
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 131.169.4.70

This content was downloaded on 26/05/2015 at 21:04

Please note that terms and conditions apply.

Adaptive track scheduling to optimize concurrency and vectorization in GeantV

View the table of contents for this issue, or go to the journal homepage for more

2015 J. Phys.: Conf. Ser. 608 012003

(http://iopscience.iop.org/1742-6596/608/1/012003)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/608/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

Adaptive track scheduling to optimize concurrency and
vectorization in GeantV

J Apostolakis1, M Bandieramonte2, G Bitzes3, R Brun1, P Canal4, F Carminati1, J
C De Fine Licht5, L Duhem6, V D Elvira4, A Gheata1, S Y Jun4, G Lima4, M
Novak1, R Sehgal7, O Shadura8, S Wenzel1

1 European Organization for Nuclear Research (CERN) - Geneva, Switzerland
2 University of Catania and INAF (IT)
3 University of Athens (GR)
4 Fermi National Accelerator Laboratory (US)
5 University of Copenhagen (DK)
6 Intel Corporation
7 Bhabha Atomic Research Center (IN)
8 National Technical University of Ukraine, “Kyiv” Politechnic Institute

Andrei.Gheata@cern.ch

Abstract. The GeantV project is focused on the R&D of new particle transport techniques to
maximize parallelism on multiple levels, profiting from the use of both SIMD instructions and
co-processors for the CPU-intensive calculations specific to this type of applications. In our
approach, vectors of tracks belonging to multiple events and matching different locality criteria
must be gathered and dispatched to algorithms having vector signatures. While the transport
propagates tracks and changes their individual states, data locality becomes harder to maintain.
The scheduling policy has to be changed to maintain efficient vectors while keeping an optimal
level of concurrency. The model has complex dynamics requiring tuning the thresholds to
switch between the normal regime and special modes, i.e. prioritizing events to allow flushing
memory, adding new events in the transport pipeline to boost locality, dynamically adjusting
the particle vector size or switching between vector to single track mode when vectorization
causes only overhead. This work requires a comprehensive study for optimizing these
parameters to make the behaviour of the scheduler self-adapting, presenting here its initial
results.

1. GeantV project in the simulation context of LHC
One of the striking facts for the LHC computing was that more than half of the available CPU
resources of the experiments were used for producing simulated samples. Assuming a linear
dependency of simulation needs with the acquired data, the implications from the perspective of the
LHC upgrade schedule become sizeable as far as computing resources are concerned. As the
integrated luminosity will increase by factors in the near future and by orders of magnitude for the
high-luminosity LHC era, we are looking at a tremendous CPU power to cover future simulations.

The “why” part of the observation above is very important for understanding what can be done in
the future besides just scaling up the resources, but also using them more efficiently. This is what

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012003 doi:10.1088/1742-6596/608/1/012003

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

triggered the investigation and prototyping work that started in 2011 and which is the base for the
current R&D behind the GeantV project [1]. Looking at the main reasons for the low number of
instructions per cycle of about 0.8 in particle transport simulations and HEP code in general, we can
identify a large range of sources, starting with abusing object-oriented design in data access patterns
and ending with poor data and code locality caused by the sequential nature of the classical particle
transport approach.

This simulation optimization initiative has grown during the last years into a project looking at
many different performance dimensions, which can potentially speed up simulation by important
factors on the architectures available today. The main idea behind the first version of the GeantV
prototype was changing the basic work unit for transport simulation from a single particle to a vector
of particles fulfilling geometry locality criteria. This was motivated by the observation that most of the
simulation time is spent in only 5-10% of all logical volumes of a HEP experiment, and in addition
geometry locality means material locality, which partially implies physics locality. Adding
multithreaded concurrency on top of this model allowed building the initial version of the prototype
which sets the basis for exploring new features like: SIMD vectorization, fine grained parallelism,
transparent usage of resources (CPU/GPU) or re-design of the code in terms of specialization and re-
usability.

The project is evolving in three main directions which are complementary enough to allow for
independent development and which share core data structures and features into a single simulation
engine, which currently is still in the prototyping phase.

• The geometry modeling development aims to re-design the main features of the standard
geometry modelers such as the Geant4 [2] and ROOT [3] ones using techniques like
template specialization and generic programming, supporting vectorization at library level
and generating optimized code for both CPU and GPU. This is evolving into the next
generation geometry tool, triggered by the GeantV project but usable well beyond it. This
geometry development, known as VecGeom [4], recently started to be merged with the
USolids library [5], which was already crossbreeding the features of ROOT and Geant4
shape primitives.

• The physics development aims to refactor the Geant4 physics engine and algorithms into
vectorized kernels usable on both CPU and GPU, using the same specialization techniques
whenever possible and allowing for “fast” features like generalized tabulated cross sections
or inclusion of fast simulation techniques.

• The kernel and scheduler development aims to globally optimize the flow of the simulation
application, managing concurrency and deploying vectors of tracks matching appropriate
locality criteria to both physics and geometry algorithms. The major challenge of the
scheduler is to keep a positive balance between the gains from locality and vectorization
and the overheads coming from the extra data management required by the vector
approach. The following sections of the paper will focus more on these areas.

2. The data model: vectors of tracks
One of the important requirements allowing compilers to vectorize the code is the contiguity and
alignment of the data to be processed. Any indirections using pointers or indexing represent major
overheads or even blockers for vector architectures, besides the obvious negative impact on caching.
Since the presence of a virtual function table for a type and the use of virtual function generally
prevent vectorization, plain old data like types are to be favored in a vector approach, as well as the
usage of structures of arrays (SOA) versus the classical arrays of structures (AOS). As rule of thumb,
arranging the data in a way that avoids collecting at run-time from many places improves performance
but is generally hard to achieve.

In GeantV, we implemented a custom SOA approach, which can automatically handle vectors of
tracks expanding them into internally managed aligned arrays corresponding to each track data
member. Memory allocation is performed at initialization time and expanded as needed. This structure

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012003 doi:10.1088/1742-6596/608/1/012003

2

(called GeantTrack_v) can pass pointers to arrays of positions, momenta or other fields to any
vectorized client. Due to the size of the track object (currently 192 bytes), an SOA approach can have
important caching overheads, so we are also investigating a hybrid AOSOA (array of structures of
arrays) to alleviate this effect.

2.1. Reshuffling overheads
Providing a vector container is far from being enough to percolate vectors down into non-trivially
branched algorithms. Conditional code is harmful for both SIMD and GPU processing but in many
cases can be partially avoided by using masking techniques [6] at the level of single algorithms. On
the other hand, successive calls of algorithms that involve track selections or which are changing
individual track states require container reshuffling or compacting operations.

A simple example is propagating a vector of particles in a single volume. Some of the particles will
reach the volume boundary or the point where a physics process was sampled earlier than others,
leaving “holes” in the container. Continuing the propagation in vector mode requires compacting the
fields of the remaining tracks in contiguous memory and possibly moving the stopped tracks to a
different vector container. Another common technique is to apply a vector operation to a subset of the
tracks, which requires reshuffling those matching the criteria for the vector operation into a contiguous
block at the beginning of the container.

All these operations involve costly memory copying, which is an overhead compared to a scalar
approach. The challenge is to minimize these overheads as much as possible in order to keep them
below the performance gains due to locality and vector processing.

3. Track scheduling model
The GeantV scheduler controls the simulation workflow. In the current implementation, a single
thread controls the flow, monitoring the work queue and other critical parameters such as the vector
size to trigger the appropriate corrective actions.

The prototype transports particles in a continuous flow, which is fed either from an external
generator invoked on demand, or from the particles transported by a previous propagation step. The
picture is very different from the standard sequential particle stack approach and mixes together tracks
coming from different events. The GeantV scheduler design allows for an arbitrary number of filter
modules to select and group together from the input flow all particles matching certain locality
conditions, as shown in the top part of figure 1.

Locality means in our terminology the repeated execution of a sequence of instructions for all (or
most of) the vector of particles, without any logical branching that could interrupt this sequence. The
local code creates the premises for better caching and parallel execution, and is allowed to call inline
functions or methods supporting a vector input signature on their turn.

The locality criteria are strongly dependent on the tasks to be executed within the track propagation
(stepping) procedure, presented in the bottom of figure 1. For example, computing the distance to the
next object boundary becomes local when called for a vector of particles contained by the same logical
volume, allowing computing the distance in a vectorized fashion without any extra data gathering. The
corresponding geometry filter will therefore group particles by this criterion. The physics sampler on
the other hand requires particles of the same type and within the same energy range to become local.
In the current version of the prototype, geometry locality is the only implemented filter, but we are
extending the concept to other use cases as well.

An important future feature of GeantV will be the possibility to combine full and fast parametric
simulation in the same session, in an arbitrary proportion. The use of fast simulation models will be
triggered by user-defined filters, which would group particles by the criteria allowing these models to
be applicable. Using the same filtering idea, additional resources such as general-purpose graphics
processing units can be used transparently by grouping particles for which a given transport task
would take profit from running on such devices.

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012003 doi:10.1088/1742-6596/608/1/012003

3

Every locality filter fills its current vector of tracks up to a threshold, and after generates a basket,
which is put in a common work queue. The baskets produced by a given filter are only used by the
computing task they are filtered for. For example, a geometry filter generates baskets of tracks located
in the same volume, which are processed by the GeantV vector propagator.

Figure 1. The GeantV scheduler aims to improve code locality and allow for SIMD vectorization in a
concurrent environment by dispatching vectors of tracks to be transported. The design is based on a
set of mutually exclusive filters grouping particles according certain locality criteria, that can be
exploited in a vector manner by the different tasks executed in the propagation procedure, shown in
the bottom part of the picture.

While the vector stepper operates on a basket, the input vector gets updated with the proposed steps
sampled by a physics manager. This uses cross sections tabulated from a Geant4 physics list for all the
processes involved by the simulation. The vectorized geometry navigator queries the geometry for the
geometrical step limits for each track. After invoking the field propagator, the track vector gets
gradually smaller as particles reach their proposed steps, so the compacting mechanism has to be
called several times for the vector container. The code can automatically switch to a scalar approach
when the vectors become inefficient for vector processing. An important mechanism implemented in
the scheduler is the possibility to postpone single particles (not yet fully propagated) to be regrouped
later with others matching the same locality criteria. Postponing is triggered systematically when
geometry locality can be easily fulfilled (e.g. after firing a new event), but much less in the “sparse”
regime when particles are spread in the full detector, having a wide range of energies. At the end of a
propagation step, all particles (primaries as well as generated secondaries) are copied in the output
vector of the basket.

3.1. Workload balancing and queue control

Pa
rt
ic
le
s

GeantV	
 scheduler

Monitoring

Triggers,	
 alarms

AC
TI
ON

S:
	
 in
je
ct
,

Ve
ct
or
/s
in
gl
e,
	
 p
ri
or
iti
ze
,	

di
gi
tiz
e,
	
 g
ar
ba
ge
	
 c
ol
le
ct

Generator Geometry	
 filter
	

	

	

	

	

	

Logical	
 volume	

trigger

Physics	
 filter
	

	

	

	

	

	

Particle	
 type,	

energy	
 trigger

Fast	
 transport	

filter
	

	

	

	

Geometry	

region,	
 particle	

type,	
 energy

INPUT	
 VECTORS	
 OF	
 PARTICLES

Vector
stepper

VecGeom
navigator

Fu
ll	

ge
om

et
ry

Si
m
pl
ifi
ed
	

ge
om

et
ry

Step	
 sampling
Filter	
 neutrals

(Field)	
 Propagator

Physics	

sampler

Tab.	
 Xsec

Tab.	
 final	
 state	

samples

Phys.	
 Process
post-­‐step (Vector)

physics

Compute	
 final	

state

Step	
 limiter
reshuffle

Secondaries

TabXsec
manager

OUTPUT	
 VECTORS	
 OF	
 PARTICLES

FastSim	

stepper

TO	
 SCHEDULER

GPU	
 broker

User	
 defined	

parameters

Fill	
 output	
 vector

WORK	
 QUEUE

THREADS

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012003 doi:10.1088/1742-6596/608/1/012003

4

An important concurrency feature is automatic workload balancing. In GeantV this is achieved by
using a single queue where any worker thread can retrieve the next basket to be processed. In this
approach, an empty queue implies wasted idle resources waiting for work, but an over-populated
queue points to inefficient vector size and additional overheads due to inter-thread communication in
the “basketizing” phase. The scheduler has therefore to constantly monitor the work queue load and
take actions to correct the “bad” work regimes.

 The parameters used to control the queue sanity are the low and high watermarks for the number
of contained baskets, which are subject to optimization. These are now chosen in a more or less
arbitrary manner, and reaching them triggers specific actions. The low watermark triggers a special
garbage collection by event range, to transport with priority tracks belonging to “old” events. Once an
event and its corresponding data structures get flushed and digitized, the generator produces a new
event, increasing the queue size. The high watermark triggers a re-evaluation of the thresholds used
by the locality filters to “basketize” tracks, generating larger vectors and therefore decreasing the
queue size at the profit of vectorization.

The algorithm for choosing the “appropriate” vector size is an important scheduling parameter to
optimize. This depends on many factors, like the filter type, physics, or geometry complexity. These
dependencies and correlations with other scheduling parameters are not well understood yet, but we
are currently doing scans of the performance for different parameter values. In figure 2 we can observe
that the performance can vary by more than 30% when changing the value for the particle vector size,
with an optimal value of 64 tracks per basket. This corresponds however to a very simple geometry
setup and just proves the principle. One possible approach that we are considering for optimizing such
critical model parameters is based on genetic algorithms [7], as described in section 5.

Figure 2. The simulation time has an optimum against the track vector size. Small vectors imply
inefficient vectorization and dispatching overheads, while long vectors are penalized by frequent
garbage collections in the “sparse” regime when locality is hard to enforce. The plot was produced
on X86_64 apple-darwin13 Core i7 supporting AVX2.

number of tracks/basket10 210

si
m

ul
at

io
n

tim
e

8

9

10

11

12

13

14

15

16

Simulation time as function of basket size (8 threads)

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012003 doi:10.1088/1742-6596/608/1/012003

5

4. Scalability and performance
Scalability is a very important requirement for the GeantV scheduler in order to minimize the memory
footprint and maximize cache coherency. This is difficult to achieve due to the fine-grained
parallelism, which requires concurrent data scatter and gather between propagation steps.

The first non-vectorized version of the prototype only needed to copy track pointers to new baskets,
which was a lightweight operation that could be done for up to 12 workers by a single scheduling
thread. The current vectorized version has to copy the full track data, which can easily bottleneck
when executed by a single thread. An improved version of the scheduler performs now concurrent re-
basketizing, but still suffers from an important serial bottleneck due to concurrent copy operations of
track data onto a single receiving track container. To alleviate this, we are investigating an approach
with multiple filtering threads managing alone the copy operations for subsets of the total basket types.

We are constantly monitoring the scalability of the vector prototype using the simple geometry
setup presented in figure 3a, imported from one of the Geant4 novice examples. This allows testing
and comparing regularly different approaches for concurrency. Most of the tests are performed on an
Intel® Xeon® CPU E5-2695 v2 @ 2.40 GHz machine with 24 native threads supporting AVX2
instructions. It is clear that more work needs to be done to improve this property, and the current goal
is to achieve a good scalability up to at least 12 workers. One of the important milestones of the
project is verifying that the new transport scheduling approach brings indeed performance
improvements compared to the classical approach. This requires the ability to reproduce in a realistic
way the physics (at least electromagnetic) for a complex setup and compare the performance with a
standard Geant4 run. Since we do not have yet all the ingredients to do that, we were aiming for a
more simple check to hint for performance improvement or degradation.

Figure 3a. Simple ExN03 setup
used for the nightly scalability
tests run on.

Figure 3b. Scalability plots of the speedup against number of
worker threads. The blue line corresponds a single thread
performing track re-basketizing between tracking steps. The red
line corresponds to the current concurrent basket filling.

To reproduce the physics using a standard Geant4 physics list we tabulated the cross sections for

all the processes, particles and elements involved in the simple setup from Figure 3a. We have also
tabulated final states coming from these processes, and implemented a special tabulated cross section
process to have the exact same behavior in Geant4. Without entering into the full details of this
procedure, we were able to compare the results for the following three configurations: Geant4
simulation using the tabulated cross section process, GeantV using the scalar ROOT geometry for
navigation, and GeantV using the vectorized VecGeom geometry to check the impact of vectorization.

ExN03	
 example

Pb Scintillator

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012003 doi:10.1088/1742-6596/608/1/012003

6

Figure 4a. The GeantV simulations based on
tabulated physics and the corresponding native
Geant4 simulation produce compatible physics
results (here energy deposit per layer in the
ExN03 setup)

Figure 4b. Performance profile of the vector
prototype for the Geant4 ExN03 example. The
performance improvements in case of tabulated
physics are mainly due to geometry vectorization
and better caching, despite the data gather
overheads.

While getting statistically compatible results for the energy deposit and track length in the

scintillator layers for incident electrons with energies ranging from 30 MeV to 30 GeV, we can observe
a sizeable improvement of the total transport time even for this very simple setup compared to the
Geant4 + tabulated physics case. While an important contributor appears to be the vectorized
geometry, the caching gains due to vector treatment have clearly a major impact. We will soon test a
more complex setup, where we hope that the increased computational complexity of the vectorized
code will enhance the benefit of the vectorized treatment of tracks.

5. Plans for optimising scheduling parameters
The GeantV scheduling strategy is based on a model that has a certain complexity and a considerable
number of critical parameters that need to be tuned. The tuning procedure itself is not obvious and
requires the understanding of single parameter behaviors, work that has already started.

We are currently investigating the possibility of using genetic algorithms as one possible tool for
the optimization procedure. This will use as model “chromosomes” the states or ranges of the current
model parameters, like the work queue thresholds, the vector sizes per locality filter or the number of
worker threads. The evolution of the population of chromosomes will be done by mutation or
crossover of these properties, and aim to improve the total simulation run time while keeping memory
under controlled limits.

Since it is likely that the phase space for this procedure repeated for different geometry and physics
setups can hardly be covered by a single set of parameters for all cases and even from the beginning to
the end of the same simulation, we are foreseeing an adaptive behavior of the GeantV prototype, based
on a very short training time of the model and a parameterization extracted from the genetic algorithm
procedure.

References
[1] Apostolakis J, Brun R, Carminati F and Gheata A 2012 J.Phys: Conf. Ser. 396 022014

http://iopscience.iop.org/1742-6596/396/2/022014
[2] S Agostinelli et al 2003 Nuclear Instruments and Methods A ���506 (53pp)

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012003 doi:10.1088/1742-6596/608/1/012003

7

[3] http://root.cern.ch
[4] Apostolakis J, Brun R, Carminati F, Gheata A and Wenzel S 2014 J. Phys.: Conf. Ser. 513

052038
http://iopscience.iop.org/1742-6596/513/5/052038

[5] Marek Gayer et al 2012 J. Phys.: Conf. Ser. 396 052035
http://iopscience.iop.org/1742-6596/396/5/052035

[6] Bilk A, Girkar M, Grey P and Tian X 2002 Int. J of Parallel Programming 30, No. 2
[7] Goldberg G 1989 Genetic Algorithms in Search, Optimization, and Machine Learning ISBN-

13: 078-5342157673

ACAT2014 IOP Publishing
Journal of Physics: Conference Series 608 (2015) 012003 doi:10.1088/1742-6596/608/1/012003

8

