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ABSTRACT: The High Luminosity LHC (HL-LHC) will provide unprecedented instantaneous and
integrated luminosities. The CMS electromagnetic calorimeter (ECAL) will face a challenging
environment at the HL-LHC: higher event pileup, higher radiation levels for the crystals and photo-
detectors, and a higher rate of anomalous signals from the Avalanche Photodiodes (APDs) used for
the light readout in the ECAL Barrel. A redesign of the ECAL electronics (including an increase
in trigger rate and latency) is planned in order to mitigate these challenges and to maintain the
excellent physics performance of the detector.
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1 Introduction

The Compact Muon Solenoid (CMS) [1] was designed to record highest quality experimental data
for 10 years and for an integrated luminosity of 500 fb−1 at a peak rate of 1*1034 cm−2s−1. Dur-
ing the High Luminosity LHC (HL-LHC) [2] era CMS will receive an additional 2500 fb−1 of
integrated luminosity at a levelled peak rate of 5*1034 cm−2 delivering significantly more data for
analysis provided that:

• The CMS detectors can maintain physics data quality at the higher hit density (pile-up).

• The CMS detectors can maintain physics data quality without significant degradation due to
aging and radiation damage.

• The CMS trigger is capable of selecting events at high efficiency within a limited latency.
The CMS requirement at HL-LHC is to cope with 12.5 microsecond level 1 trigger latency
while the initial CMS requirement was 3.2 microseconds.

• The CMS data acquisition system is capable of recording events at a sufficient level 1 trigger
rate. The CMS requirement is to cope with a level 1 trigger rate of 750 kHz at HL-LHC
while the initial CMS requirement was 100 kHz.

The proposed CMS ECAL [3] barrel electronics upgrade, which is planned for installation during
the LHC long shutdown 3 (2022–2025), is motivated to some extent by the first two points but in
particular by the third and the fourth. The 61200 Lead Tungstate (PbWO4) scintillating crystals and
the attached photo-detectors (APDs) will perform well in the harsher environment of the HL-LHC
up to 2035 [11].

– 1 –
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Figure 1. The legacy ECAL Barrel electronics: conceptual design of the front-end readout and trigger
system for a group of 25 crystals.

2 The legacy system

2.1 Key parameters and features

The legacy front end electronics system, see figure 1, is based on the Multi Gain Pre-Amplifier
(MGPA) [4], a 3 gain pre-amplifier ASIC and the AD41240 [5] a multi-channel 12 bit ADC, to-
gether yielding a 16 bit dynamic range with an LSB of 40 MeV. Data from the ADCs is input to
a digital ASIC, the FENIX [6] implementing a digital pipeline, primary event buffer, and a trigger
primitive generator. The pipeline depth is 256 locations corresponding to a 6.4 microsecond level
1 trigger latency. The propagation delay for the trigger primitives and the level 1 trigger distri-
bution to the front end system is using approximately 50 LHC clocks, thus the time available for
the level 1 trigger processors is limited to approximately 5 microseconds by the CMS ECAL. The
primary event buffer has 256 locations and, as the number of time samples is selected to 10, 25
full events can be temporarily stored. Front end event buffer overflow is prevented by insertion of
empty events. The readout is a push from the front end system to the back end, thus any buffer
overflow condition is handled by the off detector system.

The trigger primitive generator calculates an energy sum based on 5×5 crystals in addition to
two feature bits:

• The fine grain veto bit is calculated by comparing energy sums of five crystals (phi strips)
and is set if the energy deposit is uniformly distributed over the 5×5 crystals rather than
being concentrated in any 2×5 crystal region.

• The spike flag bit is calculated by comparing each ADC value in a phi strip to a threshold,
thus yielding five bits of information. The five bits are fed to a look-up table (LUT) and the
results of the five strip LUTs are ORed to give the Spike Flag. Thus the Spike Flag bit is set
if more than one bit is set in any strip by a clever selection of LUT content.

– 2 –
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Fast and slow control is provided by a token ring [7]. The token ring chip set was developed for the
CMS silicon strip tracker and the off detector controller module was a joint development between
the CMS ECAL and the CMS silicon tracker. The token ring architecture is somewhat vulnerable
as, in principle, any node failure risk to prevent a whole ring from operating. This risk is mitigated
by a node bypass feature.

On average three optical fibres per unit of 25 readout channels are required in the CMS ECAL
barrel.

Approximately 130 ASICs of 11 different designs are used in the legacy subsystem serving 25
readout channels. All ASICs were implemented in the well-established 250 nm radiation tolerant
CMOS process with design features intended to make the ASIC more robust against single event
upsets (SEU).

3 Observed features and requirements for HL-LHC

As the instantaneous luminosity is expected to increase during the HL-LHC era, some issues and
features of the current system need to be addressed by the electronics system upgrade in order to
maintain the required level of performance.

Figure 2. Hit timing versus a typical shower shape variable used for spike discrimination (ratio of the energy
deposit in the 4 most energetic crystals (E4) and the central one (E1)).

3.1 Filtering of anomalous events for the CMS level 1 trigger

Anomalous events (spikes) are energy deposits directly into the bulk of the APD [11] and thus:

• Energy is deposited in a single APD as opposed to an EM shower that spreads laterally over
several crystals (<95% in the centre crystal).

• Pulses arrive somewhat earlier than an EM shower that need to scintillate and propagate
through the crystal

• Pulses are somewhat shorter than an EM shower pulse

The plot in figure 2 suggests that a very large fraction of anomalous events are detectable in real
time using dedicated hardware in the very front end and in the back end system.

– 3 –
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Figure 3. Noise evolution for the APDs installed in the CMS ECAL during data-taking in 2011 and 2012.
The noise increase is due to the radiation-induced increase in APD dark current.

3.2 Compensation for increased APD noise

The APD dark current is expected to increase due to radiation damage, leading to increased elec-
tronic noise (see figure 3). In order to address this issue and to provide the best performance
for physics, it is planned to re-optimize the parameters for the pre-amplifier. The possible gains
from re-optimizing the shaping time show promising results. Shortening the shaping time of the
pre-amplifier would also help in the mitigation of out-of-time pileup.

Figure 4. Prediction of the noise increase in the CMS ECAL central region (eta=0) and outer region
(eta=1.45) if operated at room temperature (T=18 degrees C) or at lower temperature (T=8 degrees C).

Studies and extrapolation from Run I measurements, shown in figure 4, indicate that the APD
noise can also be decreased by almost a factor of two if the ECAL barrel can be operated colder
than ambient temperature.

– 4 –
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4 The upgraded electronics system

Figure 5. Artistic view of the upgraded CMS ECAL barrel electronics system.

4.1 Key parameters and features

As the luminosity increases the level of event pile-up will become more difficult to handle and in
addition the APD noise increases with the dark current due to the absorbed total dose. The two
facts combined ask for an improved online spike suppression algorithm. The legacy algorithm
implemented using the sFGVB (strip Fine Grain Veto Bit) feature of the FENIX front end ASIC
will degrade for HL-LHC conditions [12] due to the increased noise and pile-up. For the same
reasons it appears advantageous to shorten the shaping time of the pre-amplifier and to optimize
the resolution of the digitizer.

In order to accommodate an arbitrary trigger latency and event buffer size and to provide finer
grain information the level 1 trigger the pipeline and the primary event buffer will be implemented
in the back end system allowing for a significant improvement as the level 1 trigger processors can
get access to single crystal granularity data. The front end is thus simplified as far as possible,
requiring relatively few radiation tolerant ASIC designs. The design requires four optical fibers
per unit of 25 crystals which is comparable to the legacy system. In order to decrease the currents
delivered to the front end system, and thus decrease the volume of required services on the magnet
surface, the power system will use radiation and magnetic field tolerant switching regulators.

The upgraded electronics system, see figure 5, will in addition to CMS ECAL-specific ASICs,
use a significant fraction of generic components (e.g. 10 Gbps Giga-Bit Transceivers (GBTx) [8]
and Versatile Link [9], radiation and magnetic field tolerant switching regulators [10]) derived from
current and future common development projects. In addition, collaboration will be sought in order
to develop and use a common hardware platform for the back end system, the ultimate goal being
to limit the number of hardware designs in CMS.

– 5 –
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5 Summary

The CMS ECAL electronics system is performing to specification but, as the HL-LHC is planned to
deliver significantly higher instantaneous luminosities, important modifications are required. The
legacy front-end electronics does not meet the expected CMS trigger requirements in the increased
pileup environment at the HL-LHC.

In order to provide additional flexibility for future algorithm upgrades and other enhancements,
major functions currently implemented in the front end electronics, like the trigger primitive gen-
eration and the primary event buffers, will be moved off-detector. This permits the use of effective
Commercial off the Shelf (COTS), like FPGAs, in the back end providing important improvements
in flexibility. The current software solution to reject anomalous signals from the APDs will at least
partly be implemented in a new electronics system allowing an improved rejection of anomalous
events feeding into the level 1 trigger.
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