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Abstract A next step in development of the KrkNLO
method of including complete NLO QCD corrections to hard
processes in a LO parton-shower Monte Carlo is presented.
It consists of a generalisation of the method, previously used
for the Drell–Yan process, to Higgs-boson production. This
extension is accompanied with the complete description of
parton distribution functions in a dedicated, Monte Carlo fac-
torisation scheme, applicable to any process of production of
one or more colour-neutral particles in hadron–hadron colli-
sions.

1 Introduction

The method of including complete NLO QCD corrections
to hard processes in the LO parton-shower Monte Carlo
(PSMC), nicknamed KrkNLO, was originally proposed in
Ref. [1], where its first numerical implementation on top of a
toy-model PSMC was also presented. It was restricted there
to gluon emission only and was elaborated for two processes:
Z/γ ∗ production in hadron–hadron collisions, i.e. the Drell–
Yan (DY) process and deep inelastic electron–hadron scat-
tering (DIS).

In Ref. [2], the KrkNLO method was implemented for
Z/γ ∗ production process at large hadron collider (LHC) in
combination with Sherpa [3] and Herwig++ [4–6] PSMCs.
Many NLO-class numerical results (distributions of trans-
verse momenta, rapidity, integrated cross sections, etc.) were
presented there and comparisons of the KrkNLO predictions
with those from other methods, such as MC@NLO [7] and
POWHEG [8], were also performed.
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The main advantage of the KrkNLO method with respect
to other, older methods of matching the fixed-order NLO
calculations with PSMCs (MC@NLO and POWHEG) is its
simplicity. This simplicity stems from the fact that the entire
NLO corrections are implemented using a simple positive
multiplicative MC weight. However, in order to profit from
it, one has to use in the KrkNLO method parton distribution
functions (PDFs) in a special, so-called Monte Carlo (MC)
factorisation scheme and PSMC has to fulfil some minimum
quality criteria. Most of modern PSMCs [9–13] are good
enough for the KrkNLO method.

Construction of PDFs in the MC factorisation scheme (FS)
has evolved step by step: in Ref. [1] it was defined for glu-
onstrahlung only (albeit for two different processes, DY and
DIS). In Ref. [2], the KrkNLO PDFs in the MC FS were
defined and numerically constructed including also gluon to
quark transitions/splittings, relevant for the complete NLO
corrections in the DY process, which at the LO level has
only quarks and antiquarks in the initial state. PDFs in the
MC scheme in Ref. [2] were defined in terms of the standard
MS PDFs, and constructed numerically by transforming the
MS PDFs into MC-scheme PDFs, before they were plugged
into PSMC used in the KrkNLO method.

However, in Ref. [2] certain elements in the transition
matrix K , transforming the MS PDFs into the MC-scheme
PDFs could be omitted, because they were not relevant (i.e.
of a NNLO class) for the DY process. These elements of the
transition matrix have to be added for any process with initial-
state gluons, such as the Higgs-boson production elaborated
in the present work. They will be defined and applied in
the following, such that the complete transition matrix K
transforming the MS PDFs into the MC-scheme PDFs will
be specified for the first time. It will be argued that PDFs in
such a MC-scheme can serve in the KrkNLO method for any
process at a hadron–hadron collider in which a colour-neutral
single or multiple system of heavy particles is produced. For
other processes, with one or more coloured partons in the
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final state at LO level, the KrkNLO method with PDFs in the
MC scheme may also work, but this subject is reserved for
the forthcoming publications.

The MC factorisation scheme is a complete scheme, such
that NLO coefficient functions for any hard process under
consideration are known, hence PDFs in the MC FS can be
fitted directly to experimental DIS and DY data. However, at
present, we obtain them from PDFs in the MS scheme and
leave out direct fitting to data for the future developments.

On the methodological side, as seen in Refs. [1,2], the
essence of the KrkNLO method is that certain NLO correc-
tion terms in an unintegrated/exclusive form present in the
MS scheme, which are proportional to unphysical Dirac-delta
terms in transverse momentum of emitted real partons, are
removed in the KrkNLO methodology by means of redefini-
tion of PDFs from the MS to MC scheme. These ‘patholog-
ical’ terms are preventing the use of a simple multiplicative
MC weight for implementing NLO corrections in the MS
scheme in real-emission phase space, and they complicate
implementation of the MC@NLO and POWHEG methods.
These peculiar terms can be determined and calculated either
by means of studying the NLO corrections to hard process
(coefficient functions), or, alternatively, by means of inte-
grating soft-collinear counter-terms (similar to these in the
Catani–Seymour method [14]), which define the MC-scheme
PDFs in d = 4 + 2ε dimensions.1 We are going to calculate
them using both methods, obtaining the same results.

Last but not least, the NLO calculations for the DY process
of Ref. [2] were also compared with the NNLO calculations
of MCFM [15], leading to the conclusion that they are closer
to the latter than the results of theMC@NLO andPOWHEG
methods.

The outline of the paper is the following: in Sect. 2 the
KrkNLO method is characterised briefly. In Sect. 3 all distri-
butions needed for implementation of the KrkNLO method
for Higgs-boson production in gluon–gluon fusion are elab-
orated, including also many analytical crosschecks and a
necessary update of the virtual corrections in soft-collinear
counter-terms used in Ref. [2] for the Z/γ ∗ (DY) process.
Section 4 presents numerical results for PDFs in the MC
scheme. Then the first numerical results for the total cross
section from the KrkNLO method for the Higgs produc-
tion at the LHC are shown in Sect. 5. Finally, in Sect. 6
we summarise the paper and discuss future prospects of
our work. In Appendix A the formulae for the NLO coef-
ficient functions of the DIS process in the MC scheme are
provided.

1 They also form matrix elements of the K -matrix transforming PDFs
from the MS to MC scheme.

2 The method

The KrkNLO method was formulated in a few variants. For
instance, in the version of Ref. [1], the MC weight imple-
menting the NLO corrections sums the contributions from
all relevant partons generated in PSMC next to the hard pro-
cess “democratically”, such that it works equally well for
PSMCs based on angular ordering or virtuality ordering, con-
trary to POWHEG which requires adding extra gluons to a
PSMC event. In the present work, we are going to follow the
variant of KrkNLO discussed in Ref. [2], in which the NLO-
correcting MC weight uses only one parton, the one closest
to the hard process in the transverse momentum, that is, the
first parton generated in the backward evolution (BEV) in the
PSMC algorithm with kT -ordering.

In any case, in the KrkNLO method, the entire event of
PSMC is preserved and reweighted, contrary to POWHEG
and MC@NLO where the parton attributed to the hard pro-
cess is generated outside PSMC and, only later on, the
remaining partons are provided by PSMC. Obviously, this
puts certain minimum quality requirements on the PSMC:
(i) the first parton in the BEV algorithm has to be generated
with the distribution which has a correct soft and collinear
limit and (ii) its phase space in momentum and flavour space
has to be covered completely, without empty regions. Luck-
ily, the above requirement is fulfilled by all modern PSMCs
for initial-state emissions discussed in this work.

It is worth to comment in advance on the apparent use
in the following of the soft-collinear counter-terms (dipoles)
of the Catani–Seymour (CS) subtraction scheme [14]. Their
role is twofold: (1) the CS dipoles serve us as a useful bench-
mark, as they provide a reference model for QCD distribu-
tions of real emissions featuring the exact soft and collinear
limits and (2) the CS scheme helps us in a proper inclu-
sion of the NLO virtual corrections. However, let us point
out immediately an important difference between the MC
and CS scheme: the CS dipoles do not include virtual cor-
rections, while soft-collinear counter-terms (SCCTs) of the
KrkNLO do include them, albeit not calculated from Feyn-
man diagrams, but deduced from PDF momentum sum rules.
The role of the SCCTs in the KrkNLO methodology is also
much richer than that of the dipoles in the CS scheme—our
SCCTs not only provide subtractions of soft-collinear singu-
larities in real-emission phase space, but they are also used
to define PDFs in the MC factorisation scheme. Moreover,
their sums are required to coincide with the corresponding
sums of real-parton distributions in PSMC.2

2 At least for the initial-state emitters in the present work, but also in the
final-state ones in the future implementations of the KrkNLO method.
In fact, SCCTs of the KrkNLO and PSMC distributions do not need to
coincide exactly, but optional additional weight bringing the PSMC to
SCCT distribution of the KrkNLO method has to be well behaved.

123



Eur. Phys. J. C   (2016) 76:649 Page 3 of 16  649 

Fig. 1 The LO Feynman
diagram for the process of Higgs
boson production in
gluon–gluon fusion. The
effective vertex (black dot)
corresponds to a quark loop with
summation over all quarks, in
which the top-quark mass is set
to infinity while the masses of
the other quarks are set to zero

3 Higgs production in gluon–gluon fusion

In the following we are going to collect all distributions
needed for implementation of the KrkNLO method for the
gluon-fusion Higgs production in hadron–hadron collisions.
Elements of the matrix transforming PDFs from the MS to
MC scheme will also be obtained as a byproduct.

We start necessarily from the leading order (LO) process

g(p1) + g(p2) −→ H(Q), (3.1)

see Fig. 1, where Q = p1 + p2. The LO matrix element
squared, in the limitmt → ∞ and neglecting all other quarks
contributions, reads

|MLO
gg |2 = α2

s

576π2v2 Q4, (3.2)

where v2 = (
√

2GF )−1 is the Higgs vacuum expectation
value (VEV) squared. Hence, the LO total cross section takes
the form

σ0 ≡ σLO
gg (Q2) = π

Q4 |MLO
gg |2 = α2

s

576πv2 . (3.3)

For all NLO subprocesses (channels)

a(p1) + b(p2) −→ H(Q) + c(k), (3.4)

where a and b are incoming partons (gluons and/or quarks),
while c is an outgoing parton (quark or gluon) we shall use
the same parametrisation of the kinematics in terms of the
following Sudakov variables:

α = p2 · k
p1 · p2

, β = p1 · k
p1 · p2

, α + β = 1 − z ≤ 1. (3.5)

For the gg-channel NLO subprocess

g + g −→ H + g , (3.6)

shown in Fig. 2, the matrix element squared reads

|MNLO
gg |2 = 8παsCA

1

zQ2

1 + z4 + α4 + β4

αβ
|MLO

gg |2.
(3.7)

For the qg-channel NLO subprocess

g + q −→ H + q , (3.8)

shown in Fig. 3, one obtains

|MNLO
gq |2 = 8παsCF

1

zQ2

1 + β2

α
|MLO

gg |2, (3.9)

Finally, for the qq̄ channel

q + q̄ −→ H + g , (3.10)

see Fig. 4, one has

|MNLO
qq̄ |2 = 8παsCF

8

3

1

zQ2

(
α2 + β2

)
|MLO

gg |2. (3.11)

This last process, unlike the previous ones, is not generated
by the backward-evolution PSMC starting from the gg → H
hard process, hence in the KrkNLO method, its contribution
cannot be treated by NLO-reweighting of events generated
by the main branch of the LO PSMC algorithm. It has to be
added as an extra tree-level LO process to PSMC. Moreover,
it is free of collinear and soft singularities. This poses no
problem as most of present-day PSMCs implement such a
process.

3.1 CS dipoles and MC matrix elements

In the following we shall elaborate mainly on the hadron–
hadron collision producing the Higgs boson or Z/γ ∗ (Drell–
Yan process). However, components of the KrkNLO method
defined here will also be applicable to any LO process
a + ā → X and the corresponding a + b → X + c where
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Fig. 2 The NLO Feynman
diagrams for real-parton
radiation in the process of
Higgs-boson production in
gluon–gluon fusion: the gg
channel

Fig. 3 The NLO Feynman diagram for real-parton radiation in the pro-
cess of Higgs-boson production in gluon–gluon fusion: the gq channel

X = H, Z/γ,W±, Z Z ,W+W− or any other colour-neutral
heavy object; a, b = q, q̄, g are initial coloured partons and
c is an additional parton emitted at the NLO level.

In the following formulation of theKrkNLO-method com-
ponents, the CS dipoles will serve us as useful auxiliary
objects. They are formed by an initial-state (on-shell) emit-
ter a from one hadron and a spectator parton b from another
hadron,3 see Fig. 5. Following closely the notation of the
CS work [14], the emitter a splits into an off-shell ãc = b̄
entering into the hard process and an emitted parton c. The
CS dipoles D(ac,b) relevant for processes of our interest are

3 The role of the spectator is to provide for momentum and colour
conservation.

Fig. 4 The NLO Feynman diagram for real-parton radiation in the pro-
cess of Higgs-boson production in gluon–gluon fusion: the qq̄ channel

proportional to P̄ãc,a , the DGLAP kernel for the a → ãc
splitting.4

For the processes of the annihilation aā → X at the LO
level, such as the Higgs production and the DY process, in
each NLO channel ab → cX we must have ãc = b̄ in
the NLO splitting. In other words, the NLO splitting in the
annihilation processes is fully determined by a and b.5 The
above rules are illustrated in Fig. 5 and possible indices are
listed in Table 1 for the emission from the incoming line a.6

Let us first define explicitly the MC distributions (matrix
elements) and the CS dipoles representing the initial-state

4 In the case of the emitted parton c being the gluon one gets ãc ≡ a.
5 This is, of course, not true for other processes.
6 Rules for emissions from the second incoming line are analogous.
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Fig. 5 Kinematics of a single
channel with one CS splitting

Table 1 List of indices labelling the CS or MC soft-collinear counter-
terms for all the NLO channels (except the qq̄ channel in Higgs pro-
duction) of annihilation processes. Indices (a, b) denote initial partons
(channel), while (ac, b) are labelling the CS/MC counter-terms, with a
being an emitter and b a spectator

a + b → c + H a + b → c + Z/γ

(a, b) (ac, b) (a, b) (ac, b)

(g, g) (gg, g) (q, q̄) (qg, q̄)

(q, g) (qq, g) (q̄, q) (q̄g, q)

(q̄, g) (q̄q̄, g) (g, q) (gq, q)

(g, q̄) (gq̄, q̄)

real-parton emissions for the Higgs production process in
d = 4 + 2ε dimensions:

(A) For the g+g → H+g channel a typical/representative
distribution of PSMC, summing the emissions from
both incoming gluons, is

|MMC
gg→Hg|2 = 8παs μ−2ε 1

Q2

1

αβ
(1 − z)P̂gg(z; ε)|MLO

gg→H |2,
(3.12)

where the g → g splitting function is given by

P̂gg(z; ε) = 2CA

[
z

1 − z
+ 1 − z

z
+ z(1 − z)

]

= CA
1 + z4 + (1 − z)4

z(1 − z)
. (3.13)

It is equal to the sum of two CS dipoles |MMC
gg→Hg|2 =

D
(gg,g)
(1) + D

(gg,g)
(2) , where

D
(gg,g)
(1) = α

α + β
|MMC

gg→Hg |2, D
(gg,g)
(2) = β

α + β
|MMC

gg→Hg |2,
(3.14)

with soft partition functions α
α+β

and β
α+β

separating
the soft singularity evenly between two incoming emit-

ters. Indices (1) and (2) are used to distinguish the above
two dipoles.

(B) For the g+q → H +q channel we have (with a single
soft-collinear pole the soft partition functions are not
needed):

|MMC
gq→Hq |2 = D

(qq,g)
(1) = 8παs μ−2ε 1

Q2

1

α
P̂gq (z; ε)|MLO

gg→H |2,
(3.15)

where the q → g splitting function reads

P̂gq(z; ε) = CF

[
1 + (1 − z)2

z
+ ε z

]
. (3.16)

(C) Finally, for the g + q̄ → H + q̄ channel, the CS dipole
and MC distribution is the same as the previous one for
quarks.

The above distributions agree with these used in the
POWHEG-method construction of Ref. [16].

For the sake of completeness, let us collect the CS dipoles
and MC distributions already known from Refs. [1,2], with
the q → q and g → q splittings. They will be needed in the
following to define the transition matrix K from the MS to
MC factorisation scheme for all PDFs.

(A) For the q + q̄ → Z + g channel, the MC distribution
reads

|MMC
qq̄→Zg|2 = D

(qg,q̄)

(1) + D
(q̄g,q)

(2) = 8παs μ−2ε 1

Q2

× 1

αβ
(1 − z)P̂qq(z; ε)|MLO

qq̄→Z |2,
(3.17)

where

P̂qq(z; ε) = CF

[
1 + z2

1 − z
+ ε(1 − z)

]
, (3.18)
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and the soft partition function is used again:

D
(qg,q̄)

(1) = α

α + β
|MMC

qq̄→Zg |2, D
(q̄g,q)

(2) = β

α + β
|MMC

qq̄→Zg |2.
(3.19)

(B) For the q + g → Z + q channel we have (the soft par-
tition function in the MC distribution is not necessary):

|MMC
qg→Zq |2 = D

(gq,q)

(1) = 8παs μ−2ε 1

Q2

1

α
P̂qg(z; ε)|MLO

qq̄→Z |2,
(3.20)

where

P̂qg(z; ε) = TR
[
z2 + (1 − z)2 + 2ε z(1 − z)

]
. (3.21)

It should be stressed that all the above MC distributions and
CS dipoles are basically in the exclusive (unintegrated) form.

All the above relations between the MC distributions and
the exclusive MC/CS counter-terms for any annihilation pro-
cesses can be summarised in a compact formula as follows:

|MMC
ab→cX |2 = D

(ac,b)
(1) + D

(bc,a)
(2) , (3.22)

where translation from the indices (ab) to (abc) is unique
for a given annihilation process and for a given initial parton
splitting, as demonstrated explicitly in Table 1 for the split-
ting of the initial parton a, see also Fig. 5. Moreover, on the
RHS of the above relation only one of D’s is nonzero, except
for the c = g case (gluonstrahlung), but in this case both
D’s are equal. Hence, there is in practice one-to-one corre-
spondence (ab) ↔ (abc) for all annihilation processes, to
be often exploited in the following section.

3.2 Integrated CS dipoles and counter-terms of MC scheme

For the purpose of installing virtual parts (using PDF
momentum sum rules) in the MC distributions (soft-collinear
counter-terms) and defining the K -matrix for transforming
PDFs from the MS to MC scheme, we need to integrate partly
all distributions defined in the previous subsection, keeping
the z = 1 − α − β variable fixed.

A z-dependent differential cross section corresponding to
the real-emission MC matrix elements can be expressed in
the following way:

1

z

dσ̂MC
ab,R(z, ε)

dz
= 1

2Q2

∫
|MMC

ab→Xc|2d	̂ = σ0 
̂MC
ab,R(z, ε),

(3.23)

where 
̂MC
ab,R(z, ε) is the MC real-emission function corre-

sponding to the partly integrated MC distribution of the pre-
vious subsection for a given process:a+b → X+c. The inte-

gration element d	̂ can be expressed in terms of the Sudakov
variables as follows:

d	̂ = 1

8π

(
4π

s

)−ε 1


(1 + ε)
(αβ)εδ(1 − z − α − β)

× θ(α)θ(1 − α)θ(β)θ(1 − β)θ(1 − α − β) dα dβ.

(3.24)

The above expressions are defined in d = 4 + 2ε dimen-
sions in order to regularise, in the usual way, the soft and
collinear singularities of the real-parton radiation.

Using the exact NLO matrix element, one can similarly
write, for each channel ab, a regularised partly integrated
NLO cross section for real-parton emission:

1

z

dσ̂NLO
ab,R (z, ε)

dz
= 1

2Q2

∫
|MNLO

ab→Xc,R |2d	̂ = σ0ρ̂NLO
ab,R(z, ε).

(3.25)

Following Eq. (3.22), one may also define the relation of
the integrated MC distribution to the individual integrated
soft-collinear counter-terms:


̂MC
ab,R(z, ε) = �̂MC

(ãc,b),R(z, ε) + �̂MC
(b̃c,a),R

(z, ε) (3.26)

where �̂R are the corresponding integrals
∫

d	̂ D as in
Eq. (3.23). However, contrary to the CS counter-terms, the
counter-terms �̂MC of the MC scheme (and the 
̂MC radia-
tion functions as well) will also include virtual corrections,
calculated using the momentum sum rules, see next subsec-
tions for details.

Let us calculate all the above objects in more detail for the
gg → Hg channel and then, skipping details of analytical
integration, for other channels.

3.3 gg → Hg channel

A real-emission part of the MC radiation function results
from the following integration:7


̂MC
gg,R(z, ε) = 1

σ0

1

2Q2

∫
|MMC

gg→Hg |2d	̂

= 2CAαs

2π

(
4πμ2

s

)−ε
1


(1 + ε)

×
[
z + (1 − z)2

z
+ z(1 − z)2

]∫ 1

0
dα

×
∫ 1

0
dβ (αβ)−1+ε δ1−z=α+β

7 We employ here and in the following a shorthand notation δx=y ≡
δ(x − y).
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= αs

2π
2CA

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)
z−ε (1 − z)−1+2ε

× 2

ε

[
z + (1 − z)2

z
+ z(1 − z)2

]
. (3.27)

Using the standard expansion (1 − z)−1+2ε = 1
2ε

δ(1 − z) +( 1
1−z

)
+ + 2ε

( ln(1−z)
1−z

)
+ we obtain


̂MC
gg,R(z, ε) = 2CAαs

2π

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

{
δ(1 − z)

ε2

+ 2

ε

[(
1

1 − z

)

+
+ 1

z
− 2 + z(1 − z)

]

+ 4

[
1

z

(
ln(1 − z)

1 − z

)

+
− [2 − z(1 − z)] ln(1 − z)

]

− 2

[(
1

1 − z

)

+
+ 1

z
− 2 + z(1 − z)

]
ln z

}
.

(3.28)

The NLO real correction according to Ref. [17] reads

ρ̂NLO
gg,R(z, ε) = 2CAαs

2π

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

{
δ(1 − z)

ε2

+ 2

ε

[(
1

1 − z

)

+
+ 1

z
− 2 + z(1 − z)

]

+ 4

[
1

z

(
ln(1 − z)

1 − z

)

+
− [2 − z(1 − z)] ln(1 − z)

]

− 2

[(
1

1 − z

)

+
+ 1

z
− 2 + z(1 − z)

]

× ln z − 11

6

(1 − z)3

z

}
. (3.29)

From the above equations we readily obtain the NLO real
coefficient function in the MC scheme:

HMC
gg,R(z) = ρ̂NLO

gg,R(z, ε) − 
̂MC
gg,R(z, ε)

= αs

2π
2CA

{
−11

6

(1 − z)3

z

}
. (3.30)

The same expression is obtained in 4 dimensions by means
of performing first the MC-dipole subtraction and then inte-
grating the finite result over the phase space:

HMC
gg,R(z) = 1

σ0

1

2Q2

∫ [
|MNLO

gg |2 − |MMC
gg→Hg|2

]

d	 = 2CAαs

2π

1

2z

∫ 1

0
dα

∫ 1

0
dβ δ1−z=α+β

×1 + z4 + α4 + β4 − 2[z2 + (1 − z)2 + z2(1 − z)2]
αβ

= αs

2π
2CA

{
−11

6

(1 − z)3

z

}
. (3.31)

A virtual correction to the above MC radiation function

̂gg is calculated from the momentum sum rules:


̂MC
gg,V (z, ε)

= −δ(1 − z)
∫ 1

0
dz z

[

̂MC
gg,R(z, ε) + 2n f · 2
̂MC

qg (z, ε)
]
,

(3.32)

where n f is the number of fermions. The first part in the
above virtual correction resulting from integration over the
first term in brackets on RHS reads as follows:


̂MC
gg,V1

(z, ε) = −δ(1 − z)
∫ 1

0
dz z 
̂MC

gg,R(z, ε)

= δ(1 − z)
αs

2π
2CA

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

×
{
− 1

ε2 + 11

6

1

ε
− 341

72
− π2

3

}
. (3.33)

In order to calculate the second part to the virtual correc-
tion in RHS of Eq. (3.32) we need to know first the following
MC radiation functions for the g → q transition, e.g. from
the process q + g → Z + q:


̂MC
qg (z, ε) = 1

σ0

1

2Q2

∫
|MMC

qg→Zq |2d	̂

= αs

2π
TR

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

×
{

1

ε

[
z2 + (1 − z)2

]
+
[
z2 + (1 − z)2

]

× ln
(1 − z)2

z
+ 2z(1 − z) + O(ε)

}
, (3.34)

where |MMC
qg→Zq |2 is shown in Eq. (3.20).

Using the above result we can cross-check the formula for
the gluon-channel MC radiation function of the DY process
calculated previously in 4 dimensions in Ref. [2]. For the
exact NLO contribution Ref. [18] provides

ρ̂NLO
qg→Zq(z, ε) = αs

2π
TR

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

×
{

1

ε

[
z2 + (1 − z)2

]
+
[
z2 + (1 − z)2

]

× ln
(1 − z)2

z
− 7

2
z2 + 3z + 1

2

}
. (3.35)

Then the resulting coefficient function for the DY process in
the MC scheme reads

CMC
qg (z) = ρ̂NLO

qg→Zq(z, ε) − 
̂MC
qg (z, ε)

= αs

2π
TR

{
1

2
(1 − z)(1 + 3z)

}
, (3.36)

which agrees with our previous result, given in Ref. [2].
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For the sake of completeness, the corresponding coeffi-
cient function in the MS factorisation scheme reads

CMS
qg (z) = αs

2π
TR

{[
z2 + (1 − z)2

]
ln

(1 − z)2

z
− 7

2
z2 + 3z + 1

2

}

(3.37)

and the transition-matrix element transforming part of gluon
MS PDF into the quark PDF in the MC scheme is given by

KMC
qg (z) = CMS

qg (z) − CMC
qg (z) = αs

2π
TR

{[
z2 + (1 − z)2

]

× ln
(1 − z)2

z
+ 2z(1 − z)

}
.

(3.38)

The above was obtained by comparing the NLO coef-
ficient functions for the DY process in the MS and MC
schemes. However, exactly the same result can be obtained
alternatively from the difference of the soft-collinear counter-
terms in these two schemes:

KMC
qg (z) =

[
�̂MC

qg (z, ε) − �̂MS
qg (z, ε)

]
ε=0

, (3.39)

where the universal MC-scheme counter-term corresponding
to the g → q transition is given by

�̂MC
qg (z, ε) = 
̂MC

qg (z, ε), (3.40)

where 
̂MC
qg (z, ε) is defined in Eq. (3.34), and the MS counter-

term is

�̂MS
qg (z, ε) = αs

2π
TR

(
4πμ2

Q2

)−ε

× 
(1 + ε)


(1 + 2ε)

1

ε

[
z2 + (1 − z)2

]
. (3.41)

After this brief detour to the DY process, we can now com-
plete the calculation of the virtual correction to the MC radi-
ation function for the gg → Hg channel. Using Eq. (3.34),
the second term in RHS of Eq. (3.32) is calculated:


̂MC
gg,V2

(z, ε) = −δ(1 − z) · 4n f

∫ 1

0
dz z 
̂MC

qg (z, ε)

= δ(1 − z)
αs

2π
n f TR

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

×
{
−4

3

1

ε
+ 59

18

}
. (3.42)

The complete result for virtual correction to the gg → Hg
MC radiation function, obtained from the momentum sum
rule of Eq. (3.32), reads as follows:


̂MC
gg,V (z, ε) = 
̂MC

gg,V1
(z, ε) + 
̂MC

gg,V2
(z, ε) = δ(1 − z)

×2CAαs

2π

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

×
{

− 1

ε2 + 1

ε

11 − 4T f /CA

6

−341

72
− π2

3
+ T f

CA

59

36

}
, (3.43)

where T f = n f TR .
The complete MC radiation function for gg → Hg pro-

cess is obtained finally in the following explicit form:


̂MC
gg (z, ε) = αs

2π
2CA

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

×
{

2

ε

[
δ(1 − z)

11 − 4T f /CA

12
+
(

1

1 − z

)

+

+1

z
− 2 + z(1 − z)

]

−δ(1 − z)

[
π2

3
+ 341

72
− T f

CA

59

36

]

+4

[
ln(1 − z)

1 − z

]

+
+ 2

[
1

z
− 2 + z(1 − z)

]

× ln
(1 − z)2

z
− 2

ln z

1 − z

}
. (3.44)

Let us also calculate the coefficient function in the MC
scheme for the gg → Hg channel. Using the exact NLO
virtual correction of Ref. [17]:

ρ̂NLO
gg,V (z, ε) = δ(1 − z)

αs

2π
2CA

(
4πμ2

Q2

)−ε

× 
(1 + ε)


(1 + 2ε)

{
− 1

ε2 + 1

ε

11 − 4T f /CA

6

+11

6
+ π2

3
− 11 − 4T f /CA

6
ln

Q2

μ2

}
,

(3.45)

we obtain the following virtual part of the coefficient function
in the MC scheme (with the usual μ2 = Q2 assignment):

HMC
gg,V (z) = ρ̂NLO

gg,V (z, ε) − 
̂MC
gg,V (z, ε) = αs

2π
2CA δ(1 − z)

×
[

473

72
+ 2π2

3
− T f

CA

59

36

]
. (3.46)

Combining the real and virtual contributions of Eqs. (3.30)
and (3.46), the NLO coefficient function for the gg → Hg
process in the MC factorisation scheme reads
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HMC
gg (z) = αs

2π
2CA

{
δ(1 − z)

(
2

3
π2 + 473

72
− 59

36

T f

CA

)

−11

6

(1 − z)3

z

}
. (3.47)

The analogous coefficient function in the MS factorisation
scheme is obtained from Eqs. (3.29) and (3.45), after the
standard subtraction of the MS soft-collinear counter-terms
(with μ2 = Q2) reads as follows:

HMS
gg (z) = αs

2π
2CA

{
δ(1 − z)

(
π2

3
+ 11

6

)
+ 4

[
ln(1 − z)

1 − z

]

+

+2

[
1

z
− 2 + z(1 − z)

]
ln

(1 − z)2

z

−2
ln z

1 − z
− 11

6

(1 − z)3

z

}
. (3.48)

With all the above results at hand we are also ready to
determine the element g → g of the transition matrix for
transforming PDFs from the MS to MC scheme:

KMC
gg (z) = 1

2

[
HMS
gg (z) − HMC

gg (z)
]

= αs

2π
CA

×
{

− δ(1 − z)

(
π2

3
+ 341

72
− 59

36

T f

CA

)

×4

[
ln(1 − z)

1 − z

]

+
+ 2

[
1

z
− 2 + z(1 − z)

]

× ln
(1 − z)2

z
− 2

ln z

1 − z

}
. (3.49)

The same KMC
gg (z) it can also be obtained from the differ-

ence of the collinear counter-terms:

KMC
gg (z) =

[
�̂MC

gg (z, ε) − �̂MS
gg (z, ε)

]
ε=0

, (3.50)

where the universal MC counter-term �̂MC
gg (z, ε) correspond-

ing to the g → g transition can be expressed in terms of the
MC radiation function of Eq. (3.44) as follows:

�̂MC
gg (z, ε) = 1

2

̂MC
gg (z, ε); (3.51)

and

�̂MS
gg (z, ε) = αs

2π
2CA

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

×1

ε

[
δ(1 − z)

11 − 4T f /CA

12
+
(

1

1 − z

)

+

+1

z
− 2 + z(1 − z)

]
(3.52)

is the corresponding MS counter-term.

3.4 gq → Hq channel

The channel g+ q → H + q is easier because only real cor-
rection contributes at NLO. The corresponding MC radiation
function can be readily obtained from the integral


̂MC
gq (z, ε) = 1

σ0

1

2Q2

∫
|MMC

gq→Hq |2d	̂

= αs

2π
CF

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

×
{

1+(1 − z)2

z

[
1

ε
+ln

(1 − z)2

z

]
+ z

}
. (3.53)

The exact NLO correction taken from Ref. [17] reads

ρ̂NLO
gq (z, ε) = αs

2π
CF

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

×
{

1 + (1 − z)2

z

[
1

ε
+ ln

(1 − z)2

z

]

− z2 − 6z + 3

2z

}
. (3.54)

Combining the above two functions, the coefficient function
for gq → Hq process in the MC factorisation scheme reads

HMC
gq (z) = ρ̂NLO

gq (z, ε) − 
̂MC
gq (z, ε) = αs

2π
CF

{
−3

2

(1 − z)2

z

}
.

(3.55)

Exactly the same result can be obtained also from the fol-
lowing integral in 4 dimensions:

HMC
gq (z) = 1

σ0

1

2Q2

∫ [
|MNLO

gq |2 − |MMC
gq→Hq |2

]
d	

= αs

2π
CF

1

z

∫ 1

0
dα

∫ 1

0
dβ δ(1 − z − α − β)

×1 + β2 − [1 + (1 − z)2]
α

= αs

2π
CF

{
−3

2

(1 − z)2

z

}
. (3.56)

On the other hand, in the MS factorisation scheme (keep-
ing μ2 = Q2), from Eq. (3.54) we can obtain (after the
standard subtraction) the following coefficient function:

HMS
gq (z) = αs

2π
CF

{
1 + (1 − z)2

z
ln

(1 − z)2

z
− z2 − 6z + 3

2z

}
.

(3.57)

At this point we are able to define another element of the
matrix transforming the MS gluon PDF into the gluon PDF
of the MC-scheme
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KMC
gq (z) = HMS

gq (z) − HMC
gq (z) = αs

2π
CF

{
1 + (1 − z)2

z

ln
(1 − z)2

z
+ z

}
.

(3.58)

Alternatively, the same KMC
gq (z) can also be obtained as a

difference of the soft-collinear counter-terms in the MC and
MS schemes:

KMC
gq (z) =

[
�̂MC

gq (z, ε) − �̂MS
gq (z, ε)

]
ε=0

, (3.59)

where, again, the universal MC-scheme counter-term
�̂MC

gq (z, ε) corresponding to the q → g transition can be

related to the MC radiation function 
̂MC
gq (z, ε) of Eq. (3.53)

as follows:

�̂MC
gq (z, ε) = 
̂MC

gq (z, ε); (3.60)

and

�̂MS
gq (z, ε) = αs

2π
CF

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

1

ε

1 + (1 − z)2

z
(3.61)

is the corresponding counter-term in the MS scheme.

3.5 Revisiting qq̄ → Zg channel

In Ref. [2] the virtual correction to the MC counter-term
in the qq̄ channel was calculated from the quark-number
conservation sum rule (as minus the integral over z of the
real correction). This was justified for the DY process, for
which the gluon PDF did not get corrected at NLO from the
MS to MC factorisation scheme. Now, since we deal with
the complete set of parton–parton transitions, including the
transformation/correction of the gluon PDF, we have to rely
on the momentum sum rule. For the pertinent channel this
amounts to


̂MC
qq̄,V (z, ε) = −δ(1 − z)

∫ 1

0
dz z

[

̂MC
qq̄,R(z, ε)

+
̂MC
gq (z, ε) + 
̂MC

gq̄ (z, ε)
]
. (3.62)

Using the formula for the MC real-radiation function from
Appendix B of Ref. [2]:


̂MC
qq̄,R(z, ε) = αs

2π
CF

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

{
2

ε2 δ(1 − z)

+2

ε

1 + z2

(1 − z)+
+ 4(1 + z2)

[
ln(1 − z)

1 − z

]

+

− 2
1 + z2

1 − z
ln z + 2(1 − z)

}
, (3.63)

we can calculate the first part of the above virtual correction
as follows:


̂MC
qq̄,V1

(z, ε) = −δ(1 − z)
∫ 1

0
dz z 
̂MC

qq̄,R(z, ε)

= −δ(1 − z)
αs

2π
CF

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

×
∫ 1

0
dz z

{
2

ε2 δ(1 − z)

+2

ε

1 + z2

(1 − z)+
+ 4(1 + z2)

[
ln(1 − z)

1 − z

]

+

−2
1 + z2

1 − z
ln z + 2(1 − z)

}

= δ(1 − z)
αs

2π
CF

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

×
{
− 2

ε2 + 17

3

1

ε
− 163

18
− 2π2

3

}
. (3.64)

For the second part, using Eq. (3.53), we obtain


̂MC
qq̄,V2

(z, ε) = −δ(1 − z)
∫ 1

0
dz z

[

̂MC
gq (z, ε) + 
̂MC

gq̄ (z, ε)
]

= −2 δ(1 − z)
αs

2π
CF

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

×
∫ 1

0
dz

{[
1 + (1 − z)2]

[
1

ε
+ ln

(1 − z)2

z

]
+ z2

}

= δ(1 − z)
αs

2π
CF

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

×
{
−8

3

1

ε
+ 5

9

}
. (3.65)

Thus the full virtual correction reads


̂MC
qq̄,V (z, ε) = δ(1 − z)

αs

2π
CF

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

×
{
− 2

ε2 + 3

ε
− 17

2
− 2π2

3

}
.

(3.66)

After combining it with the real correction of Eq. (3.63) we
obtain a complete MC radiation function:


̂MC
qq̄ (z, ε) = αs

2π
CF

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

{
2

ε

[
1 + z2

(1 − z)+

+3

2
δ(1 − z)

]

−δ(1 − z)

(
2π2

3
+ 17

2

)
+ 4(1 + z2)

[
ln(1 − z)

1 − z

]

+

−2
1 + z2

1 − z
ln z + 2(1 − z)

}
. (3.67)
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The corresponding NLO correction reads [18]

ρ̂NLO
qq̄ (z, ε) = αs

2π
CF

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

{
2

ε

×
[

1 + z2

(1 − z)+
+ 3

2
δ(1 − z)

]

−δ(1 − z)

(
2π2

3
− 8

)
+ 4(1 + z2)

×
[

ln(1 − z)

1 − z

]

+
− 2

1 + z2

1 − z
ln z

}
. (3.68)

Then, for the coefficient function in the MC factorisation
scheme, we obtain

CMC
qq̄ (z) = ρ̂NLO

qq̄ (z, ε) − 
̂MC
qq̄ (z, ε) = αs

2π
CF {δ(1 − z)

×
(

4π2

3
+ 1

2

)
− 2(1 − z)

}
.

(3.69)

The above expression differs from the one given in Ref. [2],

CMC
2q (z) = αs

2π
CF

{
δ(1 − z)

(
4π2

3
− 5

2

)
− 2(1 − z)

}
,

(3.70)

by a constant term:

CMC
qq̄ (z) − CMC

2q (z) = 3CFαs

2π
δ(1 − z) . (3.71)

For completeness, let us also write the corresponding coef-
ficient function in the MS factorisation scheme:

CMS
qq̄ (z) = αs

2π
CF

{
δ(1 − z)

(
4π2

3
− 7

2

)

+
[

2
1 + z2

1 − z
ln

(1 − z)2

z

]

+

}
(3.72)

and the qq transformation-matrix element to the quark PDF
in the MC scheme:

KMC
qq (z) = 1

2

[
CMS
qq̄ (z) − CMC

qq̄ (z)
]

= αs

2π
CF

×
{[

1 + z2

1 − z
ln

(1 − z)2

z
+ 1 − z

]

+
− 3

2
δ(1 − z)

}
.

(3.73)

This can also be expressed in a form similar to the corre-
sponding formula for the gg channel, cf. Eq. (3.49):

KMC
qq (z) = αs

2π
CF

{
4

[
ln(1 − z)

1 − z

]

+
− (1 + z) ln

(1 − z)2

z

−2
ln z

1 − z
+ 1 − z − δ(1 − z)

(
π2

3
+ 17

4

)}
.

(3.74)

This is the q → q PDF transition-matrix element from
the MS to MC scheme. Similarly as in the previous cases, it
can also be obtained from the respective counter-terms:

KMC
qq (z) =

[
�̂MC

qq (z, ε) − �̂MS
qq (z, ε)

]
ε=0

, (3.75)

where the universal MC counter-term corresponding to the
q → q transition can be related to the MC radiation function

̂MC
qq̄ (z, ε) of Eq. (3.67):

�̂MC
qq (z, ε) = 1

2

̂MC
qq̄ (z, ε), (3.76)

while

�̂MS
qq (z, ε) = αs

2π
CF

(
4πμ2

Q2

)−ε

(1 + ε)


(1 + 2ε)

1

ε

[
1 + z2

(1 − z)+

+ 3

2
δ(1 − z)

]
(3.77)

is the corresponding MS counter-term.

4 PDFs in MC scheme

In Ref. [2], were the KrkNLO method was applied to the
Drell–Yan process, it was sufficient to transform the MS PDF
of quarks and antiquarks. The difference between the MS and
MC PDFs for the gluon was an NNLO effect, and hence is
beyond the claimed accuracy.

Here, for the Higgs production process, the gluon PDF
also has to be transformed to the MC scheme. Having cal-
culated all the necessary ingredients in the previous section,
we define this transformation as follows:

gMC(x, Q2) = gMS(x, Q2) +
∫ 1

x

dz

z
gMS

(
x

z
, Q2

)
KMC
gg (z)

+
∑
q

∫ 1

x

dz

z
qMS

(
x

z
, Q2

)
KMC
gq (z), (4.1)

where KMC
gg (z) is given in Eq. (3.49) and KMC

gq (z) in
Eq. (3.58). However, virtual parts of the transformation
matrix in the quark sector now has also changed due to the
necessary use of the momentum sum rules. Hence, the entire
transformation rule now takes the form
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⎡
⎣
q(x, Q2)

q̄(x, Q2)

g(x, Q2)

⎤
⎦

MC

=
⎡
⎣
q
q̄
g

⎤
⎦

MS

+
∫
dzdy

⎡
⎢⎣
KMC
qq (z) 0 KMC

qg (z)
0 KMC

q̄q̄ (z) KMC
q̄g (z)

KMC
gq (z) KMC

gq̄ (z) KMC
gg (z)

⎤
⎥⎦
⎡
⎣
q(y, Q2)

q̄(y, Q2)

g(y, Q2)

⎤
⎦

MS

δ(x − yz),

(4.2)

where

KMC
gq (z) = αs

2π
CF

{
1 + (1 − z)2

z
ln

(1 − z)2

z
+ z

}
,

KMC
gg (z) = αs

2π
CA

{
4

[
ln(1 − z)

1 − z

]

+
+ 2

[
1

z
− 2 + z(1 − z)

]

× ln
(1 − z)2

z
− 2

ln z

1 − z
− δ(1 − z)

×
(

π2

3
+ 341

72
− 59

36

T f

CA

)}
,

KMC
qq (z) = αs

2π
CF

{
4

[
ln(1 − z)

1 − z

]

+
− (1 + z) ln

(1 − z)2

z

−2
ln z

1 − z
+ 1 − z − δ(1 − z)

(
π2

3
+ 17

4

)}
,

KMC
qg (z) = αs

2π
TR

{[
z2 + (1 − z)2] ln

(1 − z)2

z
+ 2z(1 − z)

}
,

KMC
gq̄ (z) = KMC

gq (z), KMC
q̄g (z) = KMC

qg (z). (4.3)

The above formulae can be used for numerical computa-
tion of the MC-scheme quark and gluon PDFs from the avail-
able parametrisation of the MS PDFs. Alternatively, PDFs in
the MC scheme can be fitted directly to DIS and other data,
provided the NLO coefficient functions in the MC scheme
are known. For DIS they are listed in Appendix A.

We assume that PDFs in the MC scheme satisfy the same
momentum sum rule as PDFs in the MS scheme:

∫ 1

0
dx x

[
gMC(x, Q2) +

∑
q

qMC(x, Q2)

]

=
∫ 1

0
dx x

[
gMS(x, Q2) +

∑
q

qMS(x, Q2)

]
. (4.4)

Inserting in the above formula the expressions for gMC

and qMC from Eqs. (4.2), we obtain the following momentum
sum rules for the factorisation-scheme transformation matrix
elements:

∫ 1

0
dz z

[
KMC
qq (z) + KMC

gq (z)
]

= 0 ,

∫ 1

0
dz z

[
KMC
gg (z) + 2n f K

MC
qg (z)

]
= 0 . (4.5)

The above, of course, results from the momentum sum
rules imposed on the MC and MS soft-collinear counter-
terms, however, it constitutes a useful cross-check of the
consistency of the MC scheme.

Looking at the elements of the transition matrix K in
Eq. (4.3) one can see that the terms ∼ ln(1 − z) and ∼ ln z
are absorbed in the MC-scheme PDFs. As a result the NLO
coefficient functions for the DY process and the Higgs-boson
production are much simpler than the corresponding ones
in the MS scheme, cf. Eqs. (3.36) and (3.37), (3.69) and
(3.72), (3.47) and (3.48), (3.55) and (3.57). One can thus
expect that higher-order QCD corrections, beyond NLO,
will be smaller in the MC factorisation scheme than in the
MS scheme. In particular, the MC-scheme coefficient func-
tions are free of the so-called leading threshold corrections,
∼ ln(1 − z)/(1 − z), which are absorbed (and resummed) in
the MC PDFs.

Let us summarise on the motivation of introducing the
new, MC PDFs and their main features, in the form of a list
of questions and answers:

• What is the purpose of MC factorisation scheme? It is
defined such that the �(z)δ(kT ) terms due to emission
from initial partons disappear completely from the real
NLO corrections in the exclusive/unintegrated form, even
before PSMC gets involved.

• Why is the above vital in the KrkNLO scheme? Without
eliminating such terms it is not possible to include the
NLO corrections using simple multiplicative MC weights
on top of distributions generated by PSMC.

• How to determine elements of the transition matrix KMC
ab ?

They can be deduced from the difference of soft-collinear
counter-terms of the MC and MS scheme or from inspec-
tion of the NLO corrections in a few simple processes
with initial quarks and gluons in the LO hard process.
We have done it both ways.

• Will the same PDFs in the MC scheme eliminate ∼ δ(kT )

terms for all processes? This is a question about the
universality of the MC factorisation scheme. For all
processes similar to the DY or Higgs-production pro-
cess, with produced colour-neutral final-state objects, the
answer is positive.

In Fig. 6, we present examples of numerical results for
the PDFs of quarks and gluon in the MC scheme obtained
from PDFs in MS scheme using transformation of Eqs. (4.2)
and (4.3). The upper panels show the absolute values of the
MS and MC parton distributions taken at the scale Q =
100 GeV, whereas the ratios of the two are displayed in the
lower panels.

Two types of MC PDFs are plotted: the complete version
(red solid), where both quarks and gluons are transformed,
and the “DY” version (green dashed), where the gluon is
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Fig. 6 Comparison of PDFs in the MC and MS factorisation schemes. PDFs denoted with MCDY are the ones used for the Drell–Yan process in
Ref. [2]
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unchanged with respect to MS. As discussed earlier, these
types of MC PDFs is sufficient for the Drell–Yan process
and it was used in our previous work [2]. Hence, we show
them here for comparison.

One can see that the differences between the MC and MS
PDFs are noticeable. In particular, the MC quarks are up to
20% smaller at low and moderate x , while they get above the
MS distributions at large x . For DY and Higgs production, the
latter has consequences only at large rapidities of the bosons.
At the same time, we notice that the gluon is larger in the MC
scheme at low and moderate x . Hence, the changes in quarks
and the gluon have a chance to compensate each other and,
indeed, as we checked explicitly, the momentum sum rules
(4.4) are numerically satisfied for our MC PDFs.

Other quark flavours, when transformed to the MC
scheme, exhibit similar changes to those shown in Fig. 6
for the u and d quarks.

Finally, let us comment briefly on the process-independence
(universality) of the MC factorisation scheme and the
KrkNLO method. If we treat Eq. (4.2) as a definition of
PDFs in the MC scheme, then their universality is just inher-
ited from the MS scheme. The universality of the KrkNLO
method is more involved and it would imply that by means
of adoption of these PDFs and a careful choice of the exclu-
sive/unintegrated MC distributions for the initial-state split-
tings, we are able to eliminate from the NLO real corrections
all terms proportional to δ(β) f (z) or δ(α) f (z), which means
that we can impose the NLO real corrections with the mul-
tiplicative MC weights in d = 4 dimensions on top of the
PSMC distributions. We are able to state that the above is true
for all annihilation process into colour-neutral objects. This
can be deduced from analysing the CS counter-terms (which
are compatible with the modern PSMCs), where both the
emitter and the spectator are in the initial state. They are uni-
versal within the class of the above annihilation processes
and therefore the KrkNLO method features the same prop-
erty. The answer to the question whether extending this argu-
ment to other processes, with one or more coloured partons
in the final state at the LO level, is not trivial and the relevant
study is reserved to next dedicated publication.8.

5 NLO cross sections for Higgs production in KrkNLO
method

MC weights of theKrkNLOmethod for the Higgs-boson pro-
duction in gluon–gluon fusion are very simple, even simpler
than those for Drell–Yan process, where they depend on the

8 The analysis in Ref. [1] for the DIS process, albeit limited to the glu-
onstrahlung NLO subprocess, gives hope for a possible positive answer.

angles of the Z/γ ∗ decay products. For the g + g → H + g
subprocess we have

Wgg
R (α, β) =

|MNLO
gg→Hg |2

|MMC
gg→Hg |2

= 1 + z4 + α4 + β4

2
[
z2 + (1 − z)2 + z2(1 − z)2

]

= 1 + z4 + α4 + β4

1 + z4 + (1 − z)4 ≤ 1, (5.1)

whereas for the g + q → H + q channel, the real weight
reads

Wgq
R (α, β) = |MNLO

gq→Hq |2
|MMC

gq→Hq |2
= 1 + β2

1 + (1 − z)2 ≤ 1 . (5.2)

For the process with exchanged initial-state partons we have
Wqg

R (α, β) = Wgq
R (β, α).

Virtual+soft-real corrections can be read off from the for-
mulae of the coefficient functions given in Sect. 3. They are
just constant terms multiplied by the δ(1 − z) function. In
theKrkNLOmethod they should be included multiplicatively
in a parton shower generator for the corresponding process,
i.e. the Born-level cross section should be multiplied by the
weight

WVS = 1 + �V S, (5.3)

where �V S is the virtual+soft-real correction. For the Higgs-
boson production, it can be read off from Eqs. (3.47) and
(3.55) and we get

�
gg
V S = αs

2π
CA

(
4π2

3
+ 473

36
− 59

18

T f

CA

)
, �

gq
V S = 0.

(5.4)

The above weights are implemented on top of the CS-
dipole-based PSMC algorithm of Herwig 7 [19,20] in the so-
called “power shower” mode [21] which allows for complete
coverage of the phase space in momentum and flavour space,
without empty regions.9 In a way this is analogous to the one
described in Ref. [2] for the Drell–Yan process. In Ref. [2]
we provide a detailed discussion of the PSMC algorithm for
the case of gluonstrahlung where two CS dipoles contribute
(cf. Sects. 3.1 and 3.3). Then we prove that applying to such a
PSMC an appropriate MC weight according to the KrkNLO
method indeed reproduces the NLO differential cross section
(cf. Sect. 3.4). All this can be adapted to the current case of the
Higgs-boson production, replacing only incoming quarks by

9 Let us note that a similar reweighting method for real-parton radiation
in the DY process was implemented some time ago in the PYTHIA
PSMC algorithm in the so-called matrix-element correction mode [22].
However, it did not include the virtual NLO corrections and did not use
the MC factorisation scheme, as it is in the case of the KrkNLO method.
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Table 2 Values of the total cross section with statistical errors for
the Higgs-boson production in gluon–gluon fusion at NLO from the
KrkNLO method compared to the results of MC@NLO

σ tot
H [pb]

MC@NLO 18.72 ± 0.04

KrkNLO 19.38 ± 0.04

gluons. We therefore do not repeat such a discussion here—
the interested reader is recommended to check the above
paper.

For the numerical evaluation of the cross sections at the
LHC for the proton–proton collision energy of

√
s = 8 TeV,

we choose the following set of the Standard Model (SM)
input parameters:

MH = 126 GeV, 
Z = 2.4952 GeV,

MW = 80.4030 GeV, 
W = 2.1240 GeV, (5.5)

MZ = 91.1876 GeV, αs(M
2
Z ) = 0.13938690 (5.6)

Gμ = 1.16637 × 10−5 GeV−2, mt = 173.2 GeV,

and the Gμ-scheme [23] for the electroweak sector. To com-
pute the hadronic cross section we also use the MSTW2008
LO set of parton distribution functions [24], and take the
renormalisation and the factorisation scales to be μ2

R =
μ2
F = M2

H , where MH is the Higgs-boson mass. We also
set the Higgs boson to be stable for simplicity.

In Table 2 we show the results for the total cross sec-
tions for the Higgs-boson production in gluon–gluon fusion
obtained with KrkNLO and MC@NLO. The two methods
are matched to the dipole parton shower implemented inHer-
wig 7 [19,20].

We see that the two methods give slightly different (∼
3.5%) total cross sections, which come from formally higher-
order terms, i.e. beyond the NLO approximation. The rele-
vant distributions and detailed comparisons withMC@NLO,
POWHEG and the NNLO calculations from the HNNLO
program [25,26] are presented in another publication [27].

6 Summary and outlook

In this work, we have presented all the ingredients of the
KrkNLO method needed for its implementation for the
Higgs-boson production process in gluon–gluon fusion. In
particular, the complete definitions of PDFs in the MC
scheme, together with their numerical distributions, have
been provided. Hence, PDFs in the MC FS can be fit-
ted directly to experimental DIS and DY data. We have
also presented the first result for the total cross section for
the Higgs production. More distributions, comparisons with

MC@NLO, POWHEG and the NNLO calculations are pre-
sented in a separate paper [27]. A dedicated study of the
process-independence (universality) of the KrkNLO method
and the MC factorisation scheme is also reserved for the
future work.

The current state of NNLO+PS [28–34] represents a clear
progress in matching fixed-order QCD calculations with
PSMCs, however they are still limited to certain classes
of observables. The other natural extension for KrkNLO is
NNLO+NLOPS, where NLOPS is a PSMC that implements
the NLO evolution kernels in the fully exclusive form and
thus provides the full set of the soft-collinear counter-terms
for the hard process.
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A Coefficient functions for DIS process in MC scheme

The NLO coefficient functionsC2 for deep-inelastic electron–
proton scattering (DIS) in the MS factorisation scheme read

CMS
2,qq (z) = αs

2π
CF

[
1 + z2

1 − z
ln

1 − z

z
− 3

2

1

1 − z
+ 2z + 3

]

+
,(A.1)

CMS
2,qg(z) = αs

2π
TR

{[
z2 + (1 − z)2] ln

1 − z

z
+ 8z(1 − z) − 1

}
.

(A.2)

The corresponding coefficient functions in the MC fac-
torisation scheme can be obtained from the above formulae
with the help of the transformation-matrix elements KMC

i j in
the following way:

CMC
2,qq (z) = CMS

2,qq (z) − KMC
qq (z)

= αs

2π
CF

{[
−1 + z2

1 − z
ln(1 − z) − 3

2

1

1 − z
+ 3z + 2

]

+

+ 3

2
δ(1 − z)

}
, (A.3)
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CMC
2,qg(z) = CMS

2,qg(z) − KMC
qg (z)

= αs

2π
TR

{− [z2 + (1 − z)2] ln(1 − z) + 6z(1 − z) − 1
}
.

(A.4)

These coefficient functions can be used in fitting the MC
PDFs to experimental DIS data.
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