CERN-ACC-SLIDES-2016-0006 -

EuCARD-2

Enhanced European Coordination for Accelerator Research & Development

Presentation

Recent results at FACET

Yakimenko, Vitaly (SLAC)

27 November 2014

The EuCARD-2 Enhanced European Coordination for Accelerator Research & Development project is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453.

This work is part of EuCARD-2 Work Package 5: Extreme Beams (XBEAM).

The electronic version of this EuCARD-2 Publication is available via the EuCARD-2 web site http://eucard2.web.cern.ch/ or on the CERN Document Server at the following URL: http://cds.cern.ch/search?p=CERN-ACC-SLIDES-2016-0006

- CERN-ACC-SLIDES-2016-0006 -

Recent results at FACET

S

NATIONAL ACCELERA

Vitaly Yakimenko, November 27, 2014

SLAC Electron Beam Test Facilities 5 MeV to 20 GeV

20 GeV e⁻

& e⁺

FACET

FACET-II Briefing October 3, 2014 – Hogan, Yakimenko

60-120 MeV

NLCTA

2-16 GeV

& single e⁻

ESTB

ttp://facet.slac.stanford.edu/

5 MeV

ASTA

Numbers calculated 7/15/2014

SLAC

FY14 FACET and Test Beam Facilities Users

- 396 Scientists associated with 42 active (beam time in FY14) or planned experiments and beam tests at FACET, ESTB, NLCTA and ASTA
- ~60% (231) of these scientists working on the experiments are Onsite Users (badged and trained for experimental work)

FY13 FACET Run – Six Experiments

FACET..., November 2014 – Yakimenko

FY14 FACET Run – Fifteen Experiments

FACET is a National User Facility

Primary Goal: Demonstrate a single-stage high-energy plasma accelerator for electrons.

- Meter scale 🗸
- High gradient
- Preserved emittance
- High efficiency 🗸

Timeline:

- Commissioning (2012) ✓
- Drive & witness e⁻ bunch (2012-2013) ✓
- Optimization of e⁻ acceleration (2013-2015)
- First high-gradient e⁺ PWFA (2014-2016)

FACET user program is based on high-energy high-brightness beams and their interaction with plasmas and lasers

Why Plasmas?

Relativistic plasma wave (electrostatic):

$$\begin{split} \vec{\nabla} \cdot \ \vec{E} &= \frac{\rho}{\varepsilon_0} \qquad k_p E_z = \frac{\omega_{pe}}{c} E_z = \frac{n_e e}{\varepsilon_0} \\ E_z &= \left(\frac{m_e c^2}{\varepsilon_0}\right)^{1/2} n_e^{1/2} \approx 100 \sqrt{n_e (cm^{-3})} = \frac{1GV/m}{n_e = 10^{14} \text{ cm}^{-3}} \end{split}$$

• Plasmas are already ionized, no break down

- Plasma wave can be driven by:
 - Intense laser pulse (LWFA)
 - Short particle bunch (PWFA)

Large Collective Response!

E200: Plasma Wakefield Acceleration

UCLA -SLAC

Up to 50% energy transfer from drive to witness was measured

High-Efficiency Acceleration of an Electron Bunch in a Plasma Wakefield Accelerator

UCLA-SLAC Simulations Energetically Dispersed Beam nature 15 **Previous Experiments** 100 No Trailing After Plasma (Data) 10 Bunch Plasma Wake 50 GV/m) (m n) x 25 0 Accelerated **Trailing Bunch** -50 Drive Bunch 20 -100 **Initial Energy** -200 -150 -100 -50 0 Drive **Our Experiment** 15 Bunch 100 Trailing y (mm) Energy **Bunch** Plasma Wake 50 8 (m n) x **Decelerated Drive Bunch** 0 33 -5 -50 Trailing Bunch Drive Bu 5 -100 9 15 -100 -50 -200 -150 0 $\xi(\mu m)$ 0 -5 0 5

- Electric field in plasma wake is loaded by presence of trailing bunch^(mm)
- Allows efficient energy extraction from the plasma wake

This result is important for High Energy Physics applications that require very efficient high-gradient acceleration

O NATURE.COM/NATUR

Plasma wakefield machines — the particle accelerators of the future? PAGES 40 & 92

CENTRAL FUROPE

Great result: 5 years in making

- One high profile result a year
- Priorities balanced between focused plasma wakefield acceleration research and diverse user programs with ultra-high fields

First Experiments with GeV/m Positron PWFA

UCLA SLAC

Log Color Scale

30

28

26

24

20

18

E (GeV)

- Early experiments followed rapid commissioning of positrons
- Unanticipated features in the data
 - Beam Quality: Divergence of accelerated positrons similar to electrons, emittance growth less than expected
- Source of active discussions & simulations

FACET has the only program in the world studying plasma acceleration of positrons

Simulations Providing Insight into Positron Driven Wakes

This study is important for plasma afterburner as an energy doubler

Plasma Wake Driven by a Short and Intense Positron Bunch

Submitted Manuscript: Confidential

Title: High-field positron acceleration in a plasma wake driven by a chargedparticle bunch

Authors: S. Corde^{1*}, E. Adli^{1,2}, J. M. Allen¹, W. An³, C. I. Clarke¹, C. E. Clayton⁴, J. P. Delahaye¹, J. Frederico¹, S. Gessner¹, S. Z. Green¹, M. J. Hogan¹, C. Joshi⁴, M. Litos¹, W. Lu⁵, K. A. Marsh⁴, W. B. Mori³, P. Muggli⁶, M. Schmeltz¹, N. Vafaei-Najafabadi⁴, D. Walz¹, and V. Yakimenko¹

Affiliations:

¹SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

²Department of Physics, University of Oslo, 0316 Oslo, Norway.

³Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA.

⁴Department of Electrical Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA.

⁵Department of Engineering Physics, Tsinghua University, Beijing 100084, China.

⁶Max Planck Institute for Physics, Munich, Germany.

*Correspondence to: Sébastien Corde (email: corde@slac.stanford.edu)

Abstract: New accelerator concepts must be developed to make future particle colliders more compact and affordable. The Plasma Wakefield Accelerator is one such concept, where the electric field of a plasma wake excited by a charged-particle bunch is used to accelerate particles. To apply plasma acceleration to particle colliders, it is imperative that both the electron and its antimatter counterpart, the positron, can be accelerated at high field in the plasma. Here we show that, as positrons in the front of a bunch transfer their energy to those in the rear of the same bunch by exciting a wake in the plasma, about a billion positrons gain four gigaelectrovolts of energy in a 1.2-meter distance. They extract 30% of the wake's energy and form a spectrally distinct bunch with a 3.8% r.m.s. energy spread.

Main Text: Future high-energy particle colliders operating at the energy frontier of particle physics will be in the range of several trillion electronvolts (1). The currently proposed machines based on the existing radio-frequency technology, such as the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) (2, 3), are very expensive and tens of kilometers long. Looking beyond these machines, novel methods for building compact and efficient particle colliders, such as the muon collider (4), the laser-plasma accelerator (5) and the plasma wakefield accelerator (PWFA) (6), are under development. Of these, the PWFA has recently demonstrated high-efficiency acceleration of a bunch of electrons at a high gradient of energy gain per unit length (7). In this experiment, a high-current and ultra-relativistic bunch of electrons was used to drive a space-charge disturbance—or wake—in a column of ionized gas

UCLA-SLAC

Manuscript is in an advanced state – expect to confirm results this FACET run

Positrons and Hollow Channel Plasmas

Hollow channel plasmas are considered a viable method for accelerating positrons in electron driven wake

e+ Beam Displacement vs. Laser Alignment

UCLA SLAC

- Several orders of magnitude difference between BBU theory and preliminary experimental data
- Need to improve theory, compare with simulations and experiments

This study is important for e- driven collider stage

PWFA Program Plan as Shown December 2012

FY	Facet Run	LCLS off	PWFA goal
2013	2/1 - 6/30	8/6 - 9/30	2 beam generation, laser commissioning, 2 beams with laser-> mono energetic acceleration (all successful and more)
2014	10/15-12/20 2/1 - 6/30	8/1 - 9/30	2 beams with laser-> mono energetic acceleration, positron commissioning, positron PWFA, high brightness PWFA injector (all successful & positrons!)
2015	10/15-12/20 2/1 - 6/30	8/1 - 9/30	positron PWFA , one stage, efficiency, high brightness PWFA injector
2016	10/1-5/31	6/1 S0-10 D&D	Finalizing the program, single stage demonstration (energy spread, emittance, efficiency)

Steady, methodical progress according to our plan

From FACET to FACET-II

Three main stages:

- electron beam photoinjector
- positron damping ring
- "sailboat" chicane

(e⁻ beam only) (e⁺ or e⁻ beams) (e⁺ and e⁻ beams)

FY	FACET-II	PWFA Goals
2017	Construction (Phase 1)	Finalize FACET data analysis, prepare FACET-II experiments
2018-19	Phase 1 (e⁻ only)	Staging studies with witness injector (synchronization, alignment), high transformer ratio (with shaped bunches)
2020-21	Phase 2 (e⁻ or e⁺)	e ⁻ or e ⁺ acceleration in e ⁺ wakes (physics of p driven PWFA), high-brightness beam generation, preservation, characterization
2022-23	Phase 3 (e⁻ and e⁺)	e ⁺ acceleration in e ⁻ driven wakes, demonstration of e ⁺ acceleration stage
2024-25		Witness bunch acceleration in two PWFA stages (independently driven)

Creating Ultra High-Brightness Beams with PWFA

TECHNOLOGIES UCLA -SLAC

- Plasma bubble (wake) can act as a high-frequency, high-field, highbrightness electron source
- Photoinjector + 100GeV/m fields in the plasma =
 - Unprecedented emittance (down to 10⁻⁸ m rad)
 - Sub-µm spot size
 - fs pulses

'Trojan Horse Technique'

Leverages efficiency and rep rate of conventional accelerators to produce beams with unprecedented brightness for collider & XFEL applications

Testing Dielectric Structures at and Above Breakdown Voltage

UCLA, Euclid Techlabs, Tech-X, Radiabeam Technologies, NRL, SLAC, MPI, Argonne

• High-energy beam allows access to narrow structures and high gradients

Demonstration of Gigavolt- per-meter Accelerating Gradients in Dielectric Wakefield Accelerating Structures

Strong Wakefields in Dielectric Tubes Have Applications Beyond Acceleration

- De-chirper: remove correlated energy spread for narrow bandwidth FEL
- Electron beams can make unrivaled THz source
 - CTR gives mJ, broadband, short pulse
 - Dielectric structures can extract 100's of mJ, narrowband, long pulse
- FACET developing techniques for THz transport

-SLAC

Science Opportunities at FACET

Record THz energies (narrow band *and* broad band) for pump-probe experiments

Focused THz creates fields approaching V/Å

Ultrafast Electron Diffraction (recent hire: X.J. Wang to develop program) •PWFA witness bunch can offer real-time fs imaging using UED

SI AO

Record intensity of monochromatic gamma-ray beams

 Noteworthy opportunities for materials research with gammas from Compton backscattering

FACET-II unique capabilities may open up many new opportunities for ultrafast sciences

Gamma Gamma collider

 $E_e = 4 GeV$

 $E_{\gamma cm} \sim 1.5 \text{ MeV}$

L ~ 5x10²⁴ cm⁻² sec⁻¹

Will focus on technology research for gamma gamma collider.

Will test for the first time ability to generate e⁺e⁻ pairs with real (not virtual) photons

This would be the first pair creation test using two real photons

Summary

Plasma wakefield acceleration presents an enormous opportunity!

• Success follows naturally from mixture of compelling scientific questions, strong collaborations and powerful test facilities

SLAC linac continues to play an invaluable role advancing understanding of plasma acceleration: FFTB, FACET, FACET-II