. However, for 1/R? < Q% < A%, where
As = O(o/"'/?) is the string cutoff, the Kaluza-Klein string modes give a
contribution which, for large R, goes as
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where the constant does not depend on moduli. These effects get further
corrections when R? is not large with respect to Ag?, due to the string wind-
ing modes which are responsible for the quantum symmetries. For toroidal
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compactifications, the latter are of the type
R— —. (3)

In supersymmetric compactifications, the radial variable R always appears
together with its pseudoscalar partner, the periodic variable ¢, and quantum
symmetries apply directly on

T = R* + ip. (4)

Renormalized couplings get then a dependence on the complex modulus 7.
In the simplest case, in which ¢ periodicity and radius inversion symmetry
are requested, the full invariance is the modular group PSL(2,Z), and all
quantities are expected to be modular functions of the T variable.

In this paper, we would like to clarify the relation between these loop
corrections and the one-loop effective action, which has to be consistent with
supersymmetry, gauge invariance and the duality string symmetry. This
problem has become particularly relevant in view of the recent calculation of
some one-loop string corrections in heterotic strings on (2,2) orbifolds [10].

In a generic supergravity theory, the one-loop B-function coefficient is
related to a U(1) chiral anomaly [11]. We will show that moduli-dependent
renormalization effects on coupling constants can also be viewed as anomalies,
mixing Yang-Mills fields and the holonomy connection of the Kahler manifold
for the moduli fields. In string theory, there is a subtle cancellation mech-
anism for these anomalies, analogous to the ten-dimensional Green-Schwarz
construction [12], but for a composite gauge connection of the U(1) charge
of a N = 2 superconformal algebra on the world-sheet, whose existence was
implied in ref. [13]. In a supersymmetric framework, this mechanism consis-
tently gives an effective action which for large radius reproduces the expected
R-dependence,

b
G*(R, )

of the one-loop corrected gauge coupling constant. The cancellation mecha-
nism crucially relies upon the existence of an antisymmetric tensor b,,,,, and is
therefore naturally expressed using a linear multiplet coupled to supergrav-
ity [14]. It is well known that this formulation is equivalent, via a duality

~ alog R* + bR* (R large), (5)
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transformation, to the standard one, with the linear multiplet replaced by a
chiral multiplet S: its real and imaginary parts are related to the tree-level
gauge and axion couplings, respectively?

L xRe S, 0, oImS, (6)

gZ tree
and the duality transformation relates Im S and b,,,.

The structure of the present paper is the following. In sect. 2, we recall
some supergravity results and we concentrate on the supersymmetrization of
general field-dependent gauge couplings. We discuss in detail the introduc-
tion of loop corrections to the effective action, and the role played by the
linear multiplet in ensuring gauge invariance. In sect. 3, we show how one
can return to the standard formulation by performing a duality transforma-
tion, which replaces the linear multiplet by an equivalent chiral multiplet (.5),
and leads to a gauge kinetic function of the standard form, but to a modified
Kahler potential. The duality transformation is modified order by order in
the loop expansion, in such a way that gauge kinetic terms remain unchanged
in terms of the (new) S-field. In this last formulation, the field-dependent
corrections appear as a (wave function) renormalization of the S multiplet.
In sect. 4, we explain the connection between these renormalization effects
and mixed gauge-holonomy anomalies. As an example, we discuss the case
of (2,2) Zy orbifolds, and obtain the corrected form of the Kahler function
for these theories. In sect. 5, we study the impact of the above corrections
on the scalar potential. Finally, sect. 6 contains our conclusions.

2 Supersymmetry

The standard form of N = 1, d = 4 supergravity coupled to Yang-Mills and
matter described by chiral superfields (up to two derivatives in the bosonic
fields) [15,16] is defined in terms of two functions:

e A real and gauge invariant function G(X,X) of the chiral superfields

¥ = (2, x', F') and their conjugates ¥;, conventionally written as

G(%,%) = K(3,E) + log [w(Z) [, (7)

1We denote by S both the chiral multiplet and its complex spin-0 component.
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where the real function K(X,Y) and the analytic function w(X) are
called the Kahler potential and superpotential, respectively.

o An analytic function f,(X) of the chiral superfields X!, transforming as
a symmetric product of adjoint representations of the gauge group G 2.

The Lagrangian is summarized by the superconformal action formula

e L = —g [S’ogoexp{——ég(il,fe“)}]l)
b (83, 4he) - ([Fa@W W] +he), @)

where A = gA®*T* is the Yang-Mills multiplet [in the Wess-Zumino gauge,
A® = (A%, A%, D?)], T* are the gauge group generators, g is the gauge cou-
pling constant, W* is the chiral spinor superfield containing the Yang-Mills
field strength F};,, and the subscripts D and F' indicate the action formula
for a real vector density and for a chiral density, respectively. This action
corresponds to conformal weights w = 0 for Ei, w =1 for Sy and w = % for
We. This choice of weights can be taken in full generality. The two functions
G and f,; have then conformal weights zero. The chiral multiplet Sp is used
as a compensator, which gauge fixes the superconformal symmetry down to
super-Poincaré. This is achieved by requiring that the Einstein term in the
Lagrangian has the canonical form —}eR, which corresponds to the choice

[15,17]
1 .
SO = (eé_g, geé—ggixzy ho) . (9)
In the above expression, ho is the supergravity auxiliary scalar and the usual
conventions about derivatives (G; = 0G/0z*, ...) are used. It follows from
eq. (8) that the kinetic terms for the gauge bosons,

1 ,
~1 Re fu(2*) F* ‘“’Fzy, (10a)
are always accompanied by the CP-odd term
1 . .
+1 Im fas(2') F* wER, (108)

2To avoid too heavy a notation, we will take G to be simple, but all our considerations
can be trivially extended to a general G.



where F’ﬁy = %euup,,Fb 7 QOne can then interpret Re f,;, and Im f,; as field-
dependent inverse gauge couplings and axionic couplings, respectively. The
analyticity properties of the coefficients of F'F" and F F' in expressions (10)
follow from the fact that the corresponding chiral F-density in the super-
conformal action (8) has no explicit dependence on the compensator Sy (the
weight zero function f, is analytic in the chiral multiplets 3¢, which have
conformal weight zero).

It was already observed long ago [15] that one could generalize eq. (8) by

replacing it with the more general form

310w -1 1 -

“1p _ g1 Lres 3/2

e L= —5 [S()S()e 3 ]D 1 ([SOH (WSO ,E)]F+hC) . (11)
This generalization of eq. (8) does not introduce couplings with more than
two derivatives in the bosonic fields. The quadratic terms in the gauge boson

field strengths are of the form (10), but with fu; replaced by

10 0
2 812 91 , (12)

1
t=xe~ 29

H(t,2)

which is no longer an analytic function of the chiral scalars z*. This is the
consequence of the dependence of the function H on the compensator S,
and of the form of gauge fixing applied on Sp, eq. (9). This induced non-
analyticity of fu; is however linked to fermionic (gaugino) terms, since H

depends on the combination W?S, . In the presence of gaugino conden-
sates, this would naturally introduce a non-analytic gauge kinetic function
[5]. In the absence of non-trivial fermionic backgrounds, the non-analyticity
disappears and we recover expressions (10), provided that H is non-singular
in the limit of vanishing fermionic background. The above discussion indi-
cates however that, if one considers expression (10a) as a definition of the
function f,,, without referring to a specific superconformal action like eq. (8)
or eq. (11), the analyticity of fqs is not a general consequence of local N =1
supersymmetry with up to two derivatives.



In the rest of this section, we will discuss the following question: given a
kinetic term for the gauge bosons of the form 3

- %h(z,?)&abF“"“F”

P (13)
with h a generic real and gauge invariant function of z and z (not necessarily
the real part of an analytic function of z), under which circumstances does
this coupling admit an extension compatible with local N = 1 supersymmetry
and gauge invariance?

This problem turns out to be particularly relevant for the determination
of the effective low-energy theories of N = 1, d = 4 heterotic string models.
At the genus zero level, these are just standard N = 1, d = 4 supergravities,
with [18] )

G =—log(S+3)+G(E,Te*t) (14)

and [19, 20]
fab = 5(165, (15)

where S is a gauge singlet chiral superfield and % denotes collectively all the
other chiral superfields of the effective low-energy theory, ¥ = (S,%%). The
real function G is such that the F-term part of the scalar potential,

Ve = €9 (G55 5Gs + G676, - 3), (16)
is positive semidefinite:
G°05'°Gs =1, §G'G7G;—3>0. (17)

These last equations only apply to the specific case of string effective actions.
Recently, one-loop string corrections to eq. (10a) were computed [10] in a
class of orbifold models, and the result was found to be of the form (13),
with a non-harmonic contribution

0 0

(S, 5,5,5) =S+ S+ AE,T), i M= A0 (18)
J

3Compared to eq. (10a), we restrict ourselves to a coefficient function of the form hég;,
instead of hg;, only for simplicity: including an explicit dependence on the gauge indices
is straightforward. Also, the most interesting application of our results is of the form (13).



If one tries to identify hé,, with 2Re f,s, this result seems incompatible with
the standard form of the supergravity Lagrangian. Our first goal is to demon-
strate that gauge kinetic terms of the form (13), (18) can be perfectly de-
scribed by an effective supergravity action, provided that the problem is
correctly formulated. Moreover, our results will single out a natural frame-
work to include loop corrections into the effective supergravity action of
superstrings. We will keep the argument at the general level: a detailed in-
terpretation of the results of ref. [10] will be given in the following sections
and elsewhere [21].

It is well known that the variation of the super-Yang-Mills Lagrangian
Lsym = —EFSUF“”“ + %Xa*y“DuX‘ + %D“D“ (19)
under a global supersymmetry transformation is a total derivative, leading
to an invariant action. The Lagrangian (19) can also be written as the
real part of the F-component of the chiral superfield -—iW“W“, which can
be extended to local supersymmetry: this is the origin of the last term in
the superconformal action (8), since a chiral superfield WeW?® multiplied
by another chiral superfield f,;(X) is again a chiral superfield. Actually,
—LWeW* is the unique gauge invariant superfield containing the Lagrangian
(19), up to two derivatives. It also possesses a term proportional to

e F Fo = 44€7° 0,80,

where Q,,, is the Yang-Mills Chern-Simons tensor, whose gauge variation
is a total derivative. To supersymmetrize the gauge kinetic terms (13), one
has to look for an action containing the super-Yang-Mills terms (19) multi-
plied by the real function h(z,z). However, if 9,0zh # 0, this action cannot
be gauge invariant, since W*W* cannot be used. Since the variation under
supersymmetry of h(z,%Z)Lsypm is not a total derivative, further terms con-
taining the Chern-Simons form will be required to restore supersymmetry.
This argument could be carried on in component language, but it is much
more convenient to use the superfield formalism, as we do in the following.

The natural way of supersymmetrizing eq. (13) is to embed it in a su-
perconformal D-density. For the standard case A(X,X) = 2Re f(X), the
mechanism leading to this result has been discussed in ref. [7]. The central
point is to observe that the following identity holds (up to total derivatives)

[Tr f(E)WW]p +hee. = [Tr(£(2) + 7(2‘))9]D , (20)
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where the trace is taken over the gauge group indices and {2 is the non-
Abelian Yang-Mills Chern-Simons supermultiplet associated with the gauge
vector multiplet A:

1 - .
O(A) = 2 /O dt Tr ([V*(8), AIWa(2) + [Va(t), AW () + ALV (1), Wa(1)}) -

(21)
In eq. (21), Wa(t) = (DD — 8R)V,(t), Va(t) = e 4D, et4, and D, is the
supersymmetric covariant derivative*. In the Abelian case, eq. (21) takes
the simpler form

Q(A) = Tr[D* AW, + Do AW + ADW,], (22)

where now

W, = (DD — 8R) D, A. (23)

The left-hand side of eq. (20) is manifestly gauge-invariant. Gauge invari-
ance of the right-hand side is ensured by the fact that, under gauge trans-
formations, 6} is a linear multiplet [7]. This can be seen directly from the
constraint equation satisfied by the Chern-Simons multiplet:

(DD -8R) @ =W?, (24)
which implies, since under gauge transformations §W? = 0,
60 = 69, (25)

(DD - 8R) 60 =0. (26)

These are precisely the two equations defining a real linear multiplet. It then
follows that [f(X)6Q]p does not contribute to the action, since f(X) is a
chiral supermultiplet.

If we generalize the right-hand side of eq. (20) by replacing f(X) + f(X)
with a general real and gauge-invariant function h(X,¥) (a vector multiplet),
this would give a manifest supersymmetrization of eq. (13). At first sight
however, since identity (20) does not apply, equivalence with the standard

4In these expressions, o and & are the usual two-component spinor indices, not to be
confused with gauge indices like a, which are omitted here for notational simplicity.



formulation of supergravity is lost. Also, for the same reason, gauge invari-
ance is violated. In components, the new D-density

Lo = _Zli (2,50 (27)

will give, besides eq. (13), a term of the form

1
_ ge—lep.l/paV“QVpa’ (28)
where . '
Vu = i(hlaufi — hiauz’) (29)
and {
Quup =Tr (A[#va] - :)TA[uAvAp]> (30)

is the Yang-Mills Chern-Simons form, for which 2¢##70,Q,,, = Tr(F, .
When A(Z,3) = f(£) + f(¥), as in the case of eq. (20), then V, =
—i0,(f — f), and by partial integration eq. (28) is equivalent to the stan-
dard axionic coupling of eq. (10b). Differently stated, V, can be seen as
a composite U(1) gauge field: in general, V, can be non-trivial, and only
when V,, is a pure gauge (V,, = 0,0) can one write down the standard axionic
coupling. From the supersymmetry point of view, the axionic coupling is
well defined provided identity (20), which also implies integrability of the
term (28), holds. However, we will now show that, even in the case of a gen-
eral h(X,Y), there is no obstruction to the construction of a supersymmetric
action, with unambiguous couplings also for the axion.

Even though eq. (27) is manifestly supersymmetric, gauge invariance is
lost, since k is now a real vector supermultiplet. In components, the variation
of eq. (27) under a gauge transformation with parameters A® takes the form

8Lq x e“””"FW(V)A“ﬁ':U(A) + other terms, (31)

where F' denotes the purely derivative part (curl) of the field strength F'. This
situation is strongly reminiscent of the way anomalies manifest themselves
in N =1, d = 10 supergravity coupled to Yang-Mills. The expression



(31) is clearly of the form of a mixed anomaly ® for gauge fields and the
vector field V. To recover gauge invariance, we can pursue the analogy with
the Green-Schwarz anomaly cancellation mechanism in ten dimensions [12].
The crucial ingredient of its four-dimensional version is the existence of a
physical linear supermultiplet L containing, as physical degrees of freedom,
the dilaton, the antisymmetric tensor b,, (the tree-level dualized Im S-field)
and their Majorana fermionic partner. In order to restore gauge invariance,
the action which reproduces gauge kinetic terms of the form (13) has to be
modified as follows:

[hQp — [R(Q = L), (32)

and gauge invariance is enforced by requiring that under gauge transforma-
tions

5L = 6Q. (33)

In components, the antisymmetric tensor b,, contained in L transforms ac-

cording to )
0b, X —€,,0 A FP7(A). (34)

We need finally to complete our action by terms describing propagation and
interactions of the linear multiplet. Notice that this is absolutely necessary,
because, with modification (32) only, the equation of motion of L would
simply tell us that A is the real part of an analytic function. Taken alone,
the modification (32) would in fact give an action completely equivalent
to standard supergravity, rewritten after use of identity (20). This would
bring us back to our starting point, eq. (8). This is no longer the case
when propagation terms for L are introduced, in which case one has the
superconformal action formula

L-Q

eI = —g lsots*‘o@ (TSE s, ie“)] +(|S3] . +he).  (35)
D

SWhen considering superstring effective actions, such an anomalous term would be
expected to arise from one-loop corrections. In fact, we have just shown that this term
is intrinsically related to the supersymmetrization of eq. (13), and the occurrence of the
latter was explicitly demonstrated at one loop for the class of models considered in [10].
A more complete discussion of the anomaly structure of superstring effective actions will
be given in ref. [21].
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The arbitrary real, gauge invariant function ® defines entirely the theory.
We have to take [7]

¢

3 5.5, (36)

22 _1; (L - Q)‘”"’
= —¢ 2 ,
in order to recover the tree-level superstring effective action defined by eqs.
(14), (15), but expressed equivalently in terms of the linear supermultiplet
L instead of the chiral supermultiplet S: a supersymmetric duality transfor-
mation leads from eqgs. (35) and (36) to egs.( 14) and (15). Adding a term

of the form )
NI (37

to the superconformal action formula (35), which would correspond to adding

the term ;A ( %90—) to ®, will include the one-loop (and higher order as well)
correction to the gauge kinetic terms.

We close this section by two remarks. Firstly, the essential role of the
linear multiplet is to restore gauge invariance: it does not appear in the
gauge kinetic terms (13) which we have supersymmetrized. Secondly, if one
considers only the couplings of gauge fields to scalars, the Lagrangian in
the standard formulation with vector and chiral multiplets, eq. (8), and the
Lagrangian with linear and Chern-Simons multiplets, eq. (35), cannot be
distinguished only with the help of the first correction to the kinetic terms,

the 3-point couplings z — A% — A? with two derivatives. In both formulations,

the 2F? terms are identical. The zFF' part of Lagrangian (8) would give a
term of the form

77 2(0,A47)(0,45),
while eq. (35) would lead to

€7 (8,2) A3(9,47),

but both terms are clearly equivalent after partial integration. The 3-point
amplitudes for one scalar and two gauge fields are then completely identical
for both Lagrangians®. This is to be contrasted with, for instance, the 4-
point amplitudes with two scalars and two gauge fields, which differ in the
two cases.

6This 3-point function was actually considered in sect. 3 of ref. [10].
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3 S-field formulation of the loop-corrected
action

Up to here, we have shown how to write down a gauge-invariant supergravity
Lagrangian able to accommodate gauge boson kinetic terms of the form (13),
(18). This was obtained at the price of introducing a linear multiplet L, whose
transformation properties are such as to cancel a potential anomaly in the
gauge transformations. It is however well known that a linear multiplet L
can always be transformed into a chiral multiplet S by a (supersymmetric)
duality transformation. After the duality transformation, the action (35)
will be in the standard supergravity form, with matter described by chiral
multiplets only. We now want to show explicitly this relationship, and discuss
its implications. The first step is just to write down a superconformal action
equivalent to egs. (35), (36):

_3 [50§0<1> (_U__ £, ée“) + Ei—(s +5)(U + Q)] +([S5] , +hee.), (38)

where we have introduced a real, unconstrained superfield U instead of the
combination L — §). This last action is equivalent to eq. (35), since the
equation of motion of (S + S) implies that L = U + Q is a linear multiplet.
Integrating over S gives then eq. (35). But we could as well integrate over
the unconstrained superfield U, to obtain an equivalent form of the action
in terms of S, 3 and A. Explicitly, this amounts to solving the superfield
equation of motion for U, which reads

60’ ( SngiA) — (5+5), (39)

where ¢’ = (%@(x,‘é,fe“), and to substituting back the solution into eq.
(38). The resulting action is always characterized, in the standard formula-
tion of refs. [15,16], by a gauge kinetic function of the form (15), and, with
eq. (36), by the G function (14). If we now add to the Lagrangian (36),(38)
the term (37), with (L — Q) — U, eq. (39) becomes

60" =—(S+S5+A4A),
and we clearly obtain a theory of the standard type, but characterized by
Georr. = —log($ + 5 + A) + G(8, £e*4), (40)

12



;:grr. — 6abS, (41)

since this addition to the action (38) only modifies the equation of motion of
U, eq. (39), by the replacement of S + S by S 4+ S + A. Notice that, even
though, in the formulation with the linear multiplet, the modification intro-
duced by the A term has to do with gauge kinetic terms, in the formalism
of refs. [15,16], the gauge kinetic function f,, does remain unchanged: it is
entirely determined by the couplings of S in eq. (38). The duality trans-
formation relating S to U = L — € [eq. (39)] is however modified by the
correction term (37).

Since one might want to consider the addition of the term (37) as a
one-loop correction to a tree-level superstring effective action, it could be
appropriate to rewrite

_ A R

Geor. = ~Tog(5 + 8) —log (1+ <) +6. (42)
This suggests clearly that the one-loop contribution to the gauge kinetic
terms should be viewed as a wave function renormalization of the S field,
when interpreted in the standard formulation. It should not be regarded as
a renormalization of f,5, which remains unchanged. Notice however that this
distinction only makes sense as long as the corrections introduced by A are
not the real part of an analytic function. If A = 2Re §(X), there is clearly
an analytic field redefinition of the S field

S'=5+6 (43)

for which o
Georr. = —log(S"+ S+ G (44)
a = 0a(5" = 6) (45)

After this field redefinition, which is acceptable in the standard formulation
since it is analytic, the one-loop effect appears now in the gauge coupling
constant, in fu. If however A is not the real part of an analytic function,
there is clearly no analytic field redefinition of S able to move A into fg.
Insisting on a change of variable of the form

13



is inconsistent with the standard formulation of supergravity. We have ac-
tually shown above how to implement such a non-analytic field redefinition,
which is what is required by the renormalization group equations (1), in a
consistent, supersymmetric way.

If one insists on manifest target-space duality invariance [8] of the effective
Lagrangian, in which case the tree-level Lagrangian and A [10] are separately
duality invariant, egs. (40) and (41) are the correct definitions for the loop-
corrected effective action. Using (44) and (45) would spoil duality symmetry.
In fact, the duality invariant form of A is (up to a multiplicative constant)
A = K + 2Re ¢, where K is the (tree-level) Kahler potential for all chiral
multiplets but S, .

G = K +log|uf?, (47)

and ¢ is a holomorphic modular function (8, 10].

4 Gauge-holonomy anomalies

In N =1, d = 4 supergravity, the axial ‘auxiliary field’ V,, has the geometrical
interpretation of a gauge connection, whose field strength locally coincides
with the Kahler two-form J. Local supersymmetry actually implies a global
property, namely that the first Chern class of the line bundle L (with gauge
connection V,) coincides with the cohomology class of J [22]. This is the
definition of restricted Kahler space, which can be conveniently coupled to
supergravity. The gauge transformations of V and the Kahler transforma-
tions of K (J = QOK) are related to the imaginary and the real parts of an
analytic function ¢(z)

V - V+2d(Im ¢) (48)
K — K+2Re¢) ’

which gives the gauge transformation of holomorphic sections of L (such as
the superpotential, determining the Yukawa couplings). The invariance K —
K + ¢ + ¢ corresponds to an exact invariance of the tree-level Lagrangian.
The composite holomorphic connection 9; K is similar to the spin connection
of Lorentz transformations in General Relativity. The transformations (48)
may be anomalous, in the same way as Lorentz transformations may. Let
us consider now a possible loop-correction to the tree-level string effective

14



action in which the S dependence is changed as follows
G(S+S5)— G(S+5+\K), (49)

where K is the tree-level Kahler potential for the chiral superfields different
from S, and, as will be discussed below, X is proportional to the coefficient of
the N = 1 beta-function. It is clear that this action is still Kahler invariant
provided we demand

S S—Xp when K—K+¢+¢. (50)
However, under a Kahler transformation one has also
SW? - SW? - \gW?. (51)

In components, this means that the overall change in the Lagrangian includes

1 apv a 1 a pv fra
AR S() P I, = TN Imo() P E, (52)

among many other terms. The second term is precisely an anomaly term for
chiral fermions charged under the local U(1) gauge symmetry associated to
V, and the first term is a B-function contribution due to the gauge coupling
constant renormalization (ReS — ReS + %/\k ). This indeed shows that
the B-function is related by supergravity to the axial anomaly, which is the
holonomy anomaly of the Kéahler manifold of the matter scalar fields.

As an example, we consider now the case of (2,2) Zy orbifolds [23]. In
these heterotic vacua, the six internal coordinates are compactified on the
quotient of an appropriate 6-torus by a point group Zy, with elements g*,
k=0,...,N—1. In asuitable basis, the generator g acts on the complexified
internal coordinates 2; (¢ = 1,2, 3), with phases e Twisted sectors k # 0
have phases n* = kn; (modulo 1). In N = 1 orbifolds, 3 nF = integer. For
discussing physical states and vertex operators, the most convenient picture is
such that 0 < 7¥ < 1 and left-handed (right-handed) sectors have s nF=1
(23, nF = 2). For these (2,2) orbifolds, the gauge group is Eg X H x EY,
where H(1) = U(1)? if the three phases 7; of the point group generator g are
all different, H® = SU(2) x U(1) if two phases are equal, and H® = SU(3)
if the three phases are 1/3. The representations of massless chiral multiplets
in the untwisted sector will be denoted by R (i = 1,2,3). The index ¢
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indicates that the GSO phase of R* is e*™. Chiral multiplets are neutral
under E}, and, for (2,2) orbifolds,

HO . RY =27 of Eg
R* = (217,2)
(2) . 1 ’
H® . Y= (271) of Eg x SU(2) (53)

H® . RY=(27,3) of Es x SU(3)
(for case H®, we have chosen n; = n,). If a phase n; = 1, each representation
27 is accompanied by a multiplet 27. In the untwisted sector, the number
of (1,1) and (2,1) moduli are equal to the number of massless 27 and 27
representations, respectively. In the twisted sectors k # 0, the representation
of the massless chiral multiplets will be denoted by RE.

Our goal is to compute the anomaly generated by the triangle diagram
with two external gauge fields A and one composite holonomy connection V/,
related to isometries of the sigma-model describing (untwisted) moduli. Such
sigma-model anomalies have been studied in ref. [24]. The connection V can
be written as a linear combination of the three internal orbifold currents J,, =
10z, (m =1,2,3). The anomaly diagram gives a contribution quadratic in
the gauge coupling constant g* of Eg, H or Ef, and linear in the coupling
constants of matter and gauge multiplets to V. The latter can be simply
obtained from the corresponding vertex operators [25]. The anomaly for the
current J; is characterized by the formal 6-form [26]

Ig* = c(g*)6"* T Te(F*)?, (54)

where J = dV and F'® are the holonomy and gauge curvature two-forms, and
c is a normalization constant. The coefficients §* (i = 1,2,3 and a refers to
G* = Eg, H or E}) can be computed for arbitrary orbifolds and read (see
also [21]):

Ji: 8= CO(G*)+ T(RY) — T(Ry) — T(R3) + Zi(2nf — )T(RY}),
Jp: 820 = C(G*) — T(RY) + T(Ry) — T(R3) + Za(2n; — VT(RL),
Jy: 6% = C(G*) —T(RY) — T(Ry) + T(Ry) + k(205 — 1)T(Ri)-( |
35
In these expressions, C'(G*) is the quadratic Casimir of each factor G* of the
gauge group, and T(R) = Tr(Tg)? for an arbitrary generator T of represen-
tation R of G*. It is apparent that the anomaly for the universal, internal

l
QQ
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current J = J, + J; + J5 of the N = 2 superconformal algebra is proportional
to the coefficients b% of the N = 1 one-loop B-function:

3

_23:5i’“ =3C(G) = Y T(Ry) - D_T(Ry) = b (56)

1=1

and is characterized by Is = ¢(g%)*beJTr(F*)?. Following the standard pro-
cedure of ref. [26], the consistent anomaly reads

I* = [d*zlg,

I8 = e(g")2be [0 Tr(A°dA®) — (1 — a)oTr(F*)?), (57)

where a is an arbitrary real constant and A* and o are the zero-form parame-
ters for gauge and internal (holonomy) local transformations. The ambiguity
in the regularisation of the triangle diagram is reflected by the parameter
a: choosing for instance @ = 0 corresponds to a regularization preserving
gauge invariance, with only the internal symmetries remaining anomalous.
Since we can use the antisymmetric tensor b,,, there exists a counterterm
able to cancel the anomaly I°: this is the four-dimensional analogue of the
Green-Schwarz mechanism [12]. The counterterm is

§5% = ¢ (¢%)2h / d*z[dB — (1 — &)1V, (58)

where Q¢ is the Chern-Simons form for the gauge group G* and B = b, dz* A
dz¥ /2. Tt is clear that for a = 0, the cancellation of the holonomy anomaly
for the current J leads then to a gauge invariant contribution to the one-loop
effective action:

3680 = ¢ Y(°)°8 / d*z[dB — 2V, (59)
assuming that, under gauge transformations [see also eqgs. (34), (35)],
2a(9°)*b569%
8dB = =221 60
>5(9°)2b5 (60)
When supersymmetrized, eq. (59) is precisely of the form (37) discussed
previously, with
A=Y RV (61)

a
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and () replaced by ,

2 Za (g a) bgﬂg

S POLT (%2)
The vector superfield V is the supersymmetrization of the composite (moduli
dependent) holonomy connection.

This example shows again how one-loop corrections to gauge kinetic
terms, as in expression (37), can be viewed as the counterterm for cancelling
holonomy anomalies. This analysis has been performed at the field theory
level only. Limiting ourselves to its moduli dependence, A can still be modi-
fied by the real part of a holomorphic function of the moduli f(7') which, how-
ever, in order to respect the continuous Peccei-Quinn symmetry, is fixed to be
linear in T, so that Re f(T') = a(T + T). String corrections, due to winding
modes, break this symmetry in such a way that A = ¢, (¢%)?6%[V+Re f(T)]
is a modular invariant function, as in ref. [10].

We have only considered the universal current J = J; + J; + J3. This is
indeed sufficient for the Z3 orbifold: the manifold of the nine (1, 1) moduli is
SU(3,3)/SU(3)x SU(3)xU(1) and only the Abelian current, which coincides
with J, can possibly generate a mixed anomaly. This is also sufficient for Z,
orbifolds, for which

61,0. — 62,«1 — 53,:1.

Other Zy orbifolds, with N non-prime, will generate several anomalies [21].

We close this section by considering the part of the function G describing
moduli and generation kinetic and superpotential terms (this is the function
denoted by G in eq. (40)). It is clear from eq. (47) that the superpotential
w transforms under (50) according to

w — e %w. (63)

The effect of gaugino condensates [27, 19, 28] can be viewed as an additional
term to the superpotential w, which follows from the following argument.
The scale at which an asymptotically-free gauge interaction, with running
coupling constant g*(@), becomes strong is M exp( bg?gL:P)’ where ¢* is the

value of ¢%(Q) at the Kaluza-Klein scale Mg ~ R™1. At tree-level 7,

(¢°)"? = Re S,

"We omit the Kac-Moody level, for simplicity.
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but this is no longer the case in the loop-corrected effective theory. In the
generalization of Lagrangian (38) to the case of a semisimple gauge group
G = [I, G*, gauge kinetic terms arise from —[(S + 5)Q]p, Q being defined
in eq. (62). The relation between the gauge coupling constants (at the
Kaluza-Klein scale) and the S-field becomes then

1 (9*)*b8 bg
= Re S = Re S,
(g°)2  S4(g%)%85 5 b5

using the previous relation for the tree-level coupling constants. The com-

plete superpotential, including the contributions from gaugino condensates,
takes then the form

w=>y K, €247 S/ 20,08 w;xC'CICF, (64)

where C* stands for the generation superfields and &, replaces gaugino con-
densates. Under the Kahler transformation of the moduli space (50), w;;x —
e~ 2w,pe, C' — €#/3C* and, in order to fit the transformation of S,

1

/\ = — ; mbo, (65)
which in turns determines ]
T Tor (66)

in the one-loop contribution (61), since we have demonstrated in sect. 2
and 3 how loop corrections can be represented as a correction to S [as in
eq. (40)] or as a correction to gauge kinetic terms. Eq. (64) also shows the
self-consistency of our anomaly considerations.

5 Scalar potential

In view of possible applications, for example the discussion of supersymme-
try breaking via gaugino condensation [27,19,28] and/or other mechanisms
[29,30], it is useful to write down explicitly the scalar potential associated to
the supergravity theory specified by eqgs. (40), (41). Defining for convenience

Y=5+5+A, (67)
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[recall that Y can be viewed as the inverse bare coupling constant, eq. (46)]
the Kihler metric mixes now the S field with the other fields %'

1 A A;
S _ — s _
Gs® = v Gs' %z G;,” = v2’
AN . A
" R
G =S5 +G -5 (68)
We will make now the ansatz, suggested by the previous discussion
A =kG, . (69)
This allows us to write
G i=_ (A7 +Y(Y - k)G, 70
[ W g ) T ) ( )

with the positivity of the Kahler metric implying Y > k. The inverse Kahler
metric is easily found to be

g—l

Y (Y(Y—k)wka‘;“zxz —A’“G;”), (1)

“v_k _giﬂ N Qi—lj
and from this the corresponding F-term part of the scalar potential reads

Vi _Ve, K

ga,‘ = EZ]— Y — kgAngz—l jgja (72)

which is certainly positive semidefinite for £ > 0.

In the case of superstring low-energy effective actions, however, the gauge
group G is the product of different simple or U(1) factors G*, and the struc-
ture of the scalar potential is going to be more complicated: a detailed dis-
cussion of this case goes beyond the aim of the present paper and will be
given elsewhere [21].

6 Conclusions

To conclude, we have shown in this paper that, contrary to common wisdom,
the occurrence of non-harmonic functions in the gauge boson kinetic terms
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can be perfectly consistent with (local or global) supersymmetry. The super-
symmetrization procedure relies on the use of the Yang-Mills Chern-Simons
superfield Q) instead of the usual superfield W?2. However, gauge invariance
requires the introduction of a linear multiplet, which implements an anomaly
cancellation mechanism closely analogous to the Green-Schwarz mechanism.
Indeed, the use of the linear multiplet does not provide any constraint on the
form of the gauge kinetic terms: even if each theory formulated with a linear
multiplet can be dualized into a supergravity of the standard form [15,16],
the non-analytic terms are transported into the Kahler function by the du-
ality transformation. The function f,,, which defines gauge kinetic terms
in the standard formulation, is completely insensitive to the non-harmonic
terms.

By a superfield duality transformation, this theory can always be trans-
formed to a standard supergravity Lagrangian with f,, = Sés, L being
replaced by the chiral multiplet S. The non-harmonic contributions to the
gauge kinetic terms of the original, ‘linear’ theory are moved to the Kahler
potential for S, in the transformed standard theory. The axionic coupling to
FF cannot be obtained in the L version of the theory: such a term does not
appear in the Lagrangian, and it cannot be obtained by partial integration.
Only the duality transformation will generate it. Remember that the duality
transformation can be viewed as a non-analytic field redefinition: such a field
redefinition is not compatible with the standard formulation of supergravity
as given in ref. [15,16].

The loop effects considered in this paper are not directly related to the
threshold corrections computed in ref. [10], which are due to extra isometries
of the moduli space. However, the interpretation of these effects as o—model
anomalies should also apply to that case.

Finally, we would like to mention that the full supersymmetric anomaly
term should also contain F-terms coupling the S—field to the c—model and
gravitational curvatures, of the form [7,13]

cSWo(K)? +dSW2,,. (73)

These terms represent however higher derivative corrections to the effective
action [31], and have been neglected in the context of our discussion.
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