Higgs boson : production and decays into bosons

28th Rencontres de Blois 29th may-3th June 2016

1

Marc Escalier, LAL, on behalf of ATLAS and CMS collaborations

Introduction

• Rich phenomenology of Higgs sector Higgs coupling=f(particles)

Higgs \rightarrow fermions : most : low resolution : H \rightarrow bb (jets), H $\rightarrow \tau\tau$ (jets, MET) H $\rightarrow \mu\mu$: long term (~HL-LHC)

see : Higgs boson parameters and fermionic decays Michal Bluj

Higgs \rightarrow bosons :

~channels with high mass resolution : $H \rightarrow \gamma \gamma : S/B : \text{few }\%, \text{ probe loops}$ $H \rightarrow ZZ^* \rightarrow 41 : \text{low bkg}; S/B > 1$ $H \rightarrow WW \rightarrow 1\nu l\nu : \text{ worst resolution}$ $H \rightarrow Z\gamma : \text{rare, probe loops (in backup)}$

Significance (Z) : 3σ : evidence 5σ : observation

Introduction

Experimental conditions : LHC : ATLAS, CMS Run 1, 2011, $\sqrt{s}=7$ TeV, L=4.5-5.1 fb⁻¹, 2012, $\sqrt{s}=8$ TeV, L=20.3-19.7 fb⁻¹ Run 2, 2015, $\sqrt{s}=13$ TeV, L=3.2-2.8 fb⁻¹

See more details : Status / highlights of LHC Run 2 Gigi Rolandi

The channels, Run 1

Early Run 2 : 2015

Not as competitive as Run 1, yet

Higgs mass and width

Good resolution of dibosons channels : $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ \rightarrow 41$

- Mass m_H : first step for combination of other quantities (eg couplings) ATLAS-CMS: m_H =125.09 GeV ± 240 MeV (stat : ± 210 MeV ; syst : ± 110 MeV) uncert. : ~statistics syst : ~scales
- Width $\Gamma_{\rm H}$ (SM \approx 4 MeV)
 - Direct : $\Gamma_{\rm H} \otimes \Gamma_{\rm exp}$
 - dominated by detector resolution
- Indirect: $-H \rightarrow ZZ^*$, etc. : opening phase space above 2 x m_Z : ratio σ off-shell \Leftrightarrow on-shell

 $\sigma_{gg \to H \to ZZ}^{off-peak} \sim g_{ggH}^2 g_{HZZ}^2 \qquad \sigma_{gg \to H \to ZZ}^{on-peak} \sim \frac{g_{ggH}^2 g_{HZZ}^2}{\Gamma_H}$

 $-H \rightarrow \gamma \gamma$: interference gg $\rightarrow H \rightarrow \gamma \gamma \Leftrightarrow$ gg $\rightarrow \gamma \gamma$ prospectives studies only (ATLAS)

Limits on $\Gamma_{\rm H}$

Direct		ATLAS		CMS	
Н→үү		<5.0 GeV at 95 % CL		<2.4 GeV at 95 % CL	
H→	$ZZ^* \rightarrow 41$	<2.6 GeV at 95 % CL		<3.4 GeV at 95 % CL comb : <1.7 GeV	
Indirect $H \rightarrow 77^* \rightarrow 41+$		<22.7 MeV at 95 % CL		<13 MeV at 95 % CL	
ATL CMS	L = VH+H→WW*→evμ S : H→WW*→lvlv	١V		$\begin{bmatrix} >3.5 \times 10^{-9} \text{ MeV at } 95 \% \text{ CL} \\ (H \rightarrow ZZ^* \rightarrow 41 \text{ only}) \end{bmatrix}$	
see	The profile of the H(125	5) from Run 1	Tatjana Lenz	$\rightarrow 1^{\text{st}} \text{ cstrt on } c\tau_{\text{H}}$	

Combination : decays and prod.

Decay channels Prod. modes - ATLAS ATLAS and CMS Preliminary ATLAS and CMS Preliminary - ATLAS - CMS $Z_{obs} (Z_{exp})$ [# σ] LHC Run 1 LHC Run 1 - CMS ATLAS+CMS —± 1σ ATLAS+CMS μ_{ggF} $-\pm 2\sigma$ — ± 1σ $\mu^{\gamma\gamma}$, 5.0 (4.6); 5.6 (5.1) clearly 5.4 (4.7) observ. μ_{VBF} observed μ^{ZZ} 6.6 (5.5); 7.0 (6.8) 2.4 (2.7) $|\mu_{WH}\rangle$ VH : 3.5 (4.2) μ^{WW} 6.8 (5.8); 4.8 (5.6) evidence (lvlv, also lvqq)2.3 (2.9) , μ ΖΗ ΄ 4.4 (3.3); 3.4 (3.7); 5.5 (5.0) $\mu^{\tau\tau}$ 4.4 (2.0) evidence observ. μ_{ttH} 1.7 (2.7); 2.0 (2.5); **2.6 (3.7**) μ^{bb} ATLAS ; CMS ATLAS+CMS ATLAS+CMS μ 1.5 2 2.5 3 0.5 3.5 0 Parameter value 0.5 1.5 2.5 2 3 3.5 0 Parameter value $\mu = 1.09^{+0.07}_{-0.07}$ (stat) $^{+0.04}_{-0.04}$ (exp.) $^{+0.03}_{-0.03}$ (th. bkg) $^{+0.07}_{-0.06}$ (th. sig) See also Higgs boson parameters and fermionic decays Michal Bluj

Higgs boson production (σ , $d\sigma/dX$) of the H(125) from Run1

Mauro Donega

Combination : Higgs couplings

8

Cross-section measurements

ATLAS Preliminary

 $\downarrow H \rightarrow \gamma \gamma \quad \Leftrightarrow H \rightarrow ZZ^* \rightarrow 4l$

🛉 comb. data 🔳 syst. unc

 $m_{\rm H} = 125.09 \, {\rm GeV} \, (\sigma_{\rm fid})$

QCD scale uncertainty

Tot. uncert. (scale \oplus PDF+ α .

σ_{fid} [fb]

5

 $\sigma_{\rm fid}$, $\sigma_{\rm tot}$ in various channels : H $\rightarrow \gamma\gamma$, H $\rightarrow ZZ^* \rightarrow 41$, H $\rightarrow WW^*$ Good agreement with expectations

 (σ_{tot})

σ_{pp→H} [pb] ,

80

70È

60È

50E

40È 30 20

Evolution with \sqrt{s}

Some tension for ATLAS related to high μ in 7 and 8 TeV datasets

5.1 fb⁻¹ (7 TeV), 19.7 fb⁻¹ (8 TeV), 2.8 fb⁻¹ (13 TeV

CMS

CMS Preliminary

Systematic uncertainty

Standard model (m. = 125 GeV

Model dependence

$d\sigma/dX$

various observables : #objects, p_T , E_T , angles, etc. various objects : photon, lepton, jet, MET, topology objects various channels : $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^* \rightarrow 41$, $H \rightarrow WW^* \rightarrow 1\nu l\nu$ Examples :

Examples :

Spin and J^{PC}

• Spin and parity $J^P = 0^+$ tested alternative models (spin-0 and spin 2) ATLAS $H \rightarrow \gamma\gamma, ZZ \rightarrow 41, WW^* \rightarrow ev\mu v$ $H \rightarrow \gamma\gamma, ZZ \rightarrow 41, WW \rightarrow 1v1v, Z\gamma^* \rightarrow 41, \gamma^*\gamma^* \rightarrow 41$

Variables : angular distributions (flat for spin 0), kinematics, etc.

>99 % CL exclusion tested alternative models to SM

Studies on anomalous couplings in EFT CP violation : no deviation, but only large CP mixing excluded (above 30 %)

see also :

The profile of the H(125) from Run 1

Tatjana Lenz

BSM

Dedicated presentations on BSM, in particular :

Will restrict only to two selected topics

Resonant hh : a few examples

ATLAS combination Run 1
 h(bb)h(ττ), h(γγ)h(WW^{*}), h(γγ)h(bb), h(bb)h(bb)

Limits : $m_{\rm H}$ =260 GeV : 2.1 pb 13 $m_{\rm H}$ =1000 GeV : 0.011 pb

Search for high mass resonances

Search for high mass resonances

 \rightarrow No excess observed so far, apart in $\gamma\gamma$ final state, at a mass \approx 750 GeV

See more details :	Search for diphoton resonances with the ATLAS experiment	Simone Michele Mazza	
	Searches for exotics at ATLAS and CMS	Claire Lee	
	Exotics searches at ATLAS	Ruggero Turra	

15

Conclusion

- Run 1 : important legacy in Higgs sector from Boson decays : $H \rightarrow \gamma \gamma, H \rightarrow ZZ^* \rightarrow 41, H \rightarrow WW \rightarrow 1\nu l\nu, H \rightarrow Z\gamma$
- measurement of mass, width, spin, σ , $d\sigma/dX$, production modes, couplings

- Early analyses w/ Run 2 with 2015 data, but not competitive for SM
- Decay to bosons : tool to probe New Physics (HH resonant, high mass resonances, etc.)
- 2016 data-taking may bring answers and surprises

ATL-COM-PHYS-2016-536 https://cds.cern.ch/record/2152741

References : SM individual channels

• H**→**γγ

ATLAS, Run 1, $\sqrt{s}=7$ TeV + 8 TeV, L=4.5 fb⁻¹+20.3 fb⁻¹, mass : PRD 90, 052004 (2014) couplings : PRD 90, 112015 (2014) CMS, Run 1, $\sqrt{s}=7$ TeV + 8 TeV, L=5.1 fb⁻¹+19.7 fb⁻¹, EPJ C74, 3076 (2014)

ATLAS, Run 2, √s=13 TeV, L=3.2 fb⁻¹, ATLAS-CONF-2015-060

CMS, Run 2, $\sqrt{s}=13$ TeV, L=2.7 fb⁻¹, CMS-PAS-HIG-15-005

high mass : ATLAS, Run 2, 2015, $\sqrt{s}=13$ TeV, L=3.2 fb⁻¹, ATLAS-CONF-2016-018 CMS, Run 2, 2015, $\sqrt{s}=13$ TeV, L=3.3 fb⁻¹, CMS-PAS-EXO-16-018

• $H \rightarrow ZZ^* \rightarrow 41$

ATLAS, Run 1, $\sqrt{s}=7$ TeV +8 TeV, L=4.5 fb⁻¹+20.3 fb⁻¹, PRD 91, 012006 (2015) CMS, Run 1, $\sqrt{s}=7$ TeV + 8 TeV, L=5.1 fb⁻¹+19.7 fb⁻¹, PRD 89, 092007 (2014) ATLAS, Run 2, $\sqrt{s}=13$ TeV, L=3.2 fb⁻¹ ATLAS-CONF-2015-059 CMS, Run 2, $\sqrt{s}=13$ TeV, L=2.8 fb⁻¹ CMS-PAS-HIG-15-004

• $H \rightarrow WW^* \rightarrow lvlv$

ATLAS, Run 1, $\sqrt{s}=7$ TeV + 8 TeV, L=4.5 fb⁻¹ + 20.3 fb⁻¹, PRD 92, 012006 (2015) CMS, Run 1, $\sqrt{s}=7$ TeV + 8 TeV, L=4.9 fb⁻¹ + 19.4 fb⁻¹, JHEP 01, 096 (2014)

• $H \rightarrow Z(11)\gamma$

ATLAS, Run 1, $\sqrt{s}=7$ TeV +8 TeV, L=4.5 fb⁻¹ + 20.3 fb⁻¹, PLB 732C, 8 (2014) CMS, Run 1, $\sqrt{s}=7$ TeV +8 TeV, L=5.0 fb⁻¹ + 19.6 fb⁻¹, PLB 726, 587 (2013)

• $H \rightarrow \gamma^* \gamma \rightarrow 11\gamma$

CMS, Run 1, $\sqrt{s}=8$ TeV, L=19.7 fb⁻¹, PLB 753, 341 (2016)

References : some properties

- Mass m_H
 - $H \rightarrow \gamma \gamma + H \rightarrow ZZ \rightarrow 41$

ATLAS, Run 1, $\sqrt{s}=7$ TeV + 8 TeV, L=4.5 fb⁻¹+ 20.3 fb⁻¹, PRD 90, 052004 (2014) CMS, Run 1, $\sqrt{s}=7$ TeV + 8 TeV, L=5.1 fb⁻¹ + 19.7 fb⁻¹, EPJC 75, 212 (2015) ATLAS-CMS, Run 1, $\sqrt{s}=7$ TeV + 8 TeV, PRL 114, 191803 (2015)

- Width $\Gamma_{\rm H}$
 - Direct

ATLAS, Run 1, $\sqrt{s}=7$ TeV + 8 TeV, L=4.5 fb⁻¹+ 20.3 fb⁻¹, PRD 90, 052004 (2014) CMS, Run 1, $\sqrt{s}=7$ TeV + 8 TeV, L \leq 5.1 fb⁻¹ + \leq 19.7 fb⁻¹, EPJC 75, 212 (2015)

- Interference
 - $H \rightarrow ZZ \rightarrow 41$ et al.

ATLAS, Run 1, $\sqrt{s}=8$ TeV, L=20.3 fb⁻¹, EPJC 75, 335 (2015) CMS, Run 1, $\sqrt{s}=7$ TeV + 8 TeV, L=5.1 fb⁻¹ + 19.7 fb⁻¹, PRD 92, 072010 (2015)

• H**>**үү

Shift m_H : improved estimation : ATLAS, ATL-PHYS-PUB-2016-009 Prospectives : ATLAS, ATL-PHYS-PUB-2013-014

• Spin

ATLAS, Run 1, $\sqrt{s}=7$ TeV + $\sqrt{s}=8$ TeV, L=4.5 fb⁻¹ + 20.3 fb⁻¹, EPJC 75, 476 (2015) CMS, Run 1, $\sqrt{s}=7$ TeV, L=5.1 fb⁻¹ + $\sqrt{s}=8$ TeV, L=19.7 fb⁻¹, PRD 92 (2015) 012004

• Couplings

ATLAS, Run 1, $\sqrt{s}=7$ TeV + 8 TeV, $L \le 4.7$ fb⁻¹ + ≤ 20.3 fb⁻¹, EPJC 76, 6 (2016) CMS, Run 1, $\sqrt{s}=7$ TeV + 8 TeV, $L \le 5.1$ fb⁻¹ + ≤ 19.7 fb⁻¹, EPJC 75, 212 (2015) ATLAS+CMS : ATLAS-CONF-2015-044 CMS-PAS-HIG-15-002

References : σ , d σ /dX

		ATLAS	CMS	m_{H} =125.4 GeV m_{H} =125.09 GeV m_{H} =125 GeV
Н→үү	σ σ, dσ/dX	$\sqrt{s}=7$ TeV, L=4.5 fb ⁻¹ , ATLAS-CONF-2015-060 $\sqrt{s}=8$ TeV, L=20.3 fb ⁻¹ , JHEP 09, 112 (2014) $\sqrt{s}=8$ TeV, L=20.3 fb ⁻¹ , ATLAS-CONF-2015-060 $\sqrt{s}=13$ TeV, L=3.2 fb ⁻¹ , ATLAS-CONF-2015-060	$\sqrt{s}=8$ TeV, L=19.7 fb ⁻¹ , EPJC 76, 1	3 (2016) σ, dσ/dX
H→ZZ*→41	σ σ, dσ/dX	$\sqrt{s}=7$ TeV, L=4.5 fb ⁻¹ , ATLAS-CONF-2015-059 $\sqrt{s}=8$ TeV, L=20.3 fb ⁻¹ , PLB 738 234 (2014) $\sqrt{s}=8$ TeV, L=20.3 fb ⁻¹ , ATLAS-CONF-2015-059 $\sqrt{s}=13$ TeV, L=3.2 fb ⁻¹ , ATLAS-CONF-2015-059	$\sqrt{s}=7$ TeV, L=5.1 fb ⁻¹ , JHEP 04, 00 $\sqrt{s}=8$ TeV, L=19.7 fb ⁻¹ , JHEP 04, 00 $\sqrt{s}=13$ TeV, L=2.8 fb ⁻¹ , CMS-PAS)5 (2016) σ, dσ/dX)05 (2016)σ, dσ/dX -HIG-15-004 σ
H→γγ + H→ZZ*→41	σ, dσ/dX σ	$\sqrt{s=8}$ TeV, L=20.3 fb ⁻¹ , PRL 115, 091801 (2015) $\sqrt{s=7}$ TeV, L=4.5 fb ⁻¹ , ATLAS-CONF-2015-069 $\sqrt{s=8}$ TeV, L=20.3 fb ⁻¹ , ATLAS-CONF-2015-069 $\sqrt{s=13}$ TeV, L=3.2 fb ⁻¹ , ATLAS-CONF-2015-069		
H→WW* lvlv evµv	σ σ, dσ/d2	$\sqrt{s}=8$ TeV, L=20.3 fb ⁻¹ , PRD 92, 012006 (2015) $\sqrt{s}=8$ TeV, L=20.3 fb ⁻¹ : CERN-EP-2016-019	$\sqrt{s}=8$ TeV, L=19.4 fb ⁻¹ , CMS-PAS	-HIG-15-010σ dσ/dX
BSM, EFT, w/	dσ/dX, H	Ι→γγ		

ATLAS, Run 1, $\sqrt{s}=8$ TeV, L=20.3 fb⁻¹, PLB 753, 69 (2016)

References non-resonant HH

• Non resonant

• $H(\gamma\gamma)H(bb)$

ATLAS, Run 1, $\sqrt{s}=8$ TeV, L=20 fb⁻¹, PRL 114, 081802 (2015) ATLAS, Run 2, $\sqrt{s}=13$ TeV, L=3.2 fb⁻¹, ATLAS-CONF-2016-004 CMS, Run 1, $\sqrt{s}=8$ TeV, L=19.7 fb⁻¹, CERN-EP-2016-050

• $H(bb)H(\tau\tau)$

ATLAS, Run 1, $\sqrt{s}=8$ TeV, L=20.3 fb⁻¹, PRD 92, 092004 (2015) CMS, Run 2, $\sqrt{s}=13$ TeV, L=2.7 fb⁻¹, CMS-PAS-HIG-16-013

• $H(\gamma\gamma)H(WW)$

ATLAS, Run 1, $\sqrt{s}=8$ TeV, L=20.3 fb⁻¹, PRD 92, 092004 (2015)

• H(bb)H(bb)

ATLAS, Run 1, $\sqrt{s}=13$ TeV, L=19.5 fb⁻¹ EPJC 75, 412 (2015) ATLAS, Run 2, $\sqrt{s}=13$ TeV, L=3.2 fb⁻¹, ATLAS-CONF-2016-017

• HH combination

h(bb)h($\tau\tau$), h($\gamma\gamma$)h(WW^{*}), h($\gamma\gamma$)h(bb), h(bb)h(bb) ATLAS, Run 1, $\sqrt{s}=8$ TeV, L=20.3 fb⁻¹, PRD 92, 092004 (2015)

References resonant HH

• Resonant

$H(\gamma\gamma)H(bb)$

ATLAS, Run 1, $\sqrt{s}=8$ TeV, L=20 fb⁻¹, PRL 114, 081802 (2015) ATLAS, Run 2, $\sqrt{s}=13$ TeV, L=20.3 fb⁻¹, ATLAS-CONF-2016-004 CMS, Run 1, $\sqrt{s}=8$ TeV, L=19.7 fb⁻¹, CERN-EP-2016-050

• HH combination

h(bb)h($\tau\tau$), h($\gamma\gamma$)h(WW^{*}), h($\gamma\gamma$)h(bb), h(bb)h(bb) ATLAS, Run 1, $\sqrt{s}=8$ TeV, L=20.3 fb⁻¹, PRD 92, 092004 (2015)

High mass resonances

γγ

ATLAS, Run 2, 2015, \sqrt{s} =13 TeV, L=3.2 fb⁻¹, ATLAS-CONF-2016-018 + paper to be submitted to JHEP CMS, Run 2, 2015, \sqrt{s} =13 TeV, L=2.7 fb⁻¹, CMS-PAS-EXO-16-018

Ζγ

ATLAS, Run 2, 2015, $\sqrt{s}=13$ TeV, L=3.2 fb⁻¹, ATLAS-CONF-2016-010 CMS, Run 1, 2012, $\sqrt{s}=8$ TeV, L=19.7 fb⁻¹, CMS-PAS-HIG-14-031 : mass range : 200-500 CMS, Run 1, 2012, $\sqrt{s}=8$ TeV, L=19.7 fb⁻¹, CMS-PAS-HIG-16-014 : mass range : 200-1200

$H \rightarrow \gamma \gamma : Run 1$

- Selection
- -2 high-p_T photons

-categorization : sensitivity + prod. modes

ATLAS CMS Results 19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV) Σ weights / GeV ATLAS S/(S+B) weighted events / GeV dt = 4.5 fb⁻¹. \s = 7 Te\ CMS S/(S+B) weighted sum L dt = 20.3 fb⁻¹, \s = 8 TeV 3.5 + Data $H \rightarrow \gamma \gamma$ 160F Data S/B weighted sum Signal+background Signal strength categories 140 S+B fits (weighted sum) ---- Background B componen - Signal 120 m_µ = 125.4 GeV 100 80 60 $= 1.14^{+0.26}_{-0.23}$ $\widehat{m}_{..} = 124.70 \pm 0.34 \text{ GeV}$ 40 20F 200 B component subtracted - fitted bkg 100 (S/B)-100M 120 110 115 125 130 135 140 145 130 140 150 m_{γγ} (GeV) $m_{\gamma\gamma}$ [GeV]

 $\begin{array}{l} Z_{obs}{=}5.2 \; \sigma \; (Z_{exp}{=}4.7 \; \sigma) \\ m_{H}{=}125.98 \pm 0.42 \; (stat) \pm 0.28 \; (syst) \; GeV \\ \mu{=}1.17 \; {+}{-}\; 0.27 \end{array}$

Mass systematics dominated by energy scale

+probing production modes

$H \rightarrow ZZ^* \rightarrow 41$: Run 1

- Selection
- -2 high-p_T leptons pairs -categorization : sensitivity + prod. modes BDT : separate H→ZZ^{*} ; ZZ^{*} bkg⇔Matrix Element Likelihood Discriminant

$H \rightarrow WW^* \rightarrow lvlv$

- Selection
- -2 high-p_T leptons, MET
 -topology of leptons : m_{ll}, spin correlation, etc.
 -categorization : sensitivity + prod. modes

Probe loop in alternative way to $H \rightarrow \gamma \gamma$

• Selection

OS same flavour leptons ; γ ; Separation $\Delta R(1; \gamma)$ >thr (suppr. FSR Z \rightarrow ll γ) \longrightarrow m_{ll}>thr (suppr. FSR Z \rightarrow ll γ , H $\rightarrow \gamma\gamma$ w/ conversion) ; m_{ll γ}~m_Z

 $H \rightarrow Z(11)\gamma$, Run 1

• Limits : m_H=125 GeV

 $H \rightarrow \gamma^* \gamma \rightarrow ll \gamma$

 $m_{ll} < thr (suppr. H \rightarrow Z\gamma)$

• Limits : $m_H = 125 \text{ GeV}$: 9.5xSM (10xSM exp) Z

q

Combination : couplings + misc

+ many other benchmarks /studies : ratio of σ 's, of BR's, asym fermions (u/d, l/q), Couplings Fermions vs Vector bosons, Probing loops, Scaling couplings w/ mass, etc. Two examples

• Couplings Fermions (g_{Hff}~m_f)

• Scaling couplings w/ mass

ATL-PHYS-PUB-2014-016

Prospective couplings

29

$d\sigma/dX$: overview

various observables : #objects, p_T , E_T , angles, etc. various objects : photon, lepton, jet, MET, topology objects various channels : $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^* \rightarrow 4l$, $H \rightarrow WW^* \rightarrow lv lv$

30

Example of p_T^H

Spin and J^{PC}

• Spin and parity J^P=0⁺ tested alternative models (spin-0 and spin 2) ATLAS CMS

 $\begin{array}{c} \text{ATLAS} \\ \text{H} \rightarrow \gamma \gamma, \text{ZZ} \rightarrow 41, \text{WW}^* \rightarrow \text{ev} \mu \nu \end{array}$

 $H \rightarrow \gamma\gamma, ZZ \rightarrow 41, WW \rightarrow 1\nu I\nu, Z\gamma^* \rightarrow 41, \gamma^*\gamma^* \rightarrow 41$

Variables : angular distributions (flat for spin 0), kinematics, etc.

>99 % CL exclusion alternative models

Spin tensor structure studied : consistent w/ J^{PC}=0⁺⁺ (also : studies on anomalous couplings in EFT CP violation : no deviation, but only large CP mixing excluded (above 30 %))

see also : The profile of the H(125) from Run 1

Tatjana Lenz

Non-resonant HH, w/ bosons decays

• Comb. ATLAS Run 1 : $h(bb)h(\tau\tau)$, $h(\gamma\gamma)h(WW^*)$, $h(\gamma\gamma)h(bb)$, h(bb)h(bb)obs : 0.69 pb (70xSM ; 48xSM exp)

Search for high mass resonances

Search for high mass resonances

35

Search for high masses resonances

See more details : Search for diphoton resonances with the ATLAS experiment Simone Michele Mazza

 Search for new resonances made systematically for all possible final states (in particular ZZ→41, Zγ, more generally VV, etc.) →No excess observed so far, apart in γγ final state, at a mass ≈750 GeV Angular distribution, for 750 GeV analysis (too lack of stat to conclude)

