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ABSTRACT: The GigaBit Laser Driver (GBLD) is a key on-detector component of the GigaBit
Transceiver (GBT) system at the transmitter side. As part of the design efforts towards the upgrade
of the electrical components of the LHC experiments, a 10 Gb/s GBLD (GBLD10) has been de-
veloped in a 130 nm CMOS technology. The GBLD10 is based on the distributed-amplifier (DA)
architecture and achieves data rates up to 10 Gb/s. It is capable of driving VCSELs with modula-
tion currents up to 12 mA. Moreover, a pre-emphasis function has been included in the proposed
laser driver in order to compensate for the capacitive load and channel losses.
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1 Introduction

The GigaBit Laser Driver (GBLD) is the main building block at the transmission side of the ver-
satile link project, which is currently under development at CERN [1]. The GBLD transmits ex-
perimental data and control information from the GBT chip to the transceiver in the counting room
through an optical fibre. As an on-detector component of the GBT system for data transmission in
High Energy Physics (HEP) applications, the GBLD needs to be able to operate at high data rates
while displaying high radiation tolerance. A 5 Gb/s laser driver (the GBLD) was designed for the
phase I detector upgrades [2] and is currently being mass produced. That device will be embedded
in detector systems to be installed during the LHC long shutdown (LS2) foreseen for 2018 / 2019.
With a more long term perspective, the phase II upgrades of the LHC machine and detectors (with
the installation foreseen to start in 2022 (LS3)) aim at high-luminosity operation with the objec-
tive of collecting ten times more data than in the initial design by 2030. Data transmission for the
phase II detector systems will require very high data rates and low power dissipation systems. Data
transmission systems operating at 10 Gb/s are now being considered. The laser driver GBLD10
described in this work aims at such systems.

While most 10 Gb/s laser driver designs take advantage of scaling in more advanced fab-
rication technologies [3, 4], the GBLD10, presented in this paper, is implemented in a 130 nm
CMOS technology. In order to achieve the high data rate of 10 Gb/s, a novel circuit technique for
laser drivers has been developed. In contrast to the conventional current modulators, a distributed-
amplifier (DA) based modulator with pre-emphasis is proposed here.
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Figure 1. GBLD10 block diagram.

The GBLD10 chip has a die size of 2 mm × 2 mm and fits in a 4 mm × 4 mm QFN24 package.
Both electrical tests, where the GBLD10 die is directly bonded to the PCB, and optical tests have
been carried out to fully characterize the performance of the GBLD10.

2 Design of GBLD10

2.1 GBLD10 architecture

The block diagram of the GBLD10 chip is shown in figure 1. The two main functions are laser
biasing and laser modulation. The biasing circuit, described in section 2.2, needs to be able ac-
commodate the large expected voltage drop across the VCSEL diode. The modulator, described
in section 2.3, needs to be designed with high bandwidth in order to enable data rates up to 10
Gb/s. Moreover, the correct operation of both biasing and modulation functions need to be guar-
anteed across Process, Voltage and Temperature (PVT) variations. Therefore, all currents are pro-
grammable: the modulation current can be programmed between 0 and 12 mA by means of a 6-bit
DAC; the pre-emphasis current can be programmed between 0 and 6 mA by means of a 4-bit DAC;
the laser biasing current can be programmed between 2 and 43 mA by means of an 8-bit DAC. The
pre-emphasis function, which is intended to compensate for the performance degradation due to
the unforeseen external capacitive load and/or channel losses, has been designed by means of the
capacitive degeneration technique. The GBLD10 is powered by a single 2.5 V supply. An on-chip
voltage regulator generates an internal 1.5 V for the digital circuits and DACs. The modulator itself
is powered by the external 2.5 V supply directly.

2.2 Laser biasing

Because the DC voltage drop across a biased VCSEL diode is 1.5–2.3 V, the voltage headroom
available for the laser biasing circuit can be as low as 0.2 V, with the supply voltage of only 2.5 V.
Moreover, the biasing circuit is required to show a high output impedance in order to be insensitive
to output voltage variations. To meet both requirements, a current mirror with a cascode and
feedback has been designed, as shown in figure 2. The current mirror has a ratio of 1:10. The lower
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Figure 2. Laser biasing circuit.

two devices are thin-oxide NMOS transistors working in the linear region while the upper devices
are thick-oxide NMOS transistors in saturation. Since the current cannot be copied accurately by
transistors in the linear region because of channel length modulation, a feedback loop has been
added in order to guarantee that the drain-source voltage of both thin-oxide devices is equal to
50 mV, resulting in accurate mirroring with the linear devices. The cascode transistors have been
implemented by thick-oxide devices in order to tolerate voltages up to the supply voltage of 2.5 V.
In order to operate properly, the current mirror of figure 2 needs at least 200 mV, namely 50 mV
over the linear devices and 150 mV to keep the cascode transistors in saturation. On this condition,
the output impedance of the proposed circuit is guaranteed to be sufficiently high.

2.3 Laser modulation

2.3.1 Basic modulator topology

The topology of the current modulator is shown in figure 3. It consists of two trans-conductance
(Gm) stages, one to provide modulation current and one to provide pre-emphasis current. The latter
has been implemented by means of the capacitive degeneration technique. The trans-conductance
of both stages can be programmed by changing the respective tail currents. To provide proper
matching, on-chip 50 Ω resistors have been placed, both at the input and the output terminals. The
small-signal transfer function of the circuit in figure 3 can be expressed as follows:

IOUT

VIN
(s) =

gm3,4

[
1+ s ·2Cpre

(
1

gm1,2
+ 1

gm3,4

)]
1+ s ·

(
2Cpre
gm1,2

) (2.1)

From (2.1), we can see that IOUT
VIN

= gm3,4 at s = 0, which means that the pre-emphasis function does
not affect the modulation amplitude. The transfer function in (2.1) also shows a system with a zero
and a pole. They are located at the following frequencies:

z1 =
gm1,2

2
(

1+ gm1,2
gm3,4

)
Cpre

(2.2)

p1 =
gm1,2

2Cpre
(2.3)
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Figure 3. Modular topology.

From (2.2)–(2.3), it is clear that the zero and pole locations can be modified by changing gm1,2. As
a result, the pre-emphasis magnitude is modified as well.

2.3.2 Proposed DA-based modulator

The speed of the modulator in figure 3 is limited by the parasitic capacitances. These parasitic
capacitances can be very large because of the following reasons. First, the NMOS differential pairs
are large in order to deliver large modulation currents. Second, the ESD diodes at the input and
output of the modulator, which are required for reliability considerations, need to be large. This
is especially a problem at the input of the modulator, where gates have to be protected. The ESD
diodes at the output can be designed with a smaller size because a drain is more robust than a gate.
Finally, the layout can have a significant influence on the speed of the modulator as well. This
is especially a problem considering that, in order to meet the electro-migration requirements, the
metal width needs to be large enough to accommodate the large modulation currents. Consequently,
significant parasitics originate from the metal wiring.

In order to circumvent the bandwidth penalty of these parasitic capacitances, we propose the
distributed-amplifier based modulator. By designing the input and output nodes in figure 3 into
differential transmission lines made of L-C sections, the gate and drain parasitic capacitances can
be considered as being part of the transmission lines. As a result, they will only have little impact
on the circuit bandwidth. As shown in figure 4, the single modulator and pre-emphasis stage from
figure 3 has been uniformly distributed over 3 stages and 2 stages respectively. Three-terminal
inductors are inserted at the gates and drains between adjacent stages to form artificial transmission
lines together with the gate and drain capacitances.

In a distributed amplifier, the group delay over the gate and drain transmission lines must be
the same in order for the signals to add constructively at the output. It can be easily achieved if the
values of inductance and capacitance used to form the two transmission lines are the same. This is
however not necessarily the case in practice since the drain and gate capacitances are intrinsically
different. In the case under study, the following also needs to be taken into account: first, rela-
tively high bias currents lead to high output conductance of the gain stage. Second, large signal
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Figure 4. Proposed DA-based modulator.

amplitudes at the drain make the output conductance even higher (on average, since they take the
transistor into the linear region of operation). Since the output conductance is high, the parasitic
drain-to-bulk capacitance of the very large differential pair tail current source actually loads the
drain circuit making the equivalent drain capacitance (200 fF/stage) actually higher than the gate
capacitance (140 fF/stage). Fortunately, this difference can be compensated by distributing the ESD
protection circuit along the input transmission line. The equivalent ESD capacitance becomes then
distributed with the dual advantage of equalizing the gate/drain transmission line capacitances and
of avoiding that a lumped ESD element at the chip input would degrade the modulator bandwidth.

Both the gate and the drain transmission lines are designed with a characteristic impedance
of 50 Ω. For minimal chip area, the required number of inductors should be minimized. This has
been achieved by using three-terminal inductors, as shown in figure 4. In order to save the area of
extra inductors, the bonding wires, which have an inductance of approximately 750 pH, have also
been used as being part of the designed transmission lines. The resulting total number of inductors
for the DA-based modulator is only 12, which was possible to integrate on a 2 × 2 mm2 die.

2.3.3 GBLD10 implementation

The GBLD10 is implemented in an 8-metal 130 nm CMOS technology. The high-speed signals
are routed with the thick top metal layers to reduce parasitics. figure 5(a) shows the layout of the
modulator. The three-terminal octagonal inductors have a diameter of 150 µm. The distance be-
tween two adjacent inductors is larger than 120 µm, which is sufficient to circumvent the inductive
coupling. figure 5(b) shows the entire die photo. The die size is 2 mm × 2 mm with a modulator
area of 0.69 mm2.

3 Test results

3.1 Electrical and optical test results

Both electrical tests and optical tests have been carried out to characterize the GBLD10 perfor-
mance. An Agilent J-BERT N4903B was used to generate the differential PRBS input signal.
An Agilent DSA91204A oscilloscope was used to observe the outputs. In the optical tests, the
GBLD10 was placed in the Enhanced Small Form-factor Pluggable (SFP+) module, developed by
the Versatile Link project [5], with the differential outputs AC coupled to an 850 nm VCSEL laser

– 5 –



2
0
1
5
 
J
I
N
S
T
 
1
0
 
C
0
2
0
3
6

Figure 5. GBLD10 implementation: (a) modulator layout; (b) GBLD10 die photo.

Figure 6. 10 Gb/s eye diagrams: (a) electrical eye diagram; (b) optial eye diagram.

diode. An Agilent 8163B light-wave multi-meter was used to convert the optical output from the
VCSEL into an electrical signal.

The jitter performance at 10 Gb/s has been measured with PRBS 27-1 input data and at a BER
of 10−12. Figure 6(a) and (b) show the electrical and optical eye diagrams respectively with a
6 mA modulation current. The total jitter in the electrical eye is 13.68 ps with an RMS random
jitter component of 0.63 ps and a data-dependent jitter component of 5.1 ps peak-to-peak. The
optical eye shows 28.42 ps total jitter with an RMS random jitter component of 1.12 ps and a data-
dependent jitter of 14 ps peak-to-peak. Because the bandwidth of the VCSEL used is smaller than
that of the driver circuit, the optical tests show larger amounts of jitter than the electrical tests.

The supply current of the GBLD10 has been measured at different modulation settings with
a fixed 6 mA bias current. As shown in figure 7, the supply current increases linearly with the
increasing modulation current settings. The power consumption is 85 mW in the typical case with
a 6 mA current for both modulation and biasing, which is only 1/4 of the power consumption of
the laser driver reported in [2].

– 6 –
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Figure 7. GBLD10 supply current at different modulation settings.

Table 1. GBLD10 performance at different dose rates.

Dose Rate RMS Jitter Data-dependent Jitter Total Jitter Rise Time Fall Time Supply Current
(ps) (ps) (ps) (ps) (ps) (mA)∗

0 0.73 12.28 21.85 44.1 42.2 42.36
700k 0.78 13.05 23.05 46.3 43.98 42.40
5M 0.78 10.70 20.70 45.5 43.4 42.25
10M 0.72 10.82 20.29 46.2 44.1 42.37
20M 0.82 12.64 23.06 43.4 44.2 42.38
100M 0.74 11.20 20.84 45.8 43.5 42.38
200M 0.81 11.69 22.00 46.5 44.2 43.76
500M 0.76 12.02 21.97 46.4 44.1 45.91

(∗) Supply current is tested at default register settings after power-on reset operation.

3.2 Radiation test results

Radiation tests have been carried out up to a total ionizing dose of 500 Mrad. At every intermediate
dose step, the functionality of the I2C read/write and power-on reset circuitry has been checked.
Also, the electrical eye diagram and the supply current have been measured at every step. The
performance of the GBLD10 as a function of irradiation is shown in TABLE I. It shows that the
GBLD10 can be considered to be radiation-hard with only negligible performance degradation up
to 500 Mrad.

3.3 Other test results

The functionality of the pre-emphasis circuitry has been tested by cascading a pair of co-axial
cables with a length of 2 m to mimic channel loss. The eye diagrams with and without pre-emphasis
are shown as figure 8. From the test results, the pre-emphasis can improve the rise and the fall times
as well as increase the vertical eye opening when driving loads with large losses.

Due to its simple architecture with only a few stacked devices, the modulator can work at lower
voltages than what is required to drive a VCSEL, namely 2.5 V. To verify this, the GBLD10 has
been tested at lower supply voltages as well. From the test results shown in figure 9, the GBLD10
can still operate down to 1.5 V supply while maintaining the same performance.
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Figure 8. GBLD10 pre-emphasis test: (a) 10 Gb/s eye diagram without pre-emphasis; (b) 10 Gb/s eye
diagram with pre-emphasis.

Figure 9. GBLD10 slow voltage test: (a) 10 Gb/s eye diagram at 2.5 V; (b) 10 Gb/s eye diagram at 1.5 V.

Figure 10. 12.5 Gb/s eye diagram for GBLD10.

The GBLD10 has also been tested at 12.5 Gb/s, which is the maximum speed of the test
instruments. As shown in figure 10, a clean and well opened eye can be observed.

4 Conclusion

A 10 Gb/s VCSEL laser driver (GBLD10) has been designed for high-energy physics applications
in a 130 nm CMOS technology. To minimize the bandwidth limitations from the parasitics, a
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DA-based modulator is proposed. By carefully designing the gate and drain transmission lines, the
parasitic capacitances of the modulator can be absorbed. As a result, the GBLD10 is able to operate
at a data rate of 10 Gb/s. The pre-emphasis function, implemented by the capacitive degeneration
technique, has been verified by means of electrical tests. The potential of the GBLD10 to operate
at low supply voltages and at even higher data rates has been demonstrated as well.
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