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We report on the possibility of reweighting parton-shower Monte Carlo predictions for scale variations in
the parton-shower algorithm. The method is based on a generalization of the Sudakov veto algorithm.
We demonstrate the feasibility of this approach using example physical distributions. Implementations are
available for both of the parton-shower modules in the HERWIG 7 event generator.
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I. INTRODUCTION

Monte Carlo simulations [1–6] have become essential
tools in both the analysis of data fromenergy frontier particle
physics experiments and the design of future experiments.
The last ten years have seen a dramatic improvement in the
accuracy of these simulations with the development of
techniques to improve the description of high-multiplicity
jet production at leading order1 [8–18], simulations accurate
at next-to-leading order, including the description of the
hardest emission at leading order [19,20], and more recently
multiple jet production at next-to-leading order [21–27].
This unprecedented increase in accuracy means that often
the results of modern Monte Carlo event generators are the
main, or even only, way in which theoretical predictions are
compared to the latest results of the LHC experiments. This
means that it is vital that wherever possible we must be able
to assess the uncertainty on the predictions of event gen-
erators, as well as the central value of the prediction. These
uncertainties come from a number of different sources:

(i) missing higher-order corrections in the calculation
of the hard matrix elements and shower evolution,
normally estimated by varying the factorization and
renormalization scales [28,29];

(ii) uncertainties from the perturbative and nonpertur-
bative modeling in the event generator, usually
estimated by using different tunes of the event
generator parameters [30];

(iii) uncertainties from the fitting of the parton distribu-
tion functions (PDFs), now normally estimated
using the recommendations of the PDF4LHC work-
ing group [31,32].

As event generators have become more sophisticated, in the
calculation of the perturbative physics the time taken for
the calculation of the hard partonic configurations has
increased which, together with the time taken for any
simulation of the detector, means that it is often unfeasible
to rerun the event generator for each scale choice, set of
parton distribution functions, and nonperturbative parame-
ters needed to fully assess all the sources of uncertainty in the
Monte Carlo simulation.
In the calculation of the hard process the calculation of

the uncertainty from the variation of the factorization and
renormalization scales, together with the PDF uncertainty,
can be more efficiently calculated. This is achieved by
calculating the effect of changing the scale, or PDF, as a
weight with respect to the central values at the same time as
computing the central value. These weights can then be
used to reweight the result of the simulation to obtain the
uncertainties without requiring additional runs of the event
generator. While this does increase the run time of the event
generator, over that of simply performing the calculation
for one PDF and scale choice, it is expected to be much
more efficient than fully simulating events for all the
required choices of scales and PDFs.
In contrast, currently the effect of varying the scale in the

parton shower, or any of the perturbative parameters
controlling the parton shower, or nonperturbative parame-
ters for the simulation of the underlying event and hadro-
nization, can only be calculated by running the full event
simulation for each scale or parameter choice. Given the
number of binary choices which are made in both the parton
shower and the various nonperturbative models it is far from
obvious that the variation of the parameters of these models
can be achieved using a reweighting procedure.
In this paper we will present a generalization of

the Sudakov veto algorithm used in most modern
Monte Carlo event generators to generate the parton
shower. This modification will allow us to calculate the
effect of changing parameters in the parton shower via a
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1See Ref. [7] for a recent review of older techniques.
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reweighting of the central result, rather than a full resimu-
lation of the events. The first approach [33] to calculating
these weights on an event-by-event basis required calcu-
lating a weight for each variation which was complicated as
this weight was not calculated via the veto algorithm
making it difficult to implement in a full event generator,
particularly for weights involving the PDFs. Performing the
changes in the Sudakov veto algorithm was introduced for
final-state radiation in Ref. [34]. Related work on modi-
fying the Sudakov veto algorithm to address a number of
applications has been presented e.g. in Refs. [35,36], while
detailed studies regarding negative splitting kernels and
effects of the infrared cutoff have been addressed in
Ref. [37]. In the next section we will present the full
details of the algorithm. This is followed by various checks
that the reweighting procedure correctly reproduces the
results of resimulating the events with different parameters
and the calculation of the uncertainty for a number of
physical distributions. In this first proof-of-concept paper
we will concentrate on the effect of varying the scale used
in the strong coupling and PDFs, although other changes
can be simulated using the same approach. Finally we
present our conclusions and directions for future work.

II. THE WEIGHTED SUDAKOV VETO
ALGORITHM

A. Standard veto algorithm

The standard veto algorithm proceeds, given the starting
scale Q, to generate the scale of the next emission q and
the d additional splitting variables2 x according to the
distribution

dSPðμ; xμjq; xjQÞ ¼ dqddx½ΔPðμjQÞδðq − μÞδðx − xμÞ
þ Pðq; xÞθðQ − qÞθðq − μÞΔPðqjQÞ�;

ð1Þ
where xμ is a parameter point associated to the cutoff μ, the
splitting kernel is Pðq; xÞ and the Sudakov form factor is

ΔPðqjQÞ ¼ exp

�
−
Z

Q

q
dk

Z
ddzPðk; zÞ

�
: ð2Þ

The distribution SP is normalized to unity.
The standard veto algorithm proceeds by taking an

overestimate of the kernel Rðq; xÞ such that

Rðq; xÞ ≥ Pðq; xÞ ∀ q; x: ð3Þ
Normally, the overestimate is chosen to be integrable and
invertible so q, x can easily be generated according to the
overestimated distribution

dSRðμ; xμjq; xjQÞ ¼ dqddx½ΔRðμjQÞδðq − μÞδðx − xμÞ
þ Rðq; xÞθðQ − qÞθðq − μÞΔRðqjQÞ�;

ð4Þ

with a Sudakov form factor

ΔRðqjQÞ ¼ exp

�
−
Z

Q

q
dk

Z
ddzRðk; zÞ

�
: ð5Þ

The generation of the splitting scale and variables starting
at the scale k ¼ Q proceeds as follows:
(1) A trial splitting scale and variables, q, x, are

generated according to SRðμ; xμjq; xjkÞ.
(2) If the scale q ¼ μ then there is no emission and the

cutoff scale, μ, and associated parameter point xμ are
returned.

(3) The trial scale and splitting variables are accepted
with probability

Pðq; xÞ
Rðq; xÞ ; ð6Þ

otherwise the process is repeated with k ¼ q.
For a proof that this correctly reproduces the distribution in
Eq. (1), see for example Refs. [7,37].

B. Weighted algorithm

We can generalize the veto algorithm to include weights
while simultaneously relaxing the requirements so that P is
not required to be positive and removing the restriction on
R, Eq. (3). In this case SP is still normalized to unity. In
order to achieve this we need to introduce an acceptance
probability ϵðq; xjk; yÞ such that

0 ≤ ϵðq; xjk; yÞ < 1: ð7Þ
We show explicitly that in addition to the trial scale q and
associated splitting variables x, the acceptance probability
can also depend on the previously trialled scale k and any
associated splitting variables y. We start with a weight
w ¼ 1. The generation of the splitting scale and variables
together with the calculation of the weight proceeds as
follows:
(1) A trial splitting scale and variables, q, x, are

generated according to SRðμ; xμjq; xjkÞ.
(2) If the scale q ¼ μ then there is no emission and the

cutoff scale, μ, and associated parameter point xμ are
returned with weight w.

(3) The trial splitting variables q, x are accepted with
probability ϵðq; xjk; yÞ and the returned weight is

w ×
1

ϵðq; xjk; yÞ ×
Pðq; xÞ
Rðq; xÞ : ð8aÞ

2For example if we are considering 1 → 2 splittings d ¼ 2 and
the splitting variables may be the light-cone momentum fractions
of the partons and azimuthal angle of the branching.
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(4) Otherwise the weight becomes

w ×
1

1 − ϵðq; xjk; yÞ ×
�
1 −

Pðq; xÞ
Rðq; xÞ

�
; ð8bÞ

and the algorithm continues with k ¼ q and y ¼ x.
We stress that, in general, the acceptance probability ϵ can
depend both on the point under consideration for a veto and
the previously vetoed point, allowing the algorithm to be
biased to traverse certain sequences more often than others.
In general the algorithm is not guaranteed to terminate;
however this is not an issue for the applications we are
considering.

C. Proof of the algorithm

In order to prove that this algorithm gives the correct
result we note that the probability density for the algorithm
to traverse a sequence ðq; xjqn; xnj…jq1; x1Þ of n − 1 veto
steps to give a result q, x from an initial condition Q≡ q1,
xQ ≡ x1 is

dSðnÞR;ϵðμ; xμ; q; xjqn; xnj…jq1; x1Þ
¼ ½ϵðq; xjqn; xnÞRðq; xÞθðqn − qÞθðq − μÞΔRðqjq1Þ
þ ΔRðμjq1Þδðq − μÞδðx − xμÞ�dqddx

×
Yn
i¼2

Rðqi; xiÞð1 − ϵðqi; xijqi−1; xi−1ÞÞ

× θðqi−1 − qiÞθðqi − μÞdqiddxi; ð9Þ

where we have introduced an arbitrary parameter point xQ
at the start of the algorithm, which may be chosen to
improve on the efficiency of the algorithm.
The weight accumulated through such a sequence is

wðnÞ
P;R;ϵðμ; xμ; q; xjqn; xnj…jq1; x1Þ

¼
Yn
i¼2

1

1 − ϵðqi; xijqi−1; xi−1Þ
�
1 −

Pðqi; xiÞ
Rðqi; xiÞ

�

×

�
1

ϵðq;xjqn;xnÞ ×
Pðq;xÞ
Rðq;xÞ q > μ;

1 q ¼ μ:
ð10Þ

The density produced by the algorithm is therefore

dSP;R;ϵðμ; xμjq; xjq1; x1Þ

¼
X∞
n¼1

Z
q2;x2;…;qn;xn

dSðnÞR;ϵðμ; xμ; q; xjqn; xnj…jq1; x1Þ

× wðnÞ
P;R;ϵðμ; xμ; q; xjqn; xnj…jq1; x1Þ: ð11Þ

Using

dSðnÞR;ϵðμ; xμ;q; xjqn; xnj…jq1; x1Þ
×wðnÞ

P;R;ϵðμ; xμ;q; xjqn; xnj…jq1; x1Þ
¼ ½ΔRðμjq1Þδðq− μÞδðx− xμÞ
þPðq; xÞθðq1 − qÞθðq− μÞΔRðqjq1Þ�dqdx

×
Yn
i¼2

θðqi−1 − qiÞθðqi − qÞðRðqi; xiÞ−Pðqi; xiÞÞdqidxi;

ð12Þ

the difference Rðq; xÞ − Pðq; xÞ exponentiates when per-
forming the sum as for the standard veto algorithm; hence

dSP;R;ϵðμ; xμjq; xjq1; x1Þ ¼ dSPðμ; xμjq; xjq1Þ; ð13Þ
i.e. the correct distribution is produced.

D. Competing channels

Often we have to deal with the case of competing
processes, for example the branching of a gluon, g → gg
and g → qq̄. This can be correctly handled using the
competition algorithm,3 i.e. generating a trial emission
for all the possible processes and then selecting the one
with the highest emission scale.
In this case the proof follows the standard one for

the competition. We can continue to use competition to
generate the different branchings and still take the emission
with the highest scale but using the weighted Sudakov veto
algorithm the weight is the product of the weights for all the
trial emissions, including those which are rejected.

E. Applications

There are many potential uses of this weighted Sudakov
veto algorithm. One important use which we will not
consider here is handling more complicated kernels, which
can be negative, while still generating emissions, albeit
weighted, using standard techniques.
A second use, which is the main aim of this paper, is that

it gives us a method of performing the parton shower for a
default splitting kernel Pðq; xÞ while at the same time
calculating the weights for different choices of the kernel.
Here we will consider the simplest possible choice, i.e.
changing the scale used in the strong coupling and PDFs,
but the method allows for any variation which can be
expressed as a change of the kernel.
In this case we will choose the acceptance probability

ϵðq; xjk; yÞ ¼ Pðq; xÞ
Rðq; xÞ ; ð14Þ

for the default choice of kernel Pðq; xÞ. Using this choice
the unweighted result reproduces the result of the standard

3Sometimes this is referred to as “winner takes all”.
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veto algorithm for the default kernel. While the weighted
results will produce the result for different choices of the
kernel. This choice ensures that in our case the weighted
Sudakov veto algorithm will terminate. Variations of the
splitting kernels can now be introduced by changing P→P0
in Eqs. (8a) and (8b), while keeping the acceptance
probability given in Eq. (14).

III. RESULTS

In this section we will show that using the weighted
Sudakov veto algorithm allows us to correctly reproduce
the effect of varying the scale of the strong coupling and
PDFs in the parton shower kernels without the need for
multiple runs of an event generator using different scales.
Wewill use this new approach to study the uncertainty from
scale variations for a few example physical distributions.
We will use HERWIG 7 [2] for these studies. HERWIG 7

provides the option of using two different parton-shower
algorithms: the default angular-ordered shower [38] using
1→2 branchings together with global momentum reshuf-
fling to ensure momentum conservation, and a dipole-based
approach using local recoils [39]. The implementations of
both of these showers use the veto algorithm to generate the
emissions; in the case of the angular-ordered shower simple
overestimate functions and vetoes are used, while for the
dipole shower the ExSample library [40] is used to adaptively
sample the Sudakov distribution using the veto algorithm.
HERWIG 7 allows us to compare the results of two

physically different parton-shower algorithms. At the same
time we also can check that the weighted results are correct

using two algorithms which differ both in the physical
approach used and in the technical implementation of the
veto algorithm in the program.
Figures 1 and 2 show the differential distribution for

1 − T for eþe− → qq̄ with
ffiffiffi
s

p ¼ 91.2 GeV for the

FIG. 1. Distribution of 1 − T at the parton level for eþe− → qq̄
with

ffiffiffi
s

p ¼ 91.2 GeV using the angular-ordered parton shower.
The upper frame shows the effect of varying the scale while the
lower shows the ratio of the up and down scale variations
calculated using reweighting with respect to those obtained
running the event generator with the relevant scale.

FIG. 2. Distribution of 1 − T at the parton level for eþe− → qq̄
with

ffiffiffi
s

p ¼ 91.2 GeV using the dipole shower. The upper frame
shows the effect of varying the scale while the lower shows the
ratio of the up and down scale variations calculated using
reweighting with respect to those obtained running the event
generator with the relevant scale.

FIG. 3. The transverse momentum of the Higgs boson in the
process gg → h0 at the parton level with

ffiffiffi
s

p ¼ 13 TeV using
the angular-ordered parton shower. The upper frame shows the
effect of varying the scale while the lower shows the ratio of the
up and down scale variations calculated using reweighting with
respect to those obtained running the event generator with the
relevant scale.
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angular-ordered and dipole showers, respectively. These
results were obtained at the parton level after the parton
shower without any corrections to describe hard radiation.
Figures 3 and 4 show the differential distribution for

transverse momentum of the Higgs boson for gg → h0 withffiffiffi
s

p ¼ 13 TeV for the angular-ordered and dipole showers,
respectively. These results were obtained at the parton level
after the parton shower without any corrections to describe
hard radiation.
As can be seen the results of calculating the scale

variation using our reweighting approach are in excellent
agreement with those obtained from directly simulating the
events with the modified scale choice in both cases.

IV. DISCUSSION

There are two main issues which effect the practicality of
using our reweighting approach to calculate the scale
uncertainty in the parton shower:
(1) The time taken to calculate the result of the scale

variations using reweighting should be less than
running the event generator for the different scale
choices considered. In general this will always be the
case if the other stages of the event generation, for
example the hard process evaluation, take signifi-
cantly longer than the generation of the parton
shower, or if detector simulation is included.
However, for simple processes without detector
simulation the time taken for the two approaches
can be comparable, at least for the angular-ordered
parton shower (Table I).

(2) If the weight variation is large then a large number
of events will have to be simulated in order for the
reweighted result to converge on that generated by
directly simulating the events with an acceptable
error. This can be particularly problematic if there
are regions of phase space which would be
populated with varied scales which are not filled
for the central value, and hence have infinite
weight.

The difference in the time taken with the two different
shower algorithms is due to the different technical imple-
mentations of the veto algorithm. The dipole shower which
uses an adaptive-sampling approach in which only one
acceptance probability is calculated shows a significant
reduction in the time taken for the simulation using
reweighting because only one additional weight needs to
be calculated for each variation.
The situation is very different for the angular-ordered

parton shower where Eq. (6) is split into a number of
different components. For example for space-like evolution
the splitting kernel is

TABLE I. Time taken (s) to simulate 10 000 gg → h0 events with
ffiffiffi
s

p ¼ 13 TeV for the angular-ordered and dipole showers. The time
taken to simulate three scale variations ððμR; μFÞ=

ffiffiffi
2

p
; ðμR; μFÞ;

ffiffiffi
2

p ðμR; μFÞÞ by direct simulation and reweighting is shown together
with the fractional difference in times, i.e. ðTðdirectÞ − TðreweightÞÞ=TðdirectÞ. Events with only the hard process were simulated as
well as events with multiple-parton interactions (MPI) both with and without varying the factorization and renormalization scales for the
secondary scattering processes.

Shower Hadronization & Decays

No MPI

MPI

Primary All

Direct Reweight Frac. Diff. Direct Reweight Frac. Diff. Direct Reweight Frac. Diff.

AO Off 79.8 94.2 −0.18 384.4 249.1 0.35 416.7 375.1 0.09
On 183.2 128.3 0.30 738.7 364.3 0.51 751.4 482.3 0.35

Dipole Off 99.6 52.8 0.47 435.4 161.9 0.63 462.7 213.6 0.54
On 271.8 108.2 0.60 831.7 286.6 0.65 859.2 340.1 0.60

FIG. 4. The transverse momentum of the Higgs boson in the
process gg → h0 at the parton level with

ffiffiffi
s

p ¼ 13 TeV using the
dipole parton shower. The upper frame shows the effect of varying
the scale while the lower shows the ratio of the up and down
scale variations calculated using reweighting with respect to
those obtained running the event generator with the relevant
scale.
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Pðq; zÞ ¼ 1

q
αSðzð1 − zÞqÞ

2π
PAPðz; qÞ

x
z fðx=z; qÞ
xfðx; qÞ ; ð15Þ

where q is the angular-ordered evolution variable, x is the
momentum fraction of the branching parton and PAP is the
Altarelli-Parisi splitting function. A simple overestimate
can be written as

Rðq; zÞ ¼ 1

q
αoverS

2π
Pover
AP ðzÞPDFoverðzÞ; ð16Þ

where αoverS , Pover
AP ðzÞ and PDFoverðzÞ are the overestimates

of αSðzð1 − zÞqÞ, PAPðz; qÞ and
x
zfðx=z;qÞ
xfðx;qÞ , respectively. The

veto is then separately applied for the weights

w1 ¼
αSðzð1 − zÞqÞ

αoverS
;

w2 ¼
PAPðz; qÞ
Pover
AP ðzÞ ;

w3 ¼
x
zfðx=z;qÞ
xfðx;qÞ

PDFoverðzÞ : ð17Þ

This calculation is organized so that the most time con-
suming piece, i.e. the evaluation of w3, is only performed if
the emission is accepted after the tests on w1;2. However,
using the reweighting approach all the weights have to be
evaluated for each trial emission, both for the default scale
and any variations; therefore the shower evolution can be
slower if the time taken for the evaluation of these weights
is significant compared to that for the rest of the shower
evolution.
This can be seen in Table I where the angular-ordered

parton shower is faster when the scale is varied directly.
However, due to the additional weights which need to be
calculated it is slower than the dipole shower, where the
more sophisticated sampling of the Sudakov form factor
means fewer additional weights have to be calculated, when
reweighting is used.
However, when all the necessary parts of the simulation

are included even for the relatively simple hard scattering
processes considered here the reweighting approach is
significantly faster and this performance improvement will
only increase when more complicated, and hence time-
consuming, processes are simulated.
Owing to the need to divide out the veto probability in

the reweighting procedure, weight distributions of the
reweighted results may broaden significantly for very
efficient sequences of the veto algorithm, ϵðq; xjk; yÞ ∼ 1
[see Eq. (8)]. While, for the central value, a very efficient
algorithm is desirable it may at the same time force us to
use larger statistics to obtain convergent results for the
reweighted distributions.

The situation can be improved by explicitly making the
veto algorithm for the central prediction more inefficient
than originally designed by introducing a “detuning”
parameter λ > 1 to increase the proposal kernel,
R → λR. A faster convergence of the reweighted results
can hence be obtained. Despite the increase in the run
time, using reweighting is still expected to be faster than a
full simulation of each variation. Detuning parameters are
available for the reweighting mechanisms in both HERWIG 7

parton-shower algorithms.
We show an example of the improvements in weight

distributions in Fig. 5. The negative weight events

FIG. 5. Distributions of the weights used to determine the “up”
and “down” scale variations for the dipole shower in gg → h0

events at 13 TeV for different values of the detuning parameter.
The improvement by using λ > 1 is clearly observed.
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appearing for the “down” variation are significantly
reduced for a moderate increase in run time (with λ ¼ 4
taking about twice as long as no detuning). This increase in
run time needs to be compared with the longer time taken to
obtain a similar statistical error for the reweighted distri-
butions without detuning as a large increase in the number
of simulated events (and hence run time) will be required.
We note that for the case of the overestimate kernel being
an overestimate for all variations, no negative weights
appear. This is the case, for example, when varying the
scale in strong coupling, but not the PDFs, in the angular-
ordered parton shower.

V. CONCLUSIONS

We have presented a new algorithm to allow the
inclusion of weights in the Sudakov veto algorithm. This
new weighted Sudakov veto algorithm allows the compu-
tation of the weights for any variations in splitting kernel
used in the veto algorithm at the same time as the central
value is calculated, allowing efficient computation of the
shower uncertainties.
This allows us to assess the uncertainty due to variations

of the scales in the parton shower without resimulating the
events for each scale choice of interest. This is significantly

faster and makes the calculation of the scale uncertainty
feasible as the time taken to simulate an individual event
can be time consuming for complicated processes.
This new approach is available in the HERWIG 7 (7.0.2)

release and will be combined with the effect of varying the
scales in the calculation of the hard process in a future
release. This technique can be extended to include the effect
of varying the parton distribution functions or changes to the
splitting kernel.

ACKNOWLEDGMENTS

This work was supported in part by the European Union
as part of the FP7 Marie Curie Initial Training Network
MCnetITN (PITN-GA-2012-315877). It was also sup-
ported in part by the Institute for Particle Physics
Phenomenology under STFC grant ST/G000905/1. SP
acknowledges support by a FP7 Marie Curie Intra
European Fellowship under Grant Agreement PIEF-GA-
2013-628739.

Note added.—While this work was being finalized, a
similar approach by the PYTHIA collaboration [41] came
to our attention, and the SHERPA collaboration has also
reported comparable functionality in Ref. [42].
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