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Abstract: We calculate the double pole contribution to two to four fermion scattering

through W± currents at tree level in the Standard Model Effective Field Theory (SMEFT).

We assume all fermions to be massless, U(3)5 flavour and CP symmetry. Using this re-

sult, we update the global constraint picture on SMEFT parameters including LEPII data

on these charged current processes, and also modifications to our fit procedure motivated

by a companion paper focused on W± mass extractions. The fit reported is now to 177

observables and emphasises the need for a consistent inclusion of theoretical errors, and

a consistent treatment of observables. Including charged current data lifts the two-fold

degeneracy previously encountered in LEP (and lower energy) data, and allows us to set

simultaneous constraints on 20 of 53 Wilson coefficients in the SMEFT, consistent with

our assumptions. This allows the model independent inclusion of LEP data in SMEFT

studies at LHC, which are projected into the SMEFT in a consistent fashion. We show

how stronger constraints can be obtained by using some combinations of Wilson coeffi-

cients, when making assumptions on the UV completion of the Standard Model, or in an

inconsistent analysis. We explain why strong bounds at the per-mille or sub-per-mille level

on some combinations of Wilson coefficients in the Effective Lagrangian can be artificially

enhanced in fits of this form in detail. This explains some of the different claims present

in the literature.

Keywords: Effective field theories, Precision QED

ArXiv ePrint: 1606.06693

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP09(2016)157

mailto:berthier@nbi.ku.dk
mailto:mikkel.bjoern@physics.ox.ac.uk
mailto:michael.trott@cern.ch
http://arxiv.org/abs/1606.06693
http://dx.doi.org/10.1007/JHEP09(2016)157


J
H
E
P
0
9
(
2
0
1
6
)
1
5
7

Contents

1 Introduction 1

2 Four fermion production in the SMEFT 4

2.1 The CC03 matrix elements 4

2.2 The double pole approximation in the SM 6

2.3 The double pole approximation in the SMEFT 8

2.4 The CC03 cross section in the SMEFT 10

2.5 Angular distributions 10

3 Global fit in the SMEFT 12

3.1 mW data 13

3.2 δX constraints and correlation matrix 14

3.2.1 Understanding δX constraints 14

3.3 Global analysis results on Wilson coefficients 17

3.4 The Eigensystem and constraints on the leptonic couplings of the Z 21

4 Conclusions 24

A Core shifts of parameters due to the SMEFT 26

A.1 Redefinition of ΓW 26

A.2 Redefinitions of triple-gauge-coupling parameters 27

B Parametrisation of phase space 28

C Spinor helicity conventions 29

1 Introduction

What is the shape of possible physics beyond the Standard Model? This question has

been returned to with renewed vigor in recent years, after the discovery of a Higgs like

JP = 0+ boson at LHC. In this paper we investigate this question using the Standard

Model Effective Field Theory (SMEFT) formalism. We assume that SU(2)L × U(1)Y is

spontaneously broken to U(1)em by the vacuum expectation value (〈H†H〉 ≡ v̄2
T /2) of the

Higgs field, and the observed 0+ scalar is embedded in a doublet of SU(2)L. We also

assume a mass gap to the scale of new physics ∼ Λ. The SMEFT Lagrangian that follows

from this assumption, is the sum of the Standard Model (SM) Lagrangian and a series of

SU(3)C × SU(2)L ×U(1)Y invariant higher dimensional operators built out of SM fields

LSMEFT = LSM + L(5) + L(6) + L(7) + . . . (1.1)
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where L(k) contains the dimension k operators O
(k)
i . The number of non redundant op-

erators in L(5), L(6), L(7) and L(8) is known [1–7] and a general algorithm to determine

operator bases at higher orders has been established in ref. [6, 7]. We adopt a naive power

counting in mass dimension so that the operators O
(k)
i will be suppressed by k − 4 powers

of the cutoff scale Λ;

L(k) =

nk∑
i=1

C
(k)
i

Λk−4
O

(k)
i for k > 4, (1.2)

where the C
(k)
i are the Wilson coefficients1 associated to the operators O

(k)
i . This approach

conforms with the standard and well validated understanding of model independent EFT. It

is unnecessary to adopt more restricted UV assumptions to globally constrain the SMEFT

from data, however, we will also illustrate that once general model independent results are

obtained, how these results project into a variety of more restricted scenarios.

Indirectly constraining physics beyond the SM is of great value. This is clearly the case

when there is no direct collider evidence of new physics to guide model building. Even when

partial hints of physics beyond the SM exist, such an approach is still critical to globally

understand the data set. Broadly speaking, global constraint works can be grouped into

the following categories:

• The STU core. In advance of LEP data, the utility of parameterizations of vac-

uum polarization effects to indirectly constrain the source of Electroweak Symmetry

Breaking was appreciated in a series of papers [8–14]. The capstone of these develop-

ments was the work of Peskin and Takeuchi establishing the modern STU formalism

in ref. [14]. The STU approach has had manifest utility over the years. On the other

hand, the STU approach is defined with conditions that are not field redefinition

invariant, considering an operator level EFT interpretation of EWPD.2 Despite this

limitation, the STU approach was efficient at constraining indirectly the possible

mass of the Higgs Boson when the SM is assumed, by construction. The validation

of the inferred Higgs mass with the discovered 0+ state’s mass is further support for

the historical importance of the STU approach.

• The LEP and post-LEP interpretation and STU extension phase. Immediately after

the establishment of the STU approach, extensions to this parameterization were

advanced in the literature. These extensions allow the mass scale of new physics

to be lower [15, 16] than implicitly assumed in the STU formalism, or for a set of

data off the Z pole to be accommodated in some limited cases of physics beyond

the SM. Several of these works focused on the potential of LEPII data [17, 18], and

measurements sensitive to Triple Gauge Couplings (TGCs) in an EFT framework [19–

21], with ref. [22] being a core reference.

1Note that in this paper we generally absorb the cut off scale into the Wilson coefficients associated to

the dimension 6 operators, which then have mass dimension −2 unless otherwise noted.
2Attempts to deal with this situation by restricting ones attention to classes of UV theories that are

consistent with the STU defining assumptions, do allow model dependent interpretations of EWPD in the

STU framework of course.
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• The development of the SMEFT analysis. This approach is advanced further in this

work, and was developed in parallel to some of the developments above. Immedi-

ately following the initial STU analysis works, ref. [23] performed an operator EFT

analysis of electroweak precision data. The next major advance in this effort was

achieved in ref. [24] where a global analysis similar to the work presented here was

performed. These efforts were hampered by the lack of any non-redundant minimal

operator basis for L(6). With the establishment of this basis in ref. [2], progress in

SMEFT global analyses was reinvigorated. Refs. [25–39] made contributions to this

effort and ref. [40–42] has recently formed a line of developments that are distinct

from past analyses, in their consideration and treatment of theoretical errors in the

SMEFT. The conclusions reached in these works, are that model independent con-

straints on parameters in L(6) require a careful consideration of theoretical errors in

the SMEFT, and that such a consideration can weaken model independent bounds

to the percent level on the combinations of parameters Civ̄
2
T /Λ

2. However we stress,

as was also stressed in ref. [40–42] that if this relaxation occurs, or not, strongly

depends on the unknown UV physics underlying the SMEFT. Nevertheless, as gen-

eral model independent bounds are intended to cover all UV cases consistent with

analysis assumptions, this can still dictate a model independent statement.

The past results of two of us, were limited by the presence of two flat directions in the

Wilson coefficient space in the global fit [40, 41]. In this work we address this issue in a

consistent and reproducible manner in the SMEFT. Doing so, it is important to calculate

the full cross sections for charged current LEPII data that we report, and not use a TGC

parameterization as effectively an observable. An off-shell TGC vertex is not an observable

in the sense that such a vertex is gauge dependent and is not trivially mapped to the S

matrix due to its off-shellness. The problems introduced when not using an observable to

constrain the SMEFT parameter space model independently were emphasized in ref. [34].

To overcome these issues, it is required to calculate two to four fermion scattering through

W± currents in order to fit LEPII data at leading order in the SMEFT power counting. In

this paper we perform this calculation in the SMEFT using the Warsaw basis [2] for L(6)

and perform this fit.

Our results include the consistent redefinition of the set of parameters used in mak-

ing the two to four fermion scattering observables and assume massless initial and final

state fermions, U(3)5 flavour and CP symmetry, but are not limited to formally on-shell

intermediate W± bosons, or a TGC parameterization. With these assumptions in mind,

we calculate the CC03 production cross section3 utilizing the double pole approximation

in the SMEFT to define the off-shell two to four fermion scattering through W± charged

currents in the SMEFT. We present the calculation and results in section 2. LEPII results

on the CC03 cross sections are extracted from measured e+e− → 4f -events [43–45]. Using

our results and the measurements in tables 12, 13, 14 we update the global fit initiated

in [40, 41] and give model independent constraints on 20 Wilson coefficients in section 3.

3The CC03 cross section is a subclass of the full set of diagrams appearing at tree level, motivated by the

different scaling and pole structure of the various diagrams contributing to the processes. See refs. [43–45]

for more discussion.
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In a companion paper, we explain how mW measurements were included in past fit efforts

in a manner that was not optimal for the SMEFT. We also adopt the recommendations

of [46] and incorporate extractions of the mW mass from the Tevatron, and related LEPII

data in a more consistent manner in this work.

The general model independent results we report must be interpreted with care. We

explain and illustrate how significantly different conclusions have been reached in the lit-

erature for effective combinations of Wilson coefficients present in the SMEFT Lagrangian

when it is rotated to mass eigenstate for the W±, Z bosons, or Wilson coefficients in

the Warsaw basis. Essentially, these different conclusions are related to different (usually

implicit) assumptions about the UV physics underlying the SMEFT allowing significant

cancelations between parameters (in the case of the Warsaw basis) or not (in the case of

mass eigenstate parameters). The limited theoretical development4 of the SMEFT to date

also limits the strength of the model independent bounds that can be drawn. The dif-

fering conclusions are most difficult to reconcile when the results are presented as general

model independent bounds, that are intended to span all possible UV cases. This diffi-

culty is relaxed when theoretical errors for the SMEFT itself are considered and included

in a fit of this form [40, 41]. We demonstrate how UV assumptions strongly enhance the

strength of bounds on the Wilson coefficients of the individual operators in the SMEFT,

and how fits to some combinations of Wilson coefficients in the Effective Lagrangian5 can

be subject to significant theoretical errors. Our results clearly explain the discrepancies

present in the literature and support the conclusion (already argued in refs. [40, 41]) that

the SMEFT analysis of LEP data should be further developed theoretically, in order to

robustly develop model independent results with sub-dominant theory errors. The global

χ2 constructed is fully reproducible from the results reported in this paper and the Fisher

information matrices, that are available from the authors upon request.

2 Four fermion production in the SMEFT

This paper further develops the results reported in refs. [40, 41, 48]. Our notation and

conventions are consistent with these works. We use bar superscripts for parameters in the

canonically normalized SMEFT, and hat superscripts for measured input parameters, or

parameters directly related to input parameters at tree level using SM relations. We use

the input parameter set {ĜF , m̂Z , α̂}.

2.1 The CC03 matrix elements

The theoretical cross section of the double pole contribution to the process

e+ (k+, λ+) e− (k−, λ−) → W+ (k12, λ12)W− (k34, λ34)

→ fλ11 (p1) f̄λ22 (p2) fλ33 (p3) f̄λ44 (p4) ,

4The lack of a consistent set of one loop results for LEP data interpreted in the SMEFT in particular.
5We generally refer to these parameters as δX parameters, mass eigenstate parameters, or “core shifts” in

this paper. This is consistent with our previous usage for these parameters in ref. [40, 41]. These parameters

correspond to combinations of Wilson coefficients that appear in a number of Feynman diagrams. However,

it is important to note that these combinations of parameters do not constitute an operator basis for the

SMEFT [47].
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(a) (b)

Figure 1. The s-channel (a) and t-channel (b) CC03 Feynman diagrams contributing to e+e− →
W+W− → f1f̄2f3f̄4. The diagrams can be understood either in the SM, or in the SMEFT by taking

couplings and gauge boson vector masses to be redefined as described in section 2 and appendix A.

is computed from the CC03 set of three (Charged Current) Feynman diagrams shown in

figure 1. Final states can be either fully hadronic (q, q, q, q), semi-leptonic (`, ν, q, q) or

fully leponic (`, ν, `, ν). We use the the spinor helicity formalism of ref. [22, 49], where

the helicities are labeled {λ±, λ12, λ34, λ1,2,3,4}. In appendix A we list some of the results

of refs. [40, 41] that are used directly in this work to make the paper self contained. We

also summarize some simple parameter redefinitions in the SMEFT that are used in the

cross section results in the appendix. Further, appendix B gives details on the phase space

definitions, which also defines some of our notation. The matrix elements corresponding

to each diagram are decomposed into separate factors for W+W− production and decay

Mν = D̄W (s12)D̄W (s34)Mλi
ν M

λ12
W+Mλ34

W− (2.1)

MV = D̄W (s12)D̄W (s34)Mλi
VM

λ12
W+Mλ34

W− (2.2)

with V = {A,Z} and the sub-amplitudes

Mλi
ν =Mλ12λ34λ+λ−

ee→WW,ν , Mλi
V =Mλ12λ34λ+λ−

ee→WW,V , (2.3)

Mλ12
W+ =Mλ12

W+→f1f̄2
, Mλ34

W− =Mλ34
W−→f3f̄4

(2.4)

are given in the tables 1a, 1b, 9 and 10 and D̄W (sij). The W±-propagators are denoted

D̄W (sij) =
1

sij − m̄2
W + iΓ̄W m̄W + iε

. (2.5)

and we have chosen to define the width in an s independent manner. The challenge of

defining gauge invariant expressions for this process, due to the requirement of defining

the propagator of the unstable W± bosons, is well known [50–52]. We return to this

point below.

The W±-decay matrix elements Mλ12
W+→f1f̄2

and Mλ34
W−→f3f̄4

are shown in table 1 for

the helicity values λij = {0,+,−, L}. We denote the longitudinal polarization of the virtual

W± bosons with an L, which vanishes in the case of massless fermions, so we subsequently

neglect it. In obtaining the expressions for the helicity amplitudes, we have checked against

ref. [22], finding agreement with the SM expressions. We give details on the calculation in

– 5 –
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λ12 Mλ12
W+→f1f̄2

/C
√

2πα̂

0
−2ḡ

W,f1
V
sθ̂

√
s12 sin θ̃12

+
ḡ
W,f1
V
sθ̂

√
s12

√
2
(

1− cos θ̃12

)
eiφ̃12

− ḡ
W,f1
V
sθ̂

√
s12

√
2
(

1 + cos θ̃12

)
e−iφ̃12

L 0

(a)

λ34 Mλ34
W−→f3f̄4

/C ′
√

2πα̂

0
2 ḡ

W,f3
V
sθ̂

√
s34 sin θ̃34

+
−ḡW,f3V
sθ̂

√
s34

√
2
(

1− cos θ̃34

)
e−iφ̃34

− −ḡW,f3V
sθ̂

√
s34

√
2
(

1 + cos θ̃34

)
e+iφ̃34

L 0

(b)

Table 1. The W±-decay amplitudes decomposed in helicity Eigenstates. C ′ = {1,
√

3} for leptons

and quarks respectively.

appendix C including the extension to the SMEFT case. In table. 1 we show the results

for the decomposition of the W± decay amplitudes into Helicity eigenstates to briefly

familiarise the uninitiated reader with this formalism.

2.2 The double pole approximation in the SM

In the SM, the definition of gauge independent doubly resonant contributions to σ(e+e− →
f̄1 f2 f̄3 f4) is afflicted with a series of subtleties. We first briefly review the well known

issues in the SM, discussed in part in ref. [50–54], based on the excellent and extensive

discussion in ref. [53]. These subtleties are also relevant when considering the SMEFT

expression for the corrections to this process in a consistent approach.

First consider on-shell σ(e+ e− → W+W−). In this case, the three CC03 diagrams6

are manifestly gauge invariant in two sub-expressions for the amplitudes sensitive to a par-

ticular coupling in the SM: {e, g2}. So long as the W± are considered to be experimentally

reconstructed states, that are effectively treated as asymptotic states of the S matrix, fur-

ther subtleties can be avoided when considering the tree level expressions for this process.

If the precision of SM predictions is desired to reach a level that is sensitive to perturbative

corrections, or ΓW /mW corrections — which is essentially the percent level and potentially

the size of SMEFT corrections — then this approximation fails. To incorporate LEPII

data that is dominantly off-shell with s > 4 m̄2
W , the theoretical expression for off-shell

production must be used.

For off-shell production, the situation is more subtle, even when considering a Born

approximation to the process. In this case, the CC03 diagrams are not trivially gauge

invariant as a subset of the full amplitude. The reason is that the W± is not being treated

as an asymptotic state, so a cut in the Feynman diagram imposing two simultaneous W±

states is no longer well defined. It can be shown that the difference in the axial and t’Hooft-

Feynman gauge expressions for the CC03 diagrams when considering off-shell production

generates a single-resonant diagram contributing to the σ(e+e− → f̄1 f2 f̄3 f4) process [53].

Including such singly resonant diagrams in four fermion production are sometimes referred

6CC03 diagram contributions to two to four fermion scattering were calculated in refs. [19, 22, 53, 55–61].

– 6 –
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to as the CC11 diagrams in the literature, and some results are reported in ref. [62]. Thus

the set of doubly resonant CC03 diagrams is not individually gauge invariant for off-shell

W±. The sum of the single resonant and double resonant diagrams are in general a gauge

invariant subset of diagrams, up to considerations of defining the W± propagator with a

finite width. This is the case, since for diagrams where final state fermions are distinct

from the initial state fermions, these are the only sets of diagrams contributing [53].

Naively, once the full set of doubly resonant, singly resonant, and non resonant dia-

grams are included, one might consider gauge invariance a non-issue. However, it is still

required to define the propagator of the unstable W± bosons. There is no unique pre-

scription for the definition in the field theory. Various choices can be made, defining the

contribution of the width to the propagator as s2 ΓW /mW or ΓW mW , leading to gauge in-

variant results. However, the individual double resonant, single resonant and non-resonant

diagrams are not individually gauge invariant, and this remains the case when a naive

substitution of a finite width in the W± propagator is included.

The effective resolution of these issues in the SM is the use of the double pole scheme

to define the process. In this scheme, the full amplitude is decomposed as [53]

A(s12, s34) =
1

s12 − m̄2
W

1

s34 − m̄2
W

DR[s12, s34,Ω] +
1

s12 − m̄2
W

SR1[s12, s34, dΩ],

+
1

s34 − m̄2
W

SR2[s12, s34, dΩ] + NR[s12, s34, dΩ]. (2.6)

Here DR, SR1,2 and NR refer to the doubly resonant, singly resonant and non-resonant

contributions to the amplitude respectively, and Ω refers to all angular dependence refined

in an s12, s34 independent manner. Note that the SR1,2 results include subtractions of

components of the CC03 diagrams, and the NR results include subtractions of components

of the CC11 set of diagrams.

The residues of the double pole contribution are defined as DR[m̄2
W , m̄

2
W ,Ω] in a Lau-

rent expansion around the physical poles in the process. The residues of the poles are then

gauge invariant as they can be experimentally measured (in principle). The width of the

unstable W± is then added into these pole expressions after the residues are determined,

and the individual pieces of the sub-amplitudes are then gauge invariant. This approach,

with perturbative corrections, underlies the SM prediction of this process in the double

pole approximation in refs. [53, 63–66]. This approach can also be justified in an EFT

approach to unstable particles [54]. When considering the doubly resonant contribution

defined in this manner, corrections are ΓW /m̄W ∼ O(%).

Note that this procedure effectively defines the SM prediction of this process when

considering LEP data. The data reported is corrected back to the CC03 set of diagrams

by performing Monte-Carlo studies on the full set of diagrams contributing to this process

and comparing the predictions of the doubly resonant contribution.7 This is the data we

incorporate into the global fit in the remainder of the paper, so an understanding of the

double pole definition of the cross section in the SMEFT is required.

7This inferred correction factor is modified by SMEFT corrections, but this neglected theoretical error

scales as ΓW /mW v̄2T /Λ
2 ∼ 10−2v̄2T /Λ

2, and is accommodated by SMEFT theory errors included in the fit.

– 7 –
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2.3 The double pole approximation in the SMEFT

When considering the definition of the corrections to this process in the SMEFT, the dis-

cussion in the previous section on the difficulties present in defining the two to four fermion

scattering process through charged currents, explains some long standing disagreements in

the literature. The most naive approach to take when considering higher dimensional op-

erators contributing to LEPII measurements is as follows. Expand out just the effects of

the operators leading to the TGC parameters, add these contributions to the calculation of

a narrow width approximation to σ(e+ e− →W+W−), and compare to the data reported

for the CC03 off-shell diagrams, defined in a double pole prescription from LEPII. Directly

using the data reported in refs. [67, 68] and treating the TGC parameter as an observable

in this manner, is not a gauge and field redefinition invariant procedure.

A TGC parameter is a constructed observable [34] inferred from the actual measure-

ment, and care must be taken when using such a measurement to constrain the parameter

space of the SMEFT. The main issue can be traced back to approximating the W± boson

as effectively an asymptotic external state in the calculation, and the inconsistency of this

treatment with the field redefinitions in the SMEFT to define an L(6) operator basis. Recall

that operator bases are defined by first constructing all gauge invariant operators of a mass

dimension and then performing small field redefinitions of O(1/Λ2) on the field variables.

Using the EOM on the transformations that result allows a minimal non-redundant oper-

ator basis to be defined by essentially aligning the field variables with the external states,

consistent with the classical equations of motion conditions.8 Treating the W± directly

as a classical external state (even when it is off shell) and not an internal off-shell field

variable in all calculations9 might be considered equivalent to this procedure but this is

actually inconsistent with obtaining basis independent constraints on the field theory, as

it is simultaneously required to perform field redefinitions on the W± boson, in order to

even define a non-redundant operator basis.

Aspects of this issue has lead to long standing claims that some L(6) operator bases are

“better” to use to incorporate constraints due to LEPI and LEPII data, despite the fact that

constraints on the S matrix are basis independent. These claims use the data in a manner

that treats the W± as directly an external state, and are choosing L(6) parameters aligned

with such a (mis)treatment of the data.10 However, these results are problematic as they

are not consistent constraints on the SMEFT parameter space that are basis independent

and such a procedure is ambiguous and inconsistent in practice.

The resolution of this issue for the LHC physics program is important, as operator bases

can be chosen so that the number of parameters in L(6) contributing to LEPI data, exceeds

the number of LEPI pseudo-observables - resulting in the famous two flat directions in LEPI

data [24]. As such, model independent and basis independent bounds that incorporate the

strong constraints of LEPI data, must incorporate LEPII constructed observable data on

8So long as the field redefinitions are defined in a gauge invariant manner.
9While not using the background field method.

10In particular factorized expressions are used for charged current processes that assume a “SM-like” W±

and Z decay to fermions, where possible corrections due to L(6) are set to zero in these decays. However,

this assumption corresponds to different parameters in different operator bases.

– 8 –
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CC03 cross sections in some manner. It is important to incorporate these constraints in a

basis independent manner when reporting model independent analysis to use in studying

LHC data. The clear resolution to all of these issues is to calculate directly the doubly

resonant contribution to LEPII data in the SMEFT and use this result to consistently fit

the data. This is the approach we take in this paper.

The procedure to follow to incorporate this data consistently in this formalism is as

follows. We define the SMEFT CC03 cross section in direct analogy to the double pole

prescription of the SM. The amplitude is again defined as the residues of the double pole

contribution as DR[m̄2
W , m̄

2
W ,Ω] in a Laurent expansion around the physical poles in the

process. The relationship between the physical poles taken to define the residues, and the

parameters in the SMEFT Lagrangian differ from the SM Lagrangian at leading order in

the power counting

δm2
W

m̂2
W

=
cθ̂sθ̂

(c2
θ̂
− s2

θ̂
) 2
√

2ĜF

[
4CHWB +

cθ̂
sθ̂
CHD + 4

sθ̂
cθ̂
C

(3)
Hl − 2

sθ̂
cθ̂
Cll

]
. (2.7)

We take this correction into account when using LEPII data to constrain the SMEFT

parameter space. We emphasize that: The residues of the poles of the doubly resonant

CC03 diagrams are fixed to be equal to s12 = s34 = m̄2
W , the pole value in the SMEFT

including the leading L(6) corrections. We then define the width in the W± propagator to

be independent of s and expand the propagator factors in the SMEFT corrections

χ̄ (sij) = D̄W (sij) D̄
∗W (sij)

=
1(

sij − m̄2
W

)2
+
(
Γ̄W m̄W

)2 =
1(

sij − m̂2
W

)2
+
(

Γ̂W m̂W

)2 [1 + δχ (sij)] ,

where the modification is given by

δχ (sij) =

[
−2
(
sij − m̂2

W

)
+ Γ̂2

W

]
δm2

W − 2Γ̂W m̂
2
W δΓW(

sij − m̂2
W

)2
+
(
m̂W Γ̂W

)2 ,

and has the same pole structure as the cross section itself. This second step is required to

be able to perform a well defined statistical (χ2) minimization procedure when the input

parameter set {ĜF , m̂Z , α̂} is used. The difference in this approach and an alternative

approach which expands the propagators, and then fixes to the SM tree level value of the

W± mass, s12 = s34 = m̂W , is conceptually related to considering the calculation to be in

the SM or the SMEFT.

Considering this discussion, the utility of adopting the input parameter set

{ĜF , m̂Z , m̂W } in future SMEFT studies is manifest. When incorporating LEPII data,

other off-shell data at LHC, or interfacing with the developing Higgs pseudo-observable

program [69–72] such an input set makes double pole calculations required to define off

shell data easier to carry out in the SMEFT. It would be unfortunate to adopt a SMEFT

implementation for LHC data that is “hard wired” to the {ĜF , m̂Z , α̂} input parameter

set for this reason, as has been discussed elsewhere at length [47].
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2.4 The CC03 cross section in the SMEFT

The total spin averaged cross section, for the process e+e− →WW → f1f̄2f3f̄4 is

σ̄CC03(s) =

∫ ∑
|M|2

8s

ds12ds34

(2π)2

[
β̄12

8π

d cos θ̃12

2

dφ̃12

2π

][
β̄34

8π

d cos θ̃34

2

dφ̃34

2π

] [
β̄

8π

d cos θ

2

dφ

2π

]
,

(2.8)

where∑
|M|2 = |D̄W (s12)D̄W (s34)|2

∑
λ12,λ′12

∑
λ34,λ′34

(
Mλ12

W+

)(
Mλ′12

W+

)∗ (
Mλ34

W−

)(
Mλ′34

W−

)∗
×
∑
λ+

∑
λ−

(
Mλ12λ34,λ+,λ−

ee→WW

)(
Mλ′12λ

′
34,λ+,λ−

ee→WW

)∗
, (2.9)

and we decomposed the the 8 dimensional four-body phase space as a product of three

two-body phase spaces. The angles in the rest frames of the decaying W± bosons are

defined with tilde superscripts. The Mν/γ/Z are reported in the appendix. The phase

space factors are

β̃ =

√
1− 2 (s12 + s34)

s
+

(s12 − s34)2

s2
, β̃ij = 1.

and the phase space is given by

φ̃12, φ̃34, φ ∈ [0, 2π], cos θ̃12, cos θ̃34, cos θ ∈ [−1, 1],

s34 ∈ [0, (
√
s−
√
s12)2], s12 ∈ [0, s].

The effects of the SMEFT on the CC03 cross section computation are multi-fold, changing

the absolute and relative normalizations of the diagrams, and shifting Γ̄W , m̄W . When

carrying out the integrations in eq.(2.8), the angular integrals can be done analytically

for the total cross section. We used the Cuba Integration Library [73] for performing the

numerical integrals when required to calculate the differential cross sections. We show

δσCC03/σCC03 as a function of s due to each of these shifts in figure 2. Note that some of

the δX shown on the right hand plots are set to zero in some previous analyses, despite

the large numerical enhancement of these shifts. It is unjustified and unnecessary to set all

of the corrections in the figure 2(b) — which contain flat directions in some operator bases

— to vanish when incorporating this data. We use the predictions for the δX parameters

in table 2 for the global fit. Note that these numerical results can be mapped to any basis

of operators, including the Warsaw basis using the formulii in the appendix. Note that

these shift variables are correlated theoretically, considering the gauge invariance of the

underlying operators.

2.5 Angular distributions

The LEPII collaborations reported combined angular distributions for the CC03 diagrams,

as well as total cross section data. To incorporate this data, the angular cut for the charged

– 10 –
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(a) (b)

(c) (d)

Figure 2. The s-dependence of |∂σCC03/∂δX| for (a) the shifts of the δX TGC parameters and

(b) the remaining δX SMEFT shifts contributing to the σCC03 result in our approach. Figure (c)

shows the dependence on the δX TGC parameters in dσCC03/d cos θ results (note the linear scale),

while figure (d) shows the remaining δX SMEFT shifts impact on dσCC03/d cos θ. Each shift is

normalized by the average value of dσCC03/d cos θ for each bin individually. Note we do not plot

the δΓZ/Γ̂Z dependence, which is O(10−4), and note the different scales of the left and right plots.

The structure in figure (a) is due to the effective sign change of the corresponding shift, and the

log plot, not resonant behavior.

lepton identified in the decay of the W± is restricted to be 20◦ from the beam line [67].

Explicitly, the angle θ` is the angle between the outgoing charged lepton and the beam

line. We incorporate this cut via the constraint −0.94 < cos θ` < 0.94 where

cos θ` =
− sin θ̃12 cos φ̃12 sin θ + γ12(β12 + cos θ̃12) cos θ

γ12(β12 cos θ̃12 + 1)
. (2.10)

Here γ12 = (s + s12 − s34)/2
√
s s12.11 In order to avoid overfitting when a correlation

matrix is unknown, we restrict the angular data that we incorporate in the fit to the bins

11We neglect the numerically suppressed correction due to this angular distribution cut in redefining

parameters appearing in eq. (2.10) in the SMEFT. Such shifts are lower dimensional in the phase space

(proportional to δ functions) and our theoretical error is sufficient to account for this neglected correction.
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√
s

δm2
W

m̂2
W

δΓW
Γ̂W

δgνW δg±W δgZV δgZA δgZ1 δκγ δκZ δλγ δλZ

188.6 2.6 −17. 72. 34. 5.3 0.3 −0.08 −0.50 −0.19 −0.29 0.026

191.6 1.6 −17. 73. 34. 5.8 0.4 −0.10 −0.56 −0.22 −0.32 0.018

195.5 0.26 −17. 74. 34. 6.5 0.6 −0.12 −0.64 −0.27 −0.36 0.005

199.5 −0.54 −17. 75. 34. 7.1 0.8 −0.15 −0.71 −0.31 −0.40 −0.009

201.6 −0.97 −17. 75. 34. 7.4 0.9 −0.16 −0.75 −0.33 −0.42 −0.017

204.8 −1.4 −17. 75. 34. 7.8 1.0 −0.18 −0.80 −0.37 −0.44 −0.029

206.5 −1.8 −17. 76. 34. 8.0 1.1 −0.19 −0.83 −0.39 −0.46 −0.036

208. −2.0 −17. 76. 34. 8.2 1.2 −0.20 −0.85 −0.40 −0.47 −0.042

Table 2. Total cross section contributions due to δX in pb. The results are normalized for

semileptonic final states. To normalize to fully leptonic decays the results are divided by 4.04. For

only quark final states, the results are multiplied by 1.01. δgνW = δg`W denotes the W±coupling

to e+e− in the t-channel diagrams, whereas g±W = gqW or g`W denotes W -coupling to final state

fermions, and depends on which final state is considered. δΓZ/Γ̂Z contributions are O(10−4) pb

and not shown in the table, although they are included in the fit for completeness.

√
s = 182.66 GeV

Bin
δm2

W

m̂2
W

δΓW
Γ̂W

δgνW δg±W δgZV δgZA δgZ1 δκγ δκZ δλγ δλZ

B1 −1.6 −1.5 12. 2.9 4.1 3.0 −0.44 −0.34 −0.47 −0.32 −0.45

B2 −1.5 −2.8 16. 5.5 3.5 2.2 −0.30 −0.32 −0.39 −0.26 −0.34

B3 0.16 −5.3 22. 10. 1.5 0.2 −0.04 −0.14 −0.06 −0.06 0.026

B4 18. −14. 39. 27. −7.7 −8.8 1.2 0.62 1.3 0.63 1.3

√
s = 205.92 GeV

Bin
δm2

W

m2
W

δΓW
ΓW

δgνW δg±W δgZV δgZA δgZ1 δκγ δκZ δλγ δλZ

B1 −1.1 −0.9 11. 1.8 4.9 3.0 −0.44 −0.44 −0.50 −0.40 −0.46

B2 −1.7 −2.1 15. 4.1 5.0 2.8 −0.34 −0.53 −0.55 −0.37 −0.41

B3 −2.3 −4.6 22. 9.0 3.5 1.2 −0.19 −0.35 −0.25 −0.19 −0.086

B4 10. −20. 59. 39. −9.6 −11.0 1.5 0.86 1.7 0.90 1.7

Table 3. Angular bin cross section contributions due to δX in pb. Again, the results are normalized

for semi-leptonic final states. δΓZ/Γ̂Z contributions are O(10−4) pb and not shown in the table,

although they are included in the fit for completeness. In this table, and the previous table, some

notation differs from our works.

B1 = [−1,−0.8], B2 = [−0.4,−0.2], B3 = [0.4, 0.6], B4 = [0.8, 1] for
√
s = {182.66, 205.92}

GeV. This approach is consistent with our treatment of Bhabba scattering angular data in

ref. [41]. We use the predictions in table 3 for the global fit, also shown in figure 2c and 2d.

3 Global fit in the SMEFT

Using the results reported in the previous section, and the data reported by LEPII in

refs. [43–45, 74] we have extended the global fit developed by two of us to include charged
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current data. Our fit procedure is to consider a set of observables ΩO = {Oi}i∈J1,nK, and

denote by Oi, Ōi, Ôi the SM prediction, SMEFT prediction to first order in the C(6),

and experimental value of the observable Oi respectively. Assuming the measured value

Ôi to be a gaussian variable centred about the predicted value Ōi, and introducing the

n dimensional vectors Ô = (Ô1, . . . , Ôn) and Ō = (Ō1, . . . , Ōn), we define the likelihood

function

L(C) =
1√

(2π)n|V |
exp

(
−1

2

(
Ô − Ō

)T
V −1

(
Ô − Ō

))
, (3.1)

where V is the covariance matrix with determinant |V | and elements

Vij = ∆exp
i ρexp

ij ∆exp
j + ∆th

i ρ
th
ij ∆th

j . (3.2)

ρexp/ρth are the experimental/theoretical correlation matrices and ∆exp/∆th the experi-

mental/theoretical error of the observable Oi. The theoretical error ∆th
i for an observable

Oi is defined as

∆th
i =

√
∆2
i,SM + (∆i,SMEFT ×Oi)2, (3.3)

where ∆i,SM, ∆i,SMEFT correspond to the absolute SM theoretical, and the multiplicative

SMEFT theory error for the observable Oi. We use the χ2 variable defined as χ2 =

−2Log[L(C)] and the new variable ∆χ2 (Ctrue) = χ2 (Ctrue) − χ2
min to derive bounds on

each individual Wilson coefficient. When profiling parameters we follow the procedure

described in ref. [41].

3.1 mW data

We have also modified our fit procedure to utilise the Tevatron measured central value of

mW , replacing the previously used global average value for the following reasons:

1. It was found that SMEFT theoretical errors impact Tevatron measurements of trans-

verse variables in a numerically suppressed fashion in ref. [46]. Such measurements

are also sensitive to less effective SMEFT parameters at leading order in the power

counting compared to LEPII mW extractions.

2. LEPII measurements of mW are extracted from data that is sensitive to TGC pa-

rameters. We reserve two to four fermion scattering data through charged currents

to lift the flat directions in the global data set in a consistent fashion. Correlation

matrices are unavailable (to our knowledge) to utilise charged current LEPII data to

fit for mW , while simultaneously using the same data set to fit for TGC parameters

in the SMEFT.

Due to these results, the dominant theoretical uncertainty due to the SMEFT is the limited

degree of development of the calculation of shifts in the W± mass parameter (i.e. neglecting

dimension eight operators and one loop corrections in the SMEFT). For this reason we

retain our approach developed in refs. [40, 41] for assigning a theoretical error without any

further increase in SMEFT error due to the impact of the EFT on the extracted value of

the W± itself [46].
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δX i (1σ, 0) (1σ, 0.1%) (1σ, 0.3%) (1σ, 0.5%) (1σ, 1%)

δgνV (−3.2± 2.7)10−4 (−3.8± 3.7)10−4 (−5.6± 6.8)10−4 (−6.9± 8.9)10−4 (−7.6± 13)10−4

δg`V (−3.0± 2.8)10−4 (−2.9± 2.8)10−4 (−2.9± 2.9)10−4 (−2.8± 3.0)10−4 (−2.6± 3.2)10−4

δg`A (−0.57± 1.2)10−4 (−0.50± 0.19)10−3 (0.0± 4.1)10−4 (0.55± 5.9)10−4 (0.18± 0.90)10−3

δguV (−3.7± 2.8)10−3 (1.9± 2.8)10−3 (−3.8± 2.8)10−3 (−3.9± 2.8)10−3 (−4.0± 2.9)10−3

δguA (1.8± 1.2)10−3 (1.9± 1.2)10−3 (1.9± 1.3)10−3 (1.9± 1.4)10−3 (1.8± 1.6)10−3

δgdV (1.0± 0.37)10−2 (1.0± 0.37)10−2 (1.0± 0.38)10−2 (1.0± 0.39)10−2 (1.0± 0.42)10−2

δgdA (−7.4± 2.7)10−3 (−7.4± 2.7)10−3 (−7.4± 2.8)10−3 (−7.5± 2.9)10−3 (−7.4± 3.2)10−3

δg1
Z −0.98± 0.57 −1.0± 0.57 −1.0± 0.58 −1.0± 0.58 −1.0± 0.59

δκγ 0.034± 0.12 (3.5± 12)10−2 (2.4± 13)10−2 (1.4± 14)10−2 (0.53± 15)10−2

δλγ 1.1± 0.67 1.1± 0.67 1.2± 0.67 1.2± 0.68 1.2± 0.69

Cl l√
2ĜF

(−1.1± 1.2)10−3 (−0.75± 1.5)10−3 (−0.53± 1.7)10−3 (−0.48± 1.7)10−3 (−0.41± 1.9)10−3

Table 4. 1σ bounds on the common shift parameters (δX) appearing in the mass eigenstate

effective Lagrangian. These results neglect the effect of the theoretical correlation matrix discussed

in the text. The columns are labeled with the ∆SMEFT theory error. These bounds should be

interpreted with caution, see the text for further discussion.

3.2 δX constraints and correlation matrix

A set of parameters present in the mass eigenstate SMEFT Lagrangian, labelled δX, that

are algebraically linearly independent are given by

δX =

{
δgνV , δg

`
V , δg

`
A, δg

u
V , δg

u
A, δg

d
V , δg

d
A, δg

Z
1 , δκγ δλγ ,

Cll√
2ĜF

}
, (3.4)

where we include the highly correlated Cll in this set of variables. Note that the δX

variables are defined to be dimensionless. These parameters are added to the relatively

uncorrelated dimensionless four fermion operator Wilson coefficients

1
√

2ĜF
{Cee, Ceu, Ced, Cle, Clu, Cld, C

(1)
lq , C

(3)
lq , Cqe} (3.5)

when we report fit results for these expressions. We find the results given in table 4 that

the δX parameters are highly constrained as a numerical output of our fit procedure, and

these constraints are only mildly relaxed by a consistent inclusion of ∆SMEFT theory errors.

This is the result of our approach to assign theory errors as percentage corrections on the

most precise prediction of a SM value for an observable.

3.2.1 Understanding δX constraints

The constraints in table 4 on the δX parameters are unusually strong. This point has

been noted in the literature previously [75] and forms the basis of the assertion in ref. [76]

that possible shifts in leptonic couplings can be set to zero for LHC analyses. We agree

that this numerical behavior exists when fits are done with tree level interference with the

SM predictions, and we also agree that setting the leptonic couplings of the Z to vanish
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Figure 3. Dependence of the predicted value for A0,`
FB on sθ̂ used in this fit, and (ŝ0)MS which

includes perturbative corrections further suppressing the SM prediction. Naively one does not

expect a one loop perturbative correction to change the central value for a tree level observable by

a factor of five. This accidental numerical suppression is due to g`V .

does not dramatically change the numerical values found for the TGC shift parameters

and quark couplings to the Z in procedures such as this12 similar to the behavior reported

in ref. [75]. We interpret this numerical behavior very differently than in ref. [75, 76]. The

reasons that we reach different conclusions are as follows.

The origin of the numerically enhanced bounds on the possible deviations in the lep-

tonic couplings, is in part due to the accidental numerical suppression of g`V in the SM.

Recall that (gfV )SM = T f3 /2−Qf sin2 θW . For the leptons, the numerical accident that at

tree level (g`V )SM = −0.038 suppresses the predictions in the SM for forward and back-

ward asymmetries produced from e+e− collisions, and particularly the leptonic forward

backward asymmetry A0,`
FB, as is well known [77]. This suppression is more pronounced

when including radiative corrections in the SM predictions. For example, the PDG value

for the radiatively corrected Weinberg angle in the MS scheme:13 (ŝZ)2 = 0.232, leads to

(g`V )MS = −0.018. The effect of this suppression on observables is illustrated in figure 3

for the leptonic forward backward asymmetry A0,`
FB. When calculating the interference of

corrections due to the SMEFT and the SM, we have used the tree level value of sθ̂. This is

due to the fact that no complete set of one loop results is known for the SMEFT for this

observable. When including such corrections, the numerical enhancement of the Weinberg

angle present in the SM, and the universal corrections absorbed into the definition of ŝZ ,

would lead to a numerical suppression for the interference of the SMEFT corrections with

SM. The bounds on mass eigenstate parameters will then be correspondingly relaxed when

fits are performed including loop corrections. The choice of redefining the Weinberg angle

to absorb universal radiative corrections related to the input observables, as is done in the

SM predictions, introduces further numerical sensitivity. To make this scaling argument

clearer, consider the shift of the matrix element derived from the interference of the dia-

grams shown in figure 4, which scales as |M|2 ∝ 4 [(g`V )SM]3 δg`V . Define the MS version of

the on-shell scheme for ŝZ to be (g`V )MS . The ratio of this parameter to the tree level value

of the vectorial coupling scales as (g`V )MS/(g`V )SM ∼ 1/2. This modifies the dependence

12Despite this being a formally ill defined step in a consistent treatment of the SMEFT.
13Using PDG notation.
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Z Z

Figure 4. Diagrams contributing to near Z pole 2 → 2 scattering in the SMEFT. The black box

indicates the insertion of L(6) leading to the effective parameter δg`V .

of observables on δg`V by an order of magnitude ∼ 2−3. As the radiative corrections are

absorbed into a redefined parameter ŝZ , three powers of this numerical enhancement are

present. This is a much larger effect than expected to occur naively due to perturbative

corrections.

We assign theoretical errors for neglected corrections in the SMEFT in our global

analysis [40, 41] to avoid misleading numerical conclusions in tree level analyses. However,

we choose to assign this theoretical error as a percentage of the loop corrected SM value

of the observable. In the case of SM predictions receiving such accidental numerical sup-

pressions, this means the effect of the theory error is artificially suppressed, as is seen in

table 4. This explains the weak scaling behavior of the results with an increase in ∆SMEFT.

We have checked that when scaling the theoretical error to compensate for this numerical

suppression, the constraints on the parameters weaken to the percent level, as expected.

Naively interpreting the bounds of the δX parameters reported in table 4 is also

challenged by theoretical correlations of the mass eigenstate parameters. When fitting δX

to experimental data, the effect of n copies of the symmetry (SU(3) × SU(2) × U(1))n

present due to the gauge invariant form of each (n) operators correlates the δX [47].14 A

theoretical correlation matrix of the δX parameters, defined through the relation of the

δX to the Warsaw basis, is given by

ρth
δX '



1 0.053 0.39 0.16 0.13 −0.16 −0.13 0.22 0 0 0.43

− 1 0.14 −0.76 −0.29 0.62 0.29 −0.79 0.76 0 −0.33

− − 1 −0.12 −0.099 0.12 0.099 −0.16 0 0 −0.33

− − − 1 0.51 −0.63 −0.37 0.83 −0.55 0 0.29

− − − − 1 −0.36 −0.30 −0.50 0 0 0.24

− − − − − 1 0.55 −0.75 0.36 0 −0.29

− − − − − − 1 −0.50 0 0 −0.24

− − − − − − − 1 −0.41 0 0.40

− − − − − − − − 1 0 0

− − − − − − − − − 1 0

− − − − − − − − − 0 1



.

This theoretical correlation matrix is obtained from the covariance matrix which is deter-

mined using the bilinear property of covariance, multiplied by the variance of the Wilson

14Linear independence of parameters is not equivalent to a lack of correlation of parameters. It is also

true that the corresponding covariance matrix of this form requires a variance to be assumed on the Wilson

coefficients, and there is no well defined metric on theory space. We assume that the variance is fixed by

the power counting size of the operator corrections, as this dictates the size of the corrections expected due

to the parameters in the SMEFT.
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coefficients. We choose to take the variance to be dictated by a common power counting

size ∼ C2
i /Λ

4. This leads to the dimensionless correction of the size ∼ C2
i v̄

4
T /Λ

4 . O(10−4).

Using this correlation matrix one can directly fit the data in terms of the parameters

δX. This requires constructing a correlation matrix for the theoretical predictions, using

the bilinear nature of covariance as a function of the δX dependence. A more straightfor-

ward procedure is to first fit to the linearly independent Wilson coefficients15 and then to

translate the fit results to the δX fit space, by adding the theoretical correlation matrix

into the translation, as a last step. Using this approach and including a correlation matrix

of this form or not, is essentially related to an assumption on the space of possible UV

models being aligned with the L(6) basis used to determine the δX. By construction, the

SMEFT is designed to capture UV theories that generate combinations of gauge invariant

SU(3) × SU(2) × U(1) operators, not the mass eigenstate parameters δX, which justifies

this approach. We have performed this analysis. Comparing results when the theory cor-

relation matrix is included relaxes the 1σ error for the δX parameters to approximately√
C2
i v̄

4
T /Λ

4, due to the assumed variance.

This approach to defining the theoretical covariance matrix is not unique, and does

introduce dependence on the SU(3) × SU(2) × U(1) operator basis used to fit the data.

However, again these theoretical errors are larger than quoted in table 4, as the numerical

suppression of the SM prediction of leptonic observables is avoided in this procedure. The-

oretical errors for the SMEFT are defined by the envelope of the errors found performing

different well motivated estimates of neglected theoretical effects [47]. This result supports

the view that the errors on the bounds on the δX are underestimated in table 4. Also,

other parameters in the SMEFT will be introduced into the global analysis at one loop

that do not contribute at tree level, arguing against bounds that naively rise above the

power counting size of the operators by orders of magnitude [40, 41, 47].16 For all of these

reasons, the strong constraints on the leptonic mass eigenstate parameters in table 4 should

be interpreted with caution. We stress that we (approximately) agree with the numerical

behavior reported in ref. [75] for a similar set of core shift parameters, despite the very sig-

nificant differences in the analyses. For the reasons detailed above, we consider the bounds

in table 4 to be overestimating the degree of constraint on these parameters.17

3.3 Global analysis results on Wilson coefficients

Our previous fit [41] contained 19 different Wilson coefficients, contributing to the shifts of

the 103 observables. Only 17 of the 19 Wilson coefficients could be constrained due to a 2

fold degeneracy in the fit with the data considered in this case. The two fold degeneracy is

lifted when including the charged current production data from tables 12, 13, 14 and 15, as

has been mentioned in the literature [24]. Bounds on each of the 20 Wilson coefficients can

15Treated as uncorrelated as the fit spans all possible UV completions consistent with our assumptions.
16Setting parameters to zero is also incorrect due to how such a choice would effect correlations in the

Fisher Matrix when more data is introduced to the fit.
17As the parameters are so highly correlated in LEP data theoretically and experimentally (through the

total Z width), the issue of the leptonic observables numerical sensitivity also feeds into the δX quark

parameters.
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CGi (1σ, 0) (1σ, 0.1%) (1σ, 0.3%) (1σ, 0.5%) (1σ, 1%)

χ2
min 153 152 151 149 142

C̃He 44± 24 44± 24 44± 24 44± 24 44± 25

C̃Hu −28± 16 −28± 16 −28± 16 −28± 16 −28± 17

C̃Hd 11± 8.1 11± 8.1 11± 8.2 11± 8.2 11± 8.3

C̃
(1)
Hl 22± 12 22± 12 22± 12 22± 12 22± 12

C̃
(3)
Hl 77± 45 78± 45 80± 45 80± 46 80± 46

C̃
(1)
Hq −7.3± 4.0 −7.4± 4.0 −7.4± 4.0 −7.4± 4.1 −7.3± 4.1

C̃
(3)
Hq 77± 45 78± 45 79± 45 80± 46 80± 46

C̃HWB 1.8± 6.2 1.8± 6.3 1.2± 6.7 0.73± 7.1 0.27± 8.0

C̃HD −87± 48 −88± 48 −88± 49 −88± 49 −87± 49

C̃ll −0.11± 0.12 −0.075± 0.15 −0.053± 0.17 −0.048± 0.17 −0.041± 0.19

C̃ee −0.036± 0.2 −0.036± 0.20 −0.032± 0.2 −0.024± 0.21 −0.0066± 0.24

C̃eu −27± 24 −26± 24 −24± 24 −22± 25 −20± 25

C̃ed −26± 30 −25± 30 −24± 31 −22± 31 −21± 31

C̃le −0.011± 0.3 −0.014± 0.3 −0.014± 0.31 −0.0096± 0.31 0.0036± 0.32

C̃lu −17± 8.4 −17± 8.4 −17± 8.5 −17± 8.5 −17± 8.8

C̃ld −33± 16 −33± 16 −32± 16 −32± 16 −32± 17

C̃
(1)
lq −4.1± 1.9 −3.5± 2.4 −2.4± 3.7 −1.7± 4.8 −0.94± 6.8

C̃
(3)
lq −0.52± 0.21 −0.47± 0.25 −0.39± 0.31 −0.35± 0.38 −0.25± 0.57

C̃qe −2± 26 −2.4± 26 −3.0± 26 −3.5± 26 −4.6± 27

C̃W 114± 68 115± 68 117± 68 118± 68 118± 70

Table 5. MLE and their 1σ confidence region C̃ ± σ for a SMEFT error of {0%, 0.1%,

0.3%, 0.5%, 1%} where C̃ = 100CMLE and the error is also scaled by 100.

now be derived after profiling over the others in a totally data driven fashion. We define

a dimensionless vector CG, now pulling out the cut off scale from the Wilson coefficients

explicitly, as

(CG)T =
v̄2
T

Λ2
{CHe, CHu, CHd, C

(1)
Hl , C

(3)
Hl , C

(1)
Hq, C

(3)
Hq, CHWB, CHD, Cll,

Cee, Ceu, Ced, Cle, Clu, Cld, C
(1)
lq , C

(3)
lq , Cqe, CW }. (3.6)

The global fit reported here now contains 177 observables with the inclusion of LEPII

data. The ∆χ2 obtained in the SM (considering CGtrue = 0) gives ∆χ2
0% = 28 for a chi-

squared distribution with 20 degrees of freedom. This corresponds to a p-value of 0.12,

which indicates the expected very weak evidence against the SM. We give the maximum

likelihood estimators (MLE) for the entries in CG and the 1σ confidence region CG±σ for

a SMEFT error of {0%, 0.1%, 0.3%, 0.5%, 1%} in table 5. The full χ2 can be reconstructed

from these results and the Fisher information matrices, which the authors will supply

upon request.
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Figure 5. Color map of the correlation matrix between the Wilson coefficients when there is no

SMEFT error. The Wilson coefficients are ordered as in eq. (3.6).

This result can be compared to the one given in ref. [41], where two auxiliary condi-

tions were introduced to break the two dimensional degeneracy of the fit. These auxiliary

conditions were taken to be the two null space directions of the fit, and a constraint of

∼ v̄2
T /Λ

2 was set on them by using a naive dimensional power counting. The constraints

on the Wilson coefficients of the four fermion operators barely change compared to ref. [41],

as expected. The one sigma region of Wilson coefficients involved in couplings and W±

mass shifts were relaxed by a little over a factor ∼ 10. This is understandable as the data

we have added is roughly 10% precise, which is less constrained by roughly a factor of ten

less than the two auxiliary conditions added in ref. [41]. The way the degeneracy is broken

also differs as the charged current data weakly lifts the flat directions in the SMEFFT,

and does not correspond exactly to the two null space vectors of the fit. The issues dis-

cussed in section 3.2.1 are still present when interpreting bounds on the Wilson coefficients

derived from LEP leptonic data. However, as the constraints are relatively weaker, this

issue is not dominant in interpreting the results. The highly correlated fit space of the

Wilson coefficients dominates the interpretation of the results. We illustrate this with a

colour map of the correlation matrix between the bounds obtained on the Wilson coeffi-

cients in figure 5, which shows a clear block structure. There are almost no correlations

between the Wilson coefficients of the 4 fermions operators (excepting Cll), and Wilson co-

efficients involved in vector boson couplings and mass redefinitions: CHe, CHu, CHd, C
(1)
Hl ,

C
(3)
Hl , C

(1)
Hq, C

(3)
Hq, CHWB and CHD. The latter are very correlated to each other, and are

strongly correlated to CW . This makes clear that a precise and consistent treatment of the

charged current data is critical in developing model independent constraints. Assumptions

about UV physics that break the correlations shown in the Wilson coefficient constraint

space significantly impact the degree of constraint. The different effects of marginalizing

or profiling away parameters also follow from the highly correlated fit space. If the UV
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Figure 6. Histograms of the distribution of the ∆χ2 variable when (a) no cut has been imposed

on the Ci, (b) when a cut has been imposed and Ccut = 1 and in (c) when Ccut = 0.1. We represent

in blue a chi-squared distribution with 20 degrees of freedom.

CGi (1σ, 0) (1σ, 0.1%) (1σ, 0.3%) (1σ, 0.5%) (1σ, 1%)

C̃He 8.9± 24 8.9± 24 8.6± 24 8.4± 24 8.4± 25

C̃Hu −4.9± 16 −4.8± 16 −4.6± 16 −4.4± 16 −4.4± 17

C̃Hd −0.48± 8.1 −0.48± 8.1 −0.59± 8.2 −0.70± 8.2 −0.68± 8.3

C̃
(1)
Hl 4.5± 12 4.5± 12 4.4± 12 4.3± 12 4.3± 12

C̃
(3)
Hl 8.7± 30 8.8± 30 8.8± 30 8.7± 30 8.6± 30

C̃
(1)
Hq −1.6± 4.0 −1.6± 4.0 −1.5± 4.0 −1.4± 4.1 −1.5± 4.1

C̃
(3)
Hq 8.3± 31 8.4± 31 8.4± 31 8.4± 31 8.2± 31

C̃HWB 4.0± 6.2 4.0± 6.3 3.7± 6.7 3.4± 7.1 3.5± 8.0

C̃HD −18± 27 −18± 27 −17± 28 −16± 28 −17± 28

C̃ll −0.11± 0.12 −0.084± 0.15 −0.067± 0.17 −0.066± 0.17 −0.067± 0.19

C̃ee −0.035± 0.20 −0.035± 0.20 −0.035± 0.20 −0.033± 0.21 −0.029± 0.24

C̃eu −27± 24 −26± 24 −24± 24 −23± 25 −22± 25

C̃ed −27± 30 −26± 30 −24± 31 −23± 31 −22± 31

C̃le −0.01± 0.30 −0.013± 0.30 −0.015± 0.31 −0.013± 0.31 −0.0064± 0.32

C̃lu −17± 8.4 −17± 8.4 −17± 8.5 −17± 8.5 −17± 8.8

C̃ld −33± 16 −32± 16 −32± 16 −32± 16 −31± 17

C̃
(1)
lq −4.1± 1.9 −3.6± 2.4 −2.9± 3.7 −2.6± 4.8 −2.7± 6.8

C̃
(3)
lq −0.51± 0.21 −0.47± 0.25 −0.41± 0.31 −0.37± 0.38 −0.28± 0.57

C̃qe −1.4± 26 −2.1± 26 −2.7± 26 −3.1± 26 −4.0± 27

C̃W 10± 30 10± 30 10± 30 10± 30 10± 30

Table 6. Maximum likelihood estimators and their σ confidence region C̃ ± σ for a SMEFT error

of {0%, 0.1%, 0.3%, 0.5%, 1%}. We have scaled the results and error by 100 so that C̃ = 100CMLE.

A cut Ccut = 0.1 has been imposed on the Ci to obtain their central values, and we impose that

|Ci ± 3σ| < 1.

model(s) assumed in profiling or marginalizing breaks the correlations of the parameter

space, stronger bounds are obtained. If the likelihood is factorized by hand, and a subset

of the parameters are profiled or marginalized away, this can also factor up the fit space in a

– 20 –



J
H
E
P
0
9
(
2
0
1
6
)
1
5
7

manner that will significantly effect the bounds obtained. As the profiling procedure allows

the profiled parameters to take on any value when obtaining constraints on the individual

Wilson coefficients, it leads to weaker bounds. As particular correlations are always present

in a UV model matched onto the Wilson coefficients, the bounds quoted on the parameters

in the SMEFT when profiling or marginalizing has been done must be interpreted with

care. The effect of the correlations relaxing bounds on the individual Wilson coefficients

is so strong, the bounds obtained on the Wilson coefficients (CW ,C
(3)
Hq,C

(3)
Hl ,CHD) seem to

violate the power counting, when the other Wilson coefficients are profiled away. To ensure

that the bounds quoted do not depend on any correlated violation of the power counting

in profiling, we impose a cut |Civ̄2
T /Λ

2| < Ccut so that the Civ̄
2
T /Λ

2 are not longer allowed

to take value outside this 19-sphere of radius Ccut when profiling. This changes the dis-

tribution of ∆χ2 (Ctrue) shifting it to the left compared the chi-squared distribution with

20 degrees of freedom, see figure 6. Being aware of this change in the distribution of the

∆χ2 (Ctrue), we give in table 6 the 1σ bounds on the Civ̄
2
T /Λ

2 when a cut Ccut = 0.1 has

been imposed on to get their central values in the profiling procedure, and the 3σ confi-

dence region has been limited when necessary so that |C̃i,min ± 3σ| < 1. When imposing

this cut, the distribution of ∆χ2 is shifted to the left so that the bounds derived are too

conservative, in the sense that the 1σ regions we are reporting in table 6 correspond to a

(slightly) smaller confidence region.

To further develop an intuition for the degree of constraint present on the Wilson coeffi-

cients, and the strong UV dependence on the conclusions drawn, we consider the case where

only one Wilson coefficient is present at a time in constraining the SMEFT parameters.

The results are shown in table 7, which demonstrate a much stronger degree of constraint.

These results are likely too strong in any realistic UV model. Another case of interest

is the subset of UV completions to the SM that are weakly coupled and renormalizable

where the Artz-Einhorn-Wudka operator classification scheme [78] applies. As we neglect

one loop corrections in the results presented, we then neglect the parameters CHWB and

CW in the global fit. The results are shown in table 8, which again demonstrate a stronger

degree of constraint, by roughly an order of magnitude. This is another illustration of the

important effect of the correlation between near Z pole and charged current LEPII data in

these results. Assumptions made on the parameter CW , contributing to TGC parameters,

has a critical impact on analyses of this form.

3.4 The Eigensystem and constraints on the leptonic couplings of the Z

The degree of constraint on orthogonal linear independent combinations of the Wilson

coefficients varies for the global fit. This is related to the different degree of constraint

reported for the individual Wilson coefficients and the δX parameters. The normalized

Eigenvectors and Eigenvalues of the system are directly obtained from the Fisher matrices.

The definition of the Eigensystem is given in ref. [41], and the updated Eigensystem is

given in figure 7. It is the existence of the significant hierarchy in constraints present in

the data as illustrated in the Eigensystem, that leads to the span on conclusions drawn

on how strongly constrained the parameters are in the SMEFT. Eigenvectors are not per-

turbatively stable. Loop corrections in the SMEFT mix the Eigenvectors and modify the
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CGi (1σ, 0) (1σ, 0.1%) (1σ, 0.3%) (1σ, 0.5%) (1σ, 1%)

C̃He −0.052± 0.036 −0.056± 0.047 −0.078± 0.064 −0.083± 0.069 −0.072± 0.075

C̃Hu 0.021± 0.041 0.021± 0.043 0.018± 0.052 0.016± 0.062 0.015± 0.08

C̃Hd −0.0096± 0.099 −0.014± 0.1 −0.042± 0.13 −0.076± 0.15 −0.13± 0.2

C̃
(1)
Hl 0.025± 0.025 0.019± 0.035 0.013± 0.059 0.011± 0.07 0.013± 0.082

C̃
(3)
Hl −0.0064± 0.019 0.0046± 0.027 0.018± 0.04 0.023± 0.044 0.018± 0.05

C̃
(1)
Hq −0.0039± 0.0085 −0.0038± 0.0088 −0.0033± 0.011 −0.0026± 0.013 −0.0019± 0.017

C̃
(3)
Hq 0.0027± 0.023 0.011± 0.037 0.032± 0.076 0.052± 0.1 0.080± 0.14

C̃HWB −0.0092± 0.019 0.018± 0.026 0.024± 0.027 0.025± 0.028 0.02± 0.03

C̃HD −0.052± 0.048 0.036± 0.092 0.082± 0.11 0.085± 0.11 0.060± 0.13

C̃ll 0.0038± 0.024 −0.014± 0.037 −0.036± 0.051 −0.041± 0.055 −0.036± 0.06

C̃ee −0.00092± 0.19 −0.00092± 0.19 −0.00088± 0.19 −0.00055± 0.19 0.0027± 0.2

C̃eu −0.54± 0.31 −0.54± 0.31 −0.55± 0.32 −0.55± 0.32 −0.59± 0.35

C̃ed 0.28± 0.39 0.28± 0.39 0.28± 0.39 0.28± 0.4 0.28± 0.43

C̃le 0.0051± 0.3 0.0051± 0.3 0.0052± 0.3 0.0058± 0.3 0.011± 0.31

C̃lu 0.013± 0.53 0.014± 0.53 0.024± 0.54 0.04± 0.54 0.09± 0.58

C̃ld 0.84± 0.61 0.84± 0.61 0.84± 0.61 0.83± 0.62 0.82± 0.66

C̃
(1)
lq 0.45± 0.34 0.45± 0.34 0.46± 0.34 0.48± 0.35 0.52± 0.37

C̃
(3)
lq 0.019± 0.028 0.047± 0.049 0.11± 0.078 0.13± 0.087 0.15± 0.1

C̃qe −0.42± 0.41 −0.42± 0.41 −0.42± 0.41 −0.42± 0.41 −0.42± 0.43

C̃W 1.7± 4.4 1.7± 4.4 1.8± 4.4 1.8± 4.4 1.9± 4.5

Table 7. The 1σ confidence region C̃ ± σ for a SMEFT error of {0%, 0.1%, 0.3%, 0.5%, 1%}. Here

we have multiplied the presented MLE and error by 100 (C̃ = 100CMLE). The results shown are

for when one Wilson coefficient at a time is turned “on”.

Figure 7. The values v/
√
σk (which corresponds to the effective scale of suppression) for each

Eigenvector Wk of the Fisher matrix. We show results for ∆SMEFT = {0%, 0.3 %, 1 %}.

interpretation of the bounds obtained away from the Z pole. As the scales of suppres-

sion for the orthogonal Eigenvectors differ by over an order of magnitude, this modifies

the interpretation of the constraints when applied to LHC data, or higher energy data.
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(a) (b)

(c) (d)

Figure 8. Constraints on parameters that contribute to anomalous Z couplings scaled by 102,

and their scaled ±2σ confidence regions. Figure (a): individual bounds on the Wilson coefficients

(scaled by v̄2T ), when the other parameters are profiled away in the Warsaw basis. Figure (b):

the same constraints when all other parameters are profiled away subject to the cut constraints

discussed in the text. Figure (c): the case where only one parameter is assumed to be present in

the global fit at a time. Figure (d) The constraints found on the δX parameters. All results are

shown for ∆SMEFT = {0, 0.3%, 1%} for the blue, green and brown lines respectively. Note that the

shaded green region is the same size for all plots, corresponding to % level constraints, to make the

comparison between cases clear.
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CGi (1σ, 0) (1σ, 0.1%) (1σ, 0.3%) (1σ, 0.5%) (1σ, 1%)

C̃He −0.11± 1.6 0.040± 1.6 0.18± 1.7 0.31± 1.8 0.35± 2

C̃Hu 1.2± 1.3 1.1± 1.3 1.0± 1.4 0.98± 1.4 0.95± 1.5

C̃Hd −3.4± 1.4 −3.4± 1.4 −3.4± 1.4 −3.4± 1.4 −3.4± 1.6

C̃
(1)
Hl 0.032± 0.82 0.079± 0.84 0.23± 0.90 0.30± 0.96 0.32± 1.1

C̃
(3)
Hl −0.33± 3.0 −0.22± 3.0 0.13± 3.1 0.33± 3.3 0.36± 3.5

C̃
(1)
Hq −0.048± 0.32 −0.057± 0.32 −0.085± 0.33 −0.10± 0.34 −0.11± 0.37

C̃
(3)
Hq −0.71± 3.0 −0.58± 3.0 −0.19± 3.2 0.018± 3.3 0.052± 3.5

C̃HD 0.21± 3.2 0.17± 3.3 −0.036± 3.3 −0.15± 3.3 −0.13± 3.4

C̃ll −0.14± 0.11 −0.12± 0.14 −0.10± 0.16 −0.095± 0.17 −0.089± 0.18

C̃ee −0.029± 0.19 −0.029± 0.2 −0.027± 0.2 −0.023± 0.21 −0.015± 0.23

C̃eu −27± 24 −26± 24 −24± 24 −22± 24 −21± 25

C̃ed −27± 30 −26± 30 −24± 31 −23± 31 −21± 31

C̃le −0.003± 0.3 −0.0053± 0.3 −0.0067± 0.31 −0.0046± 0.31 0.0037± 0.32

C̃lu −17± 8.4 −17± 8.4 −17± 8.5 −17± 8.5 −17± 8.8

C̃ld −32± 16 −32± 16 −32± 16 −32± 16 −31± 17

C̃
(1)
lq −4± 1.9 −3.5± 2.4 −2.4± 3.6 −1.7± 4.4 −1.1± 5.8

C̃
(3)
lq −0.51± 0.21 −0.48± 0.25 −0.40± 0.31 −0.36± 0.38 −0.27± 0.56

C̃qe −1.5± 26 −1.8± 26 −2.6± 26 −3.1± 26 −4.1± 27

Table 8. 1σ confidence region C̃ ± σ for a SMEFT error of {0%, 0.1%, 0.3%, 0.5%, 1%} where

C̃ = 100CMLE and CMLE are the MLE when a renormalizable theory is assumed to be the UV

completion of the SM.

This is the case for parameters that contribute to anomalous leptonic couplings of the Z

in particular. To make the remarkable span in constraints related to anomalous leptonic

couplings of the Z clearer, we show in figure 8 the constraints on such parameters in four

cases. Figure 8 shows that the degree of constraint present on these parameters spans two

orders of magnitude in interpreting the same global data set in these cases.

4 Conclusions

In this paper we have studied the shape of possible physics beyond the Standard Model,

building upon the results in refs. [40, 41, 48] and a companion paper focused on W± mass

extractions [46]. It is required to incorporate LEPII data on four fermion production,

reported in terms of CC03 differential and total cross section bounds, to robustly incor-

porate the impact of the LEP near Z pole pseudo-observable data in the SMEFT. We

have developed and reported the results for the double pole prediction of the CC03 four

fermion production results in the SMEFT. Using these results, we have simultaneously

bounded and studied the constraints on 20 parameters in the SMEFT in this work. The

strongest constraints are dictated by the measurements with the highest precision. As we
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have restricted our attention to flavour conserving observables, the measurements of the

W± mass, and measurements of the leptonic observables at LEPI are the strongest bounds.

These experimental constraints robustly rise above the percent level in experimental pre-

cision, which can exceed the natural power counting size of SMEFT corrections when

1 TeV . Λ/
√
Ci . 3 TeV. For this reason, an interpretation of the corresponding bounds

in the SMEFT formalism is important to inform an expectation of possible deviations that

can be found at LHC.

The strength of the model independent analysis we have developed is that it can

accommodate a very wide range of UV scenarios. However, at the same time this generality

limits the strength of the conclusions that can be drawn in a truly model independent

fashion. This is particularly the case when considering how these bounds project onto

what deviations are allowed in LHC measurements off the Z pole. The different conclusions

drawn on the degree of constraint of parameters contributing to the leptonic couplings of

the Z, is summarized in figure 8. It is reasonable to consider that the constraints shown

in the upper/lower panels of figure 8 to be an underestimate/overestimate of the degree

of constraint in a realistic UV model. For the bottom left hand plot this is due to the

requirement that only one Wilson coefficient is generated at tree level in a UV matching,

for the right hand plot, this is due to theoretical errors being underestimated as argued in

the text.18

The global fit shows that the degree of constraint on the SMEFT parameters found,

is strongly dependent on the assumptions made about possible UV physics matched onto

the SMEFT, dictating correlations present (or not) among the Wilson coefficients. The

theoretical error present in the fit, due to neglected perturbative corrections and L8, which

is also UV dependent in its numerical impact dictates the interpretation. This is consistent

with our previous results in refs. [40, 41] and basically unsurprising, although the range of

conclusions drawn is very significant — differing by orders of magnitude.

It is reasonable to interpret the lack of deviations from the Standard Model expectation

in measured observables, to mean that the cut off scale and Wilson coefficients are such

that the most precise observables are accommodated without any cancelations between

SMEFT parameters. It is also reasonable to consider that physics beyond the SM is

present at lower cut off scales with larger Wilson coefficients, falling in the interesting

range 1 TeV . Λ/
√
Ci . 3 TeV motivated by the hierarchy problem, and some partial

suppression of UV physics effects is present in near Z pole measurements. This later

case is of most interest in understanding LHC data. Our global fit results do not rule

out this possibility. Considering our results, a reasonable approach to LHC analyses is to

report data in a manner that does not limit its interpretation to a subset of UV scenarios

where Λ/
√
Ci & 3 TeV. This can be done by accommodating ∼ % level constraints on the

parameters that are present in this global analysis, when reporting LHC data.

18While all of these results are formally correct and follow from their assumptions.
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A Core shifts of parameters due to the SMEFT

Our results are expressed in terms the core shifts of parameters present in the SMEFT,

given in [40] and included below for completeness. Our notational conventions are that

a total shifts of a parameter X due to all the operators in L(6) is denoted as δX. The

measured input observables {ĜF , m̂Z , α̂} are denoted with hat superscripts. Expressions

derived at tree level in the SM from these input parameters are also denoted with hat

superscripts. Here these parameters are used to define {cθ̂, sθ̂, m̂W } at tree level using SM

tree level relations. For more details, see refs. [40, 41]. The shifts we use are

δm2
Z

m̂2
Z

≡ 1
√

2 ĜF

(
CHD

2
+ 2

m̂W

m̂Z
sθ̂ CHWB

)
,

δm2
W

m̂2
W

≡ −
δs2
θ̂

s2
θ̂

− m̂W

m̂Z sθ̂

CHWB

ĜF
−
√

2 δGF ,

δs2
θ

s2
θ̂

≡ −
m̂2
W /m̂

2
Z

2
√

2 ĜF (1− 2s2
θ̂
)

[
CHD + 2

m̂Z

sθ̂ m̂W
CHWB + 4 ĜF δGF

]
,

further

δgZ = −δGF√
2
−
δm2

Z

2m̂2
Z

+
sθ̂ cθ̂√
2ĜF

CHWB, δGF =
1

√
2 ĜF

(√
2C

(3)
Hl −

Cll√
2

)
,

so that

δ(g`V )pr = δgZ (g`V )SM
pr −

1

4
√

2ĜF

(
CHe
pr

+ C
(1)
Hl
pr

+ C
(3)
Hl
pr

)
− δs2

θ, (A.1)

δ(g`A)pr = δgZ (g`A)SM
pr +

1

4
√

2 ĜF

(
CHe
pr
− C(1)

Hl
pr

− C(3)
Hl
pr

)
, (A.2)

with p, r flavour index dependence that is trivialized to δpr due to our U(3)5 assumption, and

δ(g
W±,`/q
V )pr = δ(g

W±,`/q
A )pr =

1

2
√

2ĜF

(
C

(3)
Hl/q
pr

+
1

2

cθ̂
sθ̂
CHWB

)
+

1

4

δs2
θ

s2
θ̂

. (A.3)

Here our chosen normalization is (gxV )SM = T3/2 − Qx s̄2
θ, (g

x
A)SM = T3/2 where T3 = 1/2

for ui, νi and T3 = −1/2 for di, `i and Qx = {−1, 2/3,−1/3} for x = {`, u, d}. Note that

the gWV,A couplings are normalized to Vpr/2 and flavour change due to the W couplings

shifts above is also ∝ Vpr. The core shift parameters are useful, but they should not be

confused with an operator basis for the SMEFT.

A.1 Redefinition of ΓW

The partial W± widths are redefined by dimension 6 operators in the following way

Γ̄W→fifj =
NC |V f

ij |2
√

2ĜF m̂
3
W

12π

(
1 + 4δgW,fV/A −

1

2

δm2
W

m̂2
W

)
. (A.4)
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Here, NC depends on the colour representation of final state fermions. V f
ij corresponds

to the CKM or PMNS matrix with transitions between the mass eigenstate flavours i, j.

As the neutrino flavour of the decay of a W± boson is not identified, the sum over the

neutrino species gives
∑

j |V `
ij |2 = 1. We have used the short hand notation f = {`, q} as

we consider the U(3)5 flavour symmetric limit of the SMEFT. This leads to the redefinition

of the total width ΓW

Γ̄W =
3
√

2ĜF m̂
3
W

4π

(
1 +

4

3
δg`W +

8

3
δgqW −

δm2
W

2m̂2
W

)
. (A.5)

At leading order in the SM, ΓW = 3
√

2ĜF m̂
3
W /(4π) and δΓW is defined by Γ̄W = ΓW+δΓW .

Here m̂W is the standard model value of the W-mass at tree level in terms of the input

parameters, m̂W = cθ̂ m̂Z .

A.2 Redefinitions of triple-gauge-coupling parameters

The most general C and P even TGCs between two charged vector bosons and a neutral

vector boson are described by the Effective Lagrangian [22]

−LTGC
gVWW

= igV1
(
W+
µνW

−µ −W−µνW+µ
)
V ν + iκVW

+
µ W

−
ν V

µν + i
λV
M2
W

V µνW+ρ
ν W−ρµ,(A.6)

where V stands for either the photon field A or the Z field, W±µν = ∂µW
±
ν − ∂νW±µ and

similarly Vµν = ∂µVν − ∂νVµ.19 In the SM, the overall coupling constants are gAWW = e

and gZWW = e cot θ and the TGC are given by gV1 = κV = 1 and λV = 0 at tree level.

Going from the SM to the SMEFT, these couplings get redefined by a subset of dimension

6 operators. The complete Lagrangian for the TGC in the SMEFT is then expressed as

−LSMEFT
TGC

gVWW
= iḡV1

(
W+
µνW−µ −W−µνW+µ

)
Vν + iκ̄VW+

µW−ν Vµν + i
λ̄V
M̄2
W

VµνW+ρ
ν W−ρµ,

(A.7)

where Wµ, Vµ are the redefined gauge fields. Once again Wµν = ∂µWν − ∂νWµ, Vµν =

∂µVν − ∂νVµ, the coupling constants are gAWW = ê = ĝ2sθ̂ =
√

4πα̂, gZWW = ê cot θ̂ =√
4πα̂cθ̂/sθ̂ and ḡV1 = gV1 + δgV1 , κ̄V = κV + δκV , λ̄V = λV + δλV are the redefined TGC’s,

given by

δgA1 = 0, δgZ1 =
1

2
√

2ĜF

(
sθ̂
cθ̂

+
cθ̂
sθ̂

)
CHWB +

1

2
δs2
θ

(
1

s2
θ̂

+
1

c2
θ̂

)
,

δκA =
1

√
2ĜF

cθ̂
sθ̂
CHWB, δκZ =

1

2
√

2ĜF

(
−
sθ̂
cθ̂

+
cθ̂
sθ̂

)
CHWB +

1

2
δs2
θ

(
1

s2
θ̂

+
1

c2
θ̂

)
,

δλA = 6sθ̂
m̂2
W

gAWW
CW , δλZ = 6cθ̂

m̂2
W

gZWW
CW .

Notice that three gauge-invariance conditions (at the level of L(6) [21]) hold in the SMEFT:

δκZ = δgZ1 − t2θ̂δκA, δλA = δλZ and δgA1 = 0.

19The explicit minus sign on the left hand side of LTGC is due to an opposite ε tensor convention in

ref. [22].
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W+(k12)W−(k34)

e−(k−)

e+(k+)

zCOM

xCOM

θ

(a)

zW+Rest

xW+Rest

yW+Rest

φ̃12

θ̃12

f1(p1)

f̄2(p2)

(b)

Figure 9. Parametrisation of the phase space. Figure (a) shows the definition of θas the angle

between the W+ and the e− momenta in the Center of Mass (COM) frame. Figure (b) defines φ̃12
and θ̃12 in the W+ rest frame. φ̃34 and θ̃34 are defined in the W−-rest frame in a similar manner.

We take the z-axes to be aligned in all three coordinate systems.

B Parametrisation of phase space

The parametrisation of the phase space shown in figure 9. Recall that we calculate in the

massless fermion limit. The parameterization is given by pµi = (Ei, ~pi) with Ei = |~pi| for

i = 1 · · · 4 and

kµ− = |~k−| (1,− sin θ, 0, cos θ) , kµ+ = |~k+| (1, sin θ, 0,− cos θ) ,

kµ12 = p1 + p2 = (E12, 0, 0, p) , kµ34 = p3 + p4 = (E34, 0, 0,−p) ,

while E− = E+ = |~k−| = |~k+| =
√
s/2 = m/2, and kµ+− = kµ+ + kµ− = (m, 0, 0, 0). The

W+(k12) and W−(k34) energy and momentum are

E12 = E1 + E2 =
1

2
√
s

(s+ s12 − s34) , E34 = E3 + E4 =
1

2
√
s

(s+ s34 − s12) ,

while p = |~p1 + ~p2| = −|~p3 + ~p4| = 1
2
√
s
λ1/2

(√
s,
√
s12,
√
s34

)
. Here λ is the usual Källén

function, given by

λ
(√
s,
√
s12,
√
s34

)
=
[
s− (

√
s12 +

√
s34)2

] [
s− (

√
s12 −

√
s34)2

]
= s2 + s2

12 + s2
34 − 2s12s− 2s34s− 2s12s34.

In the W+ and W− rest frames respectively the fermion momenta are defined as

p̃µ1 = |~̃p1|
(

1, sin θ̃12 cos φ̃12, sin θ̃12 sin φ̃12, cos θ̃12

)
,

p̃µ3 = |~̃p3|
(

1,− sin θ̃34 cos φ̃34,− sin θ̃34 sin φ̃34,− cos θ̃34

)
,
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while ~̃p2 = −~̃p1, ~̃p4 = −~̃p3, and |~̃p1| = |~̃p2| =
√
s12/2 and |~̃p3| = |~̃p4| =

√
s34/2. The

Boson invariants are given by

s12 = (p1 + p2)2 = 2p1 · p2 = E2
12 − p2 = 4|~̃p1||~̃p2|,

s34 = (p3 + p4)2 = 2p3 · p4 = E2
34 − p2 = 4|~̃p3||~̃p4|,

where s = (k+ + k−)2 = 2k+ · k− in the massless fermion limit.

C Spinor helicity conventions

Here we define our spinor decomposition and polarization vector conventions using the

formalism of ref. [22]. We use the chiral basis of the Dirac matrices and write Ψ in terms

of its Weyl components ΨT = {ΨL,ΨR} with

u (p, λ)R/L = ω±λ (p)χλ (p) , v (p, λ)R/L = ±λω∓λ (p)χ−λ (p) ,

and the decomposition

χ+ (p) =
[
2|~p|

(
|~p|+ p3

)]−1/2

(
|~p|+ p3

p1 + ip2

)
, χ− (p) =

[
2|~p|

(
|~p|+ p3

)]−1/2

(
−p1 + ip2

|~p|+ p3

)
.

in terms of the helicity Eigenvalues ω± (p) = (E ± |~p|)1/2. We define a polarization basis

for the polarization vectors of W+ (k12, λ) with k12 = (E12, 0, 0, p)

εµ (k12, λ12 = 0) =
1
√
s12

(p, 0, 0, E12) , εµ (k12, λ12 = L) =
1
√
s12

(E12, 0, 0, p) ,

εµ (k12, λ12 = +) =
1√
2

(0,−1,−i, 0) , εµ (k12, λ12 = −) =
1√
2

(0, 1,−i, 0) ,

and for the W− (k34, λ) with k34 = (E34, 0, 0,−p)

εµ (k34, λ34 = 0) =
1
√
s34

(p, 0, 0,−E34) , εµ (k34, λ34 = L) =
1
√
s34

(E34, 0, 0,−p) ,

εµ (k34, λ34 = −) =
1√
2

(0,−1,−i, 0) , εµ (k34, λ34 = +) =
1√
2

(0, 1,−i, 0) .

In the chiral representation of the Dirac matrices we note

/a = aµγ
µ =

(
0 /a+

/a− 0

)
, /a± =

(
a0 ± a3 ± (a1 − ia2)

± (a1 + ia2) a0 ∓ a3

)
.

The amplitude decomposition in terms of the helicity Eigenstates are given by

Mλ12λ1λ2
W+→f1f̄2

= C
2
√

2πα̂

sθ̂
ḡW,f1V

√
s12χ

†
− (p1) /ε− (k12, λ12)χ− (p2) ,

Mλ34λ3λ4
W−→f3f̄4

= C ′
2
√

2πα̂

sθ̂
ḡW,f3V

√
s34χ

†
− (p3) /ε− (k34, λ34)χ− (p4) ,
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where C/C ′ are the colour factors that are equal to {1,
√

3} for quarks and leptons respec-

tively, again using notation consistent with ref. [22]. The remaining amplitudes are

Mλ12λ34λ+λ−
e+e−→W−W+,ν

4 (2πα̂)
(
ḡW,lV

)2 =

√
s

s2
θ̂

(−k34 + k−)2χ
†
− (k+) /ε∗− (k12, λ12)

(
/q
)

+
/ε∗− (k34, λ34)χ− (k−) ,

Mλ12λ34λ+λ−
e+e−→W−W+,Z

−
√
s gZ,eff gZWW

=
(
ḡeLχ

†
− (k+)

(
/V
)
− χ− (k−)− ḡeRχ

†
+ (k+)

(
/V
)

+
χ+ (k−)

)
D̄
(
s, m̂2

Z

)
,

Mλ12λ34λ+λ−
e+e−→W−W+,γ

−
√

4πα̂Qe gAWW

=
(
χ†− (k+)

(
/V
)
− χ− (k−)− χ†+ (k+)

(
/V
)

+
χ+ (k−)

) √s
s+ iε

,

where qµ =
(
−kµ34 + kµ− + kµ12 − k

µ
+

)
/2 and D̄

(
s, m̂2

Z

)
= 1/(s− m̂2

Z + iΓ̄Zm̂Z + iε). Using

the shorthand notations ε∗ (k34, λ34) = ε∗34,λ34
and ε∗ (k12, λ12) = ε∗12,λ12

, and /V can be

written as

/V = −/ε∗34,λ34

[
ḡV1 +κ̄V +

λ̄V
m̄2
W

s12

] (
k34 · ε∗12,λ12

)
+ /ε∗12,λ12

[
ḡV1 +κ̄V +

λ̄V
m̄2
W

s34

] (
k12 · ε∗34,λ34

)
,

−/k12

[(
ḡV1 +

s−s12+s34

2

λ̄V
m̄2
W

)(
ε∗12,λ12 · ε

∗
34,λ34

)
− λ̄V
m̄2
W

(
k34 · ε∗12,λ12

) (
k12 · ε∗34,λ34

)]
,

+/k34

[(
ḡV1 +

s+s12−s34

2

λ̄V
m̄2
W

)(
ε∗12,λ12 · ε

∗
34,λ34 ,

)
− λ̄V
m̄2
W

(
k34 · ε∗12,λ12

) (
k12 · ε∗34,λ34

)]
.

In the fermions massless limit ω− (p) = 0 and ω+ (p) =
√

2E =
√

2p0 so that in this limit

we note

Mλ12
W+→f1f̄2

=Mλ12−+
W+→f1f̄2

, Mλ34
W−→f3f̄4

=Mλ34−+
W−→f3f̄4

for simplification while the dependence on λ+, λ− is kept as a superscript for the ee→WW

sub-amplitudes.
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λ12 λ34

(
Mλ12λ34+−

e+e−→W+W−,ν

)
/

(
2πα̂

(
ḡl,WV

)2
)

0 0 2 sin θ
s2
θ̂

√
s12
√
s34λ1/2(

√
s,
√
s12,
√
s34)

((
s2 − (s12 − s34)2

)
− 8ss12s34

s− s12 − s34 + λ1/2
(√
s,
√
s12,
√
s34

)
cos θ

)

+ + − 4 sin θ
s2
θ̂
λ1/2(

√
s,
√
s12,
√
s34)

(
s+
−s (s12 + s34)− (s12 − s34)

(
−s12 + s34 + λ1/2

(√
s,
√
s12,
√
s34

))
s− s12 − s34 + λ1/2

(√
s,
√
s12,
√
s34

)
cos θ

)

− − − 4 sin θ
s2
θ̂
λ1/2(

√
s,
√
s12,
√
s34)

(
s+
−s (s12 + s34) + (s12 − s34)

(
s12 − s34 + λ1/2

(√
s,
√
s12,
√
s34

))
s− s12 − s34 + λ1/2

(√
s,
√
s12,
√
s34

)
cos θ

)

0 − − 4(1−cos θ)
√
s

s2
θ̂

√
2
√
s12λ1/2(

√
s,
√
s12,
√
s34)

(
(s+ s12 − s34)−

2s12

(
s− s12 + s34 − λ1/2

(√
s,
√
s12,
√
s34

))
s− s12 − s34 + λ1/2

(√
s,
√
s12,
√
s34

)
cos θ

)

0 + − 4(1+cos θ)
√
s

s2
θ̂

√
2
√
s12λ1/2(

√
s,
√
s12,
√
s34)

(
(s+ s12 − s34)−

2s12

(
s− s12 + s34 + λ1/2

(√
s,
√
s12,
√
s34

))
s− s12 − s34 + λ1/2

(√
s,
√
s12,
√
s34

)
cos θ

)

+ 0 4(1−cos θ)
√
s

s2
θ̂

√
2
√
s34λ1/2(

√
s,
√
s12,
√
s34)

(
(s− s12 + s34)−

2s34

(
s+ s12 − s34 − λ1/2

(√
s,
√
s12,
√
s34

))
s− s12 − s34 + λ1/2

(√
s,
√
s12,
√
s34

)
cos θ

)

− 0 4(1+cos θ)
√
s

s2
θ̂

√
2
√
s34λ1/2(

√
s,
√
s12,
√
s34)

(
(s− s12 + s34)−

2s34

(
s+ s12 − s34 + λ1/2

(√
s,
√
s12,
√
s34

))
s− s12 − s34 + λ1/2

(√
s,
√
s12,
√
s34

)
cos θ

)

+ − − 4
s2
θ̂

s sin θ (1− cos θ)

s− s12 − s34 + λ1/2
(√
s,
√
s12,
√
s34

)
cos θ

− + 4
s2
θ̂

s sin θ (1 + cos θ)

s− s12 − s34 + λ1/2
(√
s,
√
s12,
√
s34

)
cos θ

Table 9. The W± pair production matrix elements for helicities λ12, λ34 = {0,+,−}.

λ12 λ34 Mλ12λ34−+
e+e−→W+W−,V

0 0 − F̄V2 (ḡV1 (s12+s34)+κ̄V s)λ1/2(
√
s,
√
s12,
√
s34) sin θD̄V (s)

2
√
s12
√
s34

+ +
F̄V2 (2ḡV1 M̄

2
W+λ̄V s)λ1/2(

√
s,
√
s12,
√
s34) sin θD̄V (s)

2M̄2
W

− − F̄V2 (2ḡV1 M̄
2
W+λ̄V s)λ1/2(

√
s,
√
s12,
√
s34) sin θD̄V (s)

2M̄2
W

0 − −
√
sλ1/2(

√
s,
√
s12,
√
s34)(F̄V2 cos θ+F̄V2 )(ḡV1 M̄2

W+κ̄V M̄
2
W+λ̄V s12)D̄V (s)

2
√

2
√
s12M̄2

W

0 +
√
sλ1/2(

√
s,
√
s12,
√
s34)(F̄V2 cos θ−F̄V2 )(ḡV1 M̄2

W+κ̄V M̄
2
W+λ̄V s12)D̄V (s)

2
√

2
√
s12M̄2

W

+ 0
√
sλ1/2(

√
s,
√
s12,
√
s34)(F̄V2 cos θ+F̄V2 )(ḡV1 M̄2

W+κ̄V M̄
2
W+λ̄V s34)D̄V (s)

2
√

2
√
s34M̄2

W

− 0 −
√
sλ1/2(

√
s,
√
s12,
√
s34)(F̄V2 cos θ−F̄V2 )(ḡV1 M̄2

W+κ̄V M̄
2
W+λ̄V s34)D̄V (s)

2
√

2
√
s34M̄2

W

+ − 0

− + 0

Table 10. The W-production matrix elements Mλ12,λ34,−,+
e+e−→W+W−,V−exchange for λ12, λ34 = {0,+,−}

with in our notations: F̄Z1 = −gZ,eff .gZWW .ḡ
e
L, F̄Z2 = −gZ,eff .gZWW .ḡ

e
R, F̄A1 = F̄A2 =

√
4πα̂gAWW

and D̄Z (s) = D̄
(
s, m̂2

Z

)
and D̄A (s) = 1/s.
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λ12 λ34 Mλ12λ34+−
e+e−→W+W−,V

0 0 − F̄V1 (ḡV1 (s12+s34)+κ̄V s)λ1/2(
√
s,
√
s12,
√
s34) sin θD̄V (s)

2
√
s12
√
s34

+ +
F̄V1 (2ḡV1 M̄

2
W+λ̄V s)λ1/2(

√
s,
√
s12,
√
s34) sin θD̄V (s)

2M̄2
W

− − F̄V1 (2ḡV1 M̄
2
W+λ̄V s)λ1/2(

√
s,
√
s12,
√
s34) sin θD̄V (s)

2M̄2
W

0 − −
√
sλ1/2(

√
s,
√
s12,
√
s34)(F̄V1 cos θ−F̄V1 )(ḡV1 M̄2

W+κ̄V M̄
2
W+λ̄V s12)D̄V (s)

2
√

2
√
s12M̄2

W

0 +
√
sλ1/2(

√
s,
√
s12,
√
s34)(F̄V1 cos θ+F̄V1 )(ḡV1 M̄2

W+κ̄V M̄
2
W+λ̄V s12)D̄V (s)

2
√

2
√
s12M̄2

W

+ 0
√
sλ1/2(

√
s,
√
s12,
√
s34)(F̄V1 cos θ−F̄V1 )(ḡV1 M̄2

W+κ̄V M̄
2
W+λ̄V s34)D̄V (s)

2
√

2
√
s34M̄2

W

− 0 −
√
sλ1/2(

√
s,
√
s12,
√
s34)(F̄V1 cos θ+F̄V1 )(ḡV1 M̄2

W+κ̄V M̄
2
W+λ̄V s34)D̄V (s)

2
√

2
√
s34M̄2

W

+ − 0

− + 0

Table 11. The W-production matrix elements Mλ12,λ34,+,−
e+e−→W+W−,V−exchange for λ12, λ34 = {0,+,−}

with in our notations: F̄Z1 = −gZ,eff .gZWW .ḡ
e
L, F̄Z2 = −gZ,eff .gZWW .ḡ

e
R, F̄A1 = F̄A2 =

√
4πα̂gAWW

and D̄Z (s) = D̄
(
s, m̂2

Z

)
and D̄A (s) = 1/s.
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σ
√
s [GeV] Experimental value [pb] Ref. Theoretical value [pb] Ref.

σ`ν`ν 188.6 1.88± 0.16± 0.07 [43] 1.72 (1± 0.5%) [43]

191.6 1.66± 0.39± 0.07 [43] 1.76 (1± 0.5%) [43]

195.5 1.78± 0.24± 0.07 [43] 1.79 (1± 0.5%) [43]

199.6 1.75± 0.25± 0.06 [43] 1.80 (1± 0.5%) [43]

201.8 1.51± 0.34± 0.07 [43] 1.81 (1± 0.5%) [43]

204.8 1.58± 0.24± 0.05 [43] 1.82 (1± 0.5%) [43]

206.5 1.44± 0.18± 0.06 [43] 1.82 (1± 0.5%) [43]

208.0 2.23± 0.86± 0.06 [43] 1.82 (1± 0.5%) [43]

σ`νqq 188.6 7.19± 0.24± 0.08 [43] 7.14 (1± 0.5%) [43]

191.6 7.69± 0.61± 0.09 [43] 7.26 (1± 0.5%) [43]

195.5 7.58± 0.36± 0.08 [43] 7.38 (1± 0.5%) [43]

199.6 6.81± 0.35± 0.08 [43] 7.44 (1± 0.5%) [43]

201.8 7.34± 0.54± 0.08 [43] 7.47 (1± 0.5%) [43]

204.8 7.68± 0.39± 0.13 [43] 7.50 (1± 0.5%) [43]

206.5 7.60± 0.30± 0.08 [43] 7.50 (1± 0.5%) [43]

208.0 8.18± 1.21± 0.09 [43] 7.50 (1± 0.5%) [43]

σqqqq 188.6 7.17± 0.24± 0.12 [43] 7.42 (1± 0.5%) [43]

191.6 6.78± 0.56± 0.12 [43] 7.56 (1± 0.5%) [43]

195.5 6.92± 0.34± 0.11 [43] 7.68 (1± 0.5%) [43]

199.6 7.91± 0.36± 0.13 [43] 7.76 (1± 0.5%) [43]

201.8 7.09± 0.52± 0.12 [43] 7.79 (1± 0.5%) [43]

204.8 7.66± 0.37± 0.13 [43] 7.81 (1± 0.5%) [43]

206.5 8.07± 0.29± 0.13 [43] 7.82 (1± 0.5%) [43]

208.0 7.29± 1.16± 0.11 [43] 7.82 (1± 0.5%) [43]

Table 12. Measured cross section of the process e+e− → `ν`ν, e+e− → qq`ν, e+e− → qqqq by the

L3 collaboration assuming charged-lepton universality. The SM theory error is taken to be 0.5% of

the SM values following [43].
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σ
√
s [GeV] Experimental value [pb] Ref. Theoretical value [pb] Ref.

σ`ν`ν 188.63 1.69± 0.11± 0.02 [44] 1.72 (1± 0.5%) [44]

191.61 2.04± 0.30± 0.02 [44] 1.75 (1± 0.5%) [44]

195.54 2.03± 0.19± 0.02 [44] 1.78 (1± 0.5%) [44]

199.54 1.91± 0.18± 0.02 [44] 1.79 (1± 0.5%) [44]

201.65 2.50± 0.29± 0.03 [44] 1.80 (1± 0.5%) [44]

204.88 1.82± 0.17± 0.02 [44] 1.81 (1± 0.5%) [44]

206.56 1.83± 0.13± 0.02 [44] 1.81 (1± 0.5%) [44]

σ`νqq 188.63 6.98± 0.22± 0.05 [44] 7.13 (1± 0.5%) [44]

191.61 6.48± 0.54± 0.05 [44] 7.26 (1± 0.5%) [44]

195.54 7.94± 0.37± 0.05 [44] 7.38 (1± 0.5%) [44]

199.54 7.01± 0.35± 0.05 [44] 7.46 (1± 0.5%) [44]

201.65 7.39± 0.51± 0.05 [44] 7.48 (1± 0.5%) [44]

204.88 6.85± 0.33± 0.05 [44] 7.50 (1± 0.5%) [44]

206.56 7.67± 0.27± 0.05 [44] 7.51 (1± 0.5%) [44]

σqqqq 188.63 7.66± 0.25± 0.12 [44] 7.41 (1± 0.5%) [44]

191.61 7.51± 0.62± 0.12 [44] 7.54 (1± 0.5%) [44]

195.54 8.35± 0.40± 0.12 [44] 7.67 (1± 0.5%) [44]

199.54 7.42± 0.38± 0.11 [44] 7.75 (1± 0.5%) [44]

201.65 8.16± 0.57± 0.12 [44] 7.77 (1± 0.5%) [44]

204.88 7.40± 0.37± 0.11 [44] 7.79 (1± 0.5%) [44]

206.56 8.19± 0.30± 0.12 [44] 7.80 (1± 0.5%) [44]

Table 13. Measured cross section of the process e+e− → `ν`ν, e+e− → qq`ν, e+e− → qqqq by

the OPAL collaboration assuming charged-lepton universality. The SM theory error is taken to be

0.5% of the SM values following [43].
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σ
√
s [GeV] Experimental value [pb] Ref. Theoretical value [pb] Ref.

σ`ν`ν 188.63 1.78± 0.13± 0.02 [45] 1.75 (1± 0.5%) [44]

191.58 1.45± 0.29± 0.02 [45] 1.78 (1± 0.5%) [44]

195.52 1.78± 0.19± 0.02 [45] 1.79 (1± 0.5%) [44]

199.52 1.83± 0.19± 0.03 [45] 1.80 (1± 0.5%) [44]

201.62 1.78± 0.27± 0.02 [45] 1.81 (1± 0.5%) [44]

204.86 1.51± 0.18± 0.02 [45] 1.81 (1± 0.5%) [44]

206.53 1.69± 0.15± 0.02 [45] 1.81 (1± 0.5%) [44]

σ`νqq 188.63 7.14± 0.23± 0.06 [45] 7.26 (1± 0.5%) [44]

191.58 7.40± 0.56± 0.06 [45] 7.38 (1± 0.5%) [44]

195.52 7.31± 0.34± 0.06 [45] 7.46 (1± 0.5%) [44]

199.52 7.70± 0.33± 0.06 [45] 7.48 (1± 0.5%) [44]

201.62 7.92± 0.49± 0.06 [45] 7.50 (1± 0.5%) [44]

204.86 7.47± 0.34± 0.06 [45] 7.51 (1± 0.5%) [44]

206.53 7.96± 0.27± 0.06 [45] 7.51 (1± 0.5%) [44]

σqqqq 188.63 6.88± 0.23± 0.09 [45] 7.54 (1± 0.5%) [44]

191.58 8.21± 0.61± 0.09 [45] 7.67 (1± 0.5%) [44]

195.52 7.51± 0.35± 0.09 [45] 7.75 (1± 0.5%) [44]

199.52 7.40± 0.33± 0.09 [45] 7.77 (1± 0.5%) [44]

201.62 6.96± 0.47± 0.09 [45] 7.79 (1± 0.5%) [44]

204.86 7.79± 0.35± 0.09 [45] 7.80 (1± 0.5%) [44]

206.53 7.73± 0.27± 0.09 [45] 7.80 (1± 0.5%) [44]

Table 14. Measured cross section of the process e+e− → `ν`ν, e+e− → qq`ν, e+e− → qqqq by the

ALEPH collaboration assuming charged-lepton universality. The SM predictions are taken to be

the same as the ones for OPAL data. The SM theory error is 0.5% of the SM values following [43].

cos θ bin
√
s [GeV] Experimental value [pb] Ref. Theoretical value [pb] Ref.

bin 1 182.66 0.502± 0.114 [67] 0.74 (1± 0.2%) [43]

bin 4 182.66 1.281± 0.203 [67] 1.20 (1± 0.2%) [43]

bin 7 182.66 2.583± 0.270 [67] 2.16 (1± 0.2%) [43]

bin 10 182.66 5.372± 0.419 [67] 5.47 (1± 0.2%) [43]

bin 1 205.92 0.495± 0.058 [67] 0.52 (1± 0.2%) [43]

bin 4 205.92 1.057± 0.094 [67] 0.98 (1± 0.2%) [43]

bin 7 205.92 2.294± 0.140 [67] 2.06 (1± 0.2%) [43]

bin 10 205.92 7.584± 0.262 [67] 7.80 (1± 0.2%) [43]

Table 15. Combined measured dσ`νqq/dcos[θ] reported by the LEPII collaboration [67]. The SM

theory error is taken to be 0.2% of the SM values following [43].
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